

Lecture Outline:

- SDP
- MAX-CUT

Last class, we discussed fractional chromatic and clique number. We showed that

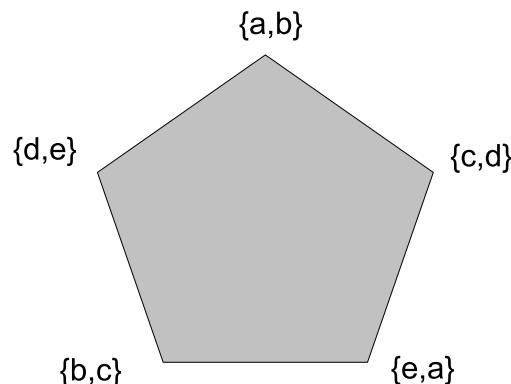
$$\omega(G) \leq \sup \sqrt[n]{\omega(G^n)} = \text{L}\Theta(G) \leq \chi_f(G) \leq \chi$$

Where $\text{L}\Theta(G)$, the Lovasz theta function of G , is the largest value of $\sqrt{\frac{1}{\cos \theta}}$ achieved by a nice orthonormal representation of G .

We now consider an alternative definition of the fractional chromatic number.

Definition 1. The b -fold chromatic number is the smallest size $|U|$ for which a b -fold coloring exists. The a -fold chromatic number equals $\inf \frac{|U|}{a}$.

An example makes this clear.



In other words, assign objects to each node such that two connected nodes don't share any objects.

Clearly, a 1-fold chromatic number is just the normal chromatic number.

Definition 2. A graph G is (a, b) -choosable if for any assignment of a list of a objects to each of its vertices there is a subset of b objects of each list so that subsets corresponding to adjacent vertices are disjoint. $\inf \frac{b}{a}$ is the a -choosable chromatic number.

It can be shown that a -fold chromatic number = b -fold chromatic number = χ_f .

1 SDP

Semidefinite programming (SDP) is a subfield of convex optimization concerned with the optimization of a linear objective function over the intersection of the cone of positive semidefinite matrices with an affine space.

A simple comparison between LP and SDP:

$$\begin{array}{c|c} \text{LP} & \text{SDP} \\ \hline \geq & \succeq \\ \text{vector} \cdot & \text{matrix} \cdot \end{array}$$

In SDP, we have Frobenius inner product of two matrices, which is the component-wise inner product of two matrices as though they are vectors. In other words, it is the sum of the entries of the Hadamard product, that is,

$$A \cdot B = \sum_i \sum_j A_{ij} B_{ij} = \text{trace}(A^T B) = \text{trace}(AB^T)$$

Further, the trace of a square matrix A is defined to be the sum of the elements on the main diagonal of A , i.e.,

$$\text{tr}(A) = a_{11} + a_{22} + \cdots + a_{nn} = \sum_i a_{ii}$$

Primal-dual of SDP:

$$\begin{array}{c|c} \min C^T x & \max yB \\ \sum x_i A_i \succeq B & y A_i = C_i \\ & y \succeq 0 \end{array}$$

Here A and B are positive semidefinite matrices. They have to be symmetric. They have the following properties:

- $\forall x, x^T A x \succeq 0$
- eigen values are non-negative
- $A = U^T U$, for some U
- A is a non-negative linear combination of xx^T , for some vector x
- symmetric minor determinant is non-negative

A little example:

$$\begin{array}{ccc} \min x_1 & & \min x_1 \\ \left(\begin{array}{cc} x_1 & 1 \\ 1 & x_2 \end{array} \right) \succeq 0 & \iff & x_1 x_2 \succeq 1 \\ & & x_1, x_2 \succeq 0 \end{array}$$

SDP is equivalent to Vector Programming. A vector program is a program in which we optimize functions of linear inner products of vectors subject to linear constraints. More specifically, a Vector Program can be formulated as follows.

$$\begin{aligned} \min \quad & \sum_{1 \leq i, j \leq n} c_{ij} v_i^T v_j \\ \text{subject to} \quad & \sum_{1 \leq i, j \leq n} a_{ij}^{(k)} v_i^T v_j = b_k, 1 \leq k \leq m \\ & v_i \in \mathcal{R}^n, 1 \leq i \leq n \end{aligned}$$

2 MAX-CUT

The Max-Cut problem is defined as: given a graph $G = (V, E)$, a weight function $w : E \rightarrow \mathbb{Z}^+$. The goal is to determine a cut (S, \bar{S}) , where $S \neq \emptyset$ or V , such that $w(S, \bar{S})$ is maximized.

A straightforward greedy algorithm will give a $\frac{1}{2}$ -ratio approximation algorithm:

- Suppose V will be divided into 2 subsets V_1 and V_2 . Initially, V_1 is empty.
- Pick the node of the highest degree and put it into V_1 .
- See whether it increases the weight of edges crossing.
- Keep doing this.

There are 2 other ways to approximate Max-Cut problem:

- Local Optimization
- Random Optimization

They also give a $\frac{1}{2}$ -ratio approximation.

An attempt at writing an LP for Max-Cut problem would be:

$$\max_{e=ij} \sum y_{ij}$$

such that

$$y_{ij} \leq |x_i - x_j|$$

$$0 \leq x_i \leq 1$$

Actually, it doesn't quite work out, since it is not easy to deal with $|x_i - x_j|$.