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Lecture Outline:

e The Sparsest Cut Problem
e Previous Approximation Algorithms
e Arora-Rao-Vazirani Algorithm - O(y/logn) Approximation for the Sparsest Cut Problem

e Some Observations on High Dimension Geometry

In this lecture, we have introduced the O(y/logn) approximation algorithm for the sparsest cut
problem. Good reference for the material covered in this lecture is an excellent text on graph
partioning by Sanjeev Arora, Satish Rao and Umesh Vazirani [1].

1 The Sparsest Cut Problem

Recall the Sparsest Cut Problem. For a graph G = (V,E) and non-empty set S C V of the vertices,
(S,S) denotes the set of edges of G with exactly one end vertex in S. An edge set of this form is
called an edge cut, or cut. The density of an edge cut [S,S] is the ratio between the number of edges
that are present in the cut, and the maximum number of edges that are possible between S and S:

d(S,S) = [(S,9)|/(|9||S]). An edge cut with minimum density is called a sparsest cut of the graph.

2 Previous Approximation Algorithms
e Eigenvalue approaches (Cheeger’70, Alon’85, Alon-Milman’85)
Only yield factor n approximation.
e O(log n)-approximation via LP (multicommodity flows) - (Leighton-Rao’88)

e Embeddings of finite metric spaces into ¢; - (Linial, London, Rabinovich’94, AR’94)
Geometric approach; more general result (but still O(log n) approximation)

3 Arora-Rao-Vazirani algorithm - O(y/logn) approximation for the
sparsest cut problem

The key idea underlying algorithms for graph partitioning is to spread out the vertices in some
abstract space while not stretching the edges too much. Finding a good graph partition is then
accomplished by partitioning this abstract space. [1]

The approach of ARV algorithm combines both geometry and the metric condition. In particular,
this approach maps the vertices to points in an n dimensional space such that the average square



distance between vertices is a fixed constant, but the average squared distance between the end-
points of edges is minimized. Furthermore, we insist that these squared distances form a metric.
This embedding, which we refer to as an 6% representation, can be computed in polynomial time
using semi-definite programming. It is shown in [1] that this £3 representation embeds into 1 with

O(+/logn) distortion.

Definition 1. Given a graph G=(V,E), the goal in the UNIFORM SPARSEST CUT problem is
to determine the cut (S,S) (where |S|<|S| without loss of generality) that minimizes
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This can be written as following SDP:
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n? is used for simplicity, as this would make the average distance equal to 1. We can use value

other than n? and then scale the distance accordingly.

The cut integrality gap is very large, therefore they added triangle inequality.



Definition 2. (/2 REPRESENTATION) An (3 representation of a graph is an assignment of a
point (vector) to each node, say v; assigned to node i, such that for all i, j, k:

i — ;24 |vj — vg|* > |vi —vg|®  (triangle inequality)
An 03 representation of a graph is called a unit-f3 representation if all points lie on the unit sphere
(or equivalently, all vectors have unit length.)
We will further strengthen it by adding another constraint that all the angles (in the triangle formed
by these vectors) are acute angles.

This SDP is then solved and the collection of points returned can then be embedded in ¢; with
average distortion O(y/logn). For embedding #2 into £, we rely on the Master Structure Theorem.

The Master Structure Theorem: Given vy, v, -+, UpeR™
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Squared distances form a metric (i.e. all three points subtend acute angle)
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then 3 S,T s.t. |S| = Q(n), |T| = Q(n) and d(S,T) = Q( lggn)

]

A tight example of Q( \/1;@) is a hypercube with n points in log n dimensions.

4 Some Observations on High Dimension Geometry
e What is the maximum number of points in n-dimensions such that no three points subtend
obtuse angle?

— 2-dimensions 4 points (square)
— 3-dimensions 8 points (cube)

— n-dimensions 2" points

e High-Dimensional Spheres in Cubes

In high dimensions, 99% of the mass of the sphere is concentrated at its center.

High dimensional sphere

Q9% of mass 15

concentrated here

We’ll make the numbers easy by using a cube (in dimension N) with side length 2. Then
when we cut the cube into orthants, each sub-cube has side length 1. Let’s just look at one



of those sub-cubes. The sphere S inscribed in that sub-cube has diameter 1. When we draw
the central sphere, its center is on a corner of that subcube. Draw the diagonal from that
corner to the opposite corner of the sub-cube. That diagonal has length V/N. The part of
the diagonal going through the sphere S has length 1 because that is the diameter of S. Of
the part that is left over, half of it is in the central sphere, and in fact forms the radius of
that central sphere. So the central sphere has radius @ If N=9, the radius of the central
sphere is 1, so it is just tangent to the cube. If N>9, then part of the central sphere bulges
outside the cube! And, eventually the volume of the central sphere is actually larger than the

cube. [2]
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