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Abstract. School timetabling is a complex problem in combinatorial
optimization, requiring the best possible assignment of course sections
to teachers, timeslots, and classrooms. There exist standard techniques
for generating a school timetable, especially in cohort-based programs
where students take the same set of required courses, along with several
electives. However, in small interdisciplinary institutions where there are
only one or two sections of each course, and there is much diversity in
course preferences among individual students, it is very difficult to create
an optimal timetable that enables each student to take their desired set
of courses while satisfying all of the required constraints.

In this paper, we present a two-part school timetabling algorithm that
was applied to generate the optimal Master Timetable for a Canadian
all-girls high school, enrolling students in 100% of their core courses and
94% of their most desired electives. We conclude the paper by explaining
how this algorithm, combining graph coloring with integer linear pro-
gramming, can benefit other institutions that need to consider student
course preferences in their timetabling.

Keywords: School Timetabling · Post Enrollment Course Timetabling
Problem · Integer Programming · Graph Coloring · Optimization.

1 Introduction

Every educational institution needs to produce a Master Timetable, listing the
complete set of offered courses, along with the timeslot and classroom for each
section of that course. This timetable allows teachers to know what courses they
are teaching, and enables students to enroll in a subset of these courses.

As many school administrators know, creating a timetable is incredibly diffi-
cult, requiring the careful balance of numerous requirements (hard constraints)
and preferences (soft constraints). When timetables are constructed by hand,
the process is often 10% mathematics and 90% politics [4], leading to errors,
inefficiencies, and resentment among teachers and students.

To address these concerns, scholars in Operations Research have analyzed the
School Timetabling Problem (STP) ever since the 1960s [10]. Various heuristics
have been applied to create timetables for schools in Argentina, Brazil, Denmark,
Germany, Greece, Italy, Netherlands, South Africa, and Vietnam [23].
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In the most basic version of the STP, the objective is to assign courses
to teachers, timeslots, and classrooms, subject to the following constraints: a
teacher cannot teach two courses in the same timeslot, no classroom can be used
by two courses simultaneously, and each teacher has a set of unavailable teaching
timeslots. This problem is NP-complete [7].

Real-life timetabling problems involve additional constraints that must be
satisfied [24], further increasing the complexity of the STP. These variations
include event constraints (e.g. Course X must be scheduled before Course Y), and
resource constraints (e.g. scheduling only one lab-based course in any timeslot).
At large universities, there are additional constraints that must be considered,
such as taking into account the time students need to walk from one end of the
campus to the other.

Over the past five decades, numerous algorithms have been applied to gener-
ate optimal (or nearly-optimal) timetables for STP benchmark instances. These
techniques include constraint programming [6], evolutionary algorithms [26], sim-
ulated annealing [18], and tabu search [20]. The complete list of methods appears
in a comprehensive survey paper published earlier this decade [23].

Given how hard the STP is, a common practice is to focus only on teacher
requirements and preferences, ignoring the wishes of the students (i.e., the in-
dividuals most affected by the timetable). This assumption is made because
many school programs are cohort-based [15], where students are divided into
fixed groups and take the same sequence of courses to complete their education.
At many high schools and universities, the timetabling is done via homogeneous
sectioning [4], where students are grouped according to their interests or majors:
for example, students in the Arts stream versus students in the Sciences stream.

There are obvious deficiencies to this practice, most notably in small interdis-
ciplinary institutions where cohorts do not exist, and each student takes a unique
set of courses from all departments. Many such institutions are private schools,
where their revenue comes exclusively from student tuition. If students cannot
enroll in their desired courses, they (or their parents) will go to a different school
that will accommodate their preferences. Thus, these schools are under tremen-
dous pressure to create a timetable that satisfies teachers and students. This is
the motivation for the Post-Enrollment Course Timetabling Problem (PECTP),
an active area of research in the field of automated timetabling.

This paper proceeds as follows. In Sections 2 and 3, we define the PECTP
and provide a brief literature review on related work that incorporates student
course preferences in timetabling. In Sections 4 and 5, we describe our solution to
the PECTP, which is a two-part algorithm that generates an optimal coloring of
a weighted conflict graph for single-section courses, after which an integer linear
program is solved to generate the final timetable. In Section 6, we generate
the optimal Master Timetable for an interdisciplinary all-girls high school in
Canada, and demonstrate the speed and quality of our two-part algorithm. And
in Sections 7 and 8, we explore the strengths and limitations of our timetabling
algorithm to large universities, and conclude the paper with some ideas and
directions for future research.
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2 Problem Definition

The standard School Timetabling Problem (STP) is an example of a constraint
satisfaction problem, which asks whether there exists a feasible assignment of
course sections to teachers and timeslots. To avoid confusion, we will rename
timeslots as blocks, so that T will denote the set of teachers and B will denote
the set of blocks during which the courses will take place.

The more general version of the STP is a combinatorial optimization problem,
which asks for the best assignment satisfying all of the hard constraints while
maximizing the preferences of the teachers being assigned their desired courses
in specific blocks.

Both versions of the STP can be set up as a 0-1 integer linear program (ILP),
in which each unknown variable Xt,c,b represents whether teacher t is assigned
to a section of course c in block b. The total number of variables is n = |T ||C||B|,
where |T | is the number of teachers, |C| is the number of offered courses, and
|B| is the number of blocks.

Let Dt,c,b be the desirability of teacher t assigned to course c in block b. This
coefficient will be a function of teacher t’s ability and willingness to teach course
c, combined with their preference for teaching that course in block b.

Then, subject to all of the hard constraints, we want to maximize∑
t∈T

∑
c∈C

∑
b∈B

Dt,c,b ·Xt,c,b.

The Post-Enrollment Course Timetabling Problem (PECTP) was introduced
just over a decade ago [17], as part of the second International Timetabling
Competition. In the PECTP, points are awarded for enrolling students in any
section of a desired course. For example, if there are ten different sections of
Calculus 101, a student wishing to take Calculus 101 needs to be assigned to
exactly one of these ten sections.

In addition to all of the constraints in the STP (e.g. no teacher can be
assigned to two courses in overlapping blocks), the PECTP involves additional
student-related hard constraints, such as ensuring that no student is enrolled in
multiple sections of the same course.

Let Ys,c,b be the binary decision variable representing whether student s is
assigned to a section of course c in block b, and let Ps,c,b be the preference of
student s being enrolled in course c in block b.

Then, subject to all of the hard constraints, we want to maximize∑
t∈T

∑
c∈C

∑
b∈B

Dt,c,b ·Xt,c,b +
∑
s∈S

∑
c∈C

∑
b∈B

Ps,c,b · Ys,c,b.

This is the most basic formulation of the STP and PECTP. There are exten-
sions that we will not consider in this paper, such as adding a penalty function
whenever student s has a class in the last block of the day or has a class in
three consecutive blocks. For a full discussion and treatment of these PECTP
extensions, we refer the reader to [19].
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3 Related Work

The PECTP was introduced in 2007 as one of the tracks of the International
Timetabling Competition (ITC). Over the past twelve years, different teams of
Operations Research scholars have developed algorithms to tackle hard instances
of the PECTP. The majority of these approaches rely on multi-stage heuristics.

Fonseca et al. [8] propose a three-stage hybrid solver involving graph algo-
rithms, metaheuristics, and “matheuristics”. Nothegger et al. [22] present an
iterative three-step ant colony optimization algorithm. One of the finalists [5]
for ITC 2007 employs a multiphased heuristic solver based on a stochastic local
search, whereas the winning team [3] applies a two-stage local search approach
combining tabu search and simulated annealing.

Heuristics are advantageous for they easily compute within the strict time
limit imposed by the ITC, yet they cannot guarantee the optimality of the output
solution. The latter is a particular weakness of local search approaches, which
lack the flexibility of moving in the space of feasible solutions and get stuck in
local minima despite the large size of the search neighborhood [3].

Recent papers have made much progress. Cambazard et al. [3] find provably-
optimal solutions to three of the PECTP benchmark instances, by augmenting
simulated annealing with a large neighborhood search. Kristiansen et al. [15] em-
bed exact repair methods within an adaptive large neighborhood search (ALNS)
to find a feasible solution first, which they optimize by solving a mixed integer
program (MIP). Their ALNS finds timetables within 1% of the optimal solution,
outperforming Gurobi, a state-of-the-art MIP solver, on large instances.

Parallel to the noteworthy progress in heuristic approaches, the last decade
was marked by a significant advance in general-purpose MIP solvers. An ob-
vious advantage of Integer Programming is its ability to issue certificates of
optimality [14]. Since it is NP-complete to solve a 0-1 Integer Program [13], it
has become common practice to decompose IP models into smaller sub-problems
[27]. Van Den Broek et al. [29] use the lexicographical optimization of four ILP
sub-problems to solve a real-world instance of PECTP at a Dutch university, and
Kristiansen et al. [14] devise a two-step MIP algorithm for Danish high schools.

The problem considered in this paper is most similar to the formulation
of the generalized PECTP presented by Mendez-Diaz et al. [19] and Carter
[4], which were inspired by university timetabling problems in Argentina and
Canada, respectively. In these two papers, the researchers first assign course
sections to blocks, and then assign students to course sections. On the next
page, we present our mathematical model that explains how we can perform
both assignments simultaneously.

We make two contributions in this paper. First, we present a complete algo-
rithm that guarantees fast optimal PECTP solutions for small educational insti-
tutions. Secondly, we provide a graph-theoretic framework to demonstrate how
courses can be “bundled” together and treated as a single super-course, which
significantly reduces the time required to generate a nearly-optimal timetable.
This makes our algorithm scalable for larger schools and universities.
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4 Mathematical Model

Let T be the set of teachers, S be the set of students, C be the set of courses,
and B be the set of blocks.

For each t ∈ T, c ∈ C, b ∈ B, let Xt,c,b be the binary variable that equals 1
if teacher t is assigned to course c in block b, and is 0 otherwise. Similarly, for
each s ∈ S, c ∈ C, b ∈ B, let Ys,c,b be the binary variable that equals 1 if student
s is enrolled in course c in block b, and is 0 otherwise.

Earlier we defined the desirability coefficient Dt,c,b and the preference co-
efficient Ps,c,b. Our Integer Linear Program (ILP) has the following objective
function: ∑

t∈T

∑
c∈C

∑
b∈B

Dt,c,b ·Xt,c,b +
∑
s∈S

∑
c∈C

∑
b∈B

Ps,c,b · Ys,c,b.

We now present our hard constraints.

No teacher can be assigned to two different classes in the same block, and at
most one section of any course is offered in any given block.∑

c∈C

Xt,c,b ≤ 1 ∀ t ∈ T, b ∈ B (1)

∑
t∈T

Xt,c,b ≤ 1 ∀ c ∈ C, b ∈ B (2)

Define Oc to be the number of offered sections of course c.∑
b∈B

∑
t∈T

Xt,c,b = Oc ∀ c ∈ C (3)

No student can be enrolled in more than one course in the same block, nor
can any student be enrolled in two sections of the same course.∑

c∈C

Ys,c,b ≤ 1 ∀ s ∈ S, b ∈ B (4)

∑
b∈B

Ys,c,b ≤ 1 ∀ s ∈ S, c ∈ C (5)

No student can be enrolled in a course during a block in which that course
is not offered by any teacher.

Ys,c,b ≤
∑
t∈T

Xt,c,b ∀ s ∈ S, c ∈ C, b ∈ B (6)

Let R be the number of available rooms in the school.∑
t∈T

∑
c∈C

Xt,c,b ≤ R ∀ b ∈ B (7)
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Let M be the maximum size of a class.∑
s∈S

Ys,c,b ≤M ∀ c ∈ C, b ∈ B (8)

Our ILP maximizes the objective function subject to these eight constraints.
This model has a total of (|T | + |S|) · |C||B| binary decision variables. In

practice, the large majority of these variables Xt,c,b and Ys,c,b will be pre-set
to 0, since teachers are qualified to only teach a small subset of the offered
courses, and likewise, students will only want to be enrolled in a small subset
of these courses. By fixing these zero variables, we can solve the PECTP using
the above ILP, guaranteeing an optimal timetable whenever |T |, |S|, and |C|
are of reasonable size. But when these values are large, like at most universities,
simplifications are required to ensure tractability.

There are two natural ways to simplify the problem: assume there are cliques
of teachers or assume there are cohorts of students. In the former, the Master
Timetable is generated one clique at a time: first assign course sections to the
math teachers and fix those assignments, then do the same with the science
teachers, and so on. In the latter, the students are pre-divided into fixed groups,
and each group is assigned to the same set of course sections.

Unfortunately, these two approaches fail when there are many teachers who
teach different subjects (e.g. Ms. X teaches Grade 12 Math and Grade 7 French),
and when cohorts do not exist and students wish to take a unique combination of
courses from two different faculties (e.g. an undergraduate attempting a double-
major in Chemistry and Sociology).

Our approach is not to bundle teachers or bundle students, but rather to
bundle courses. We now present a graph-theoretic approach that efficiently par-
titions one-section courses into discrete bundles that enable us to significantly
reduce the running time of the ILP.

5 Bundling One-Section Courses

C is the set of courses. Some of these courses will be sought by many students,
and so multiple sections of the course must be offered in the timetable. The rest
are specialized courses that will attract only a small number of students, and
so only a single section is required. Let C = CM ∪ CO, where CM is the set of
multiple-section courses and CO is the set of one-section courses.

While there is much flexibility to timetabling courses in CM , courses in CO

can only be assigned to a single block, and so we must ensure that the courses
in CO avoid any type of scheduling conflict: by teacher, by room, or by student.

Define G to be the weighted conflict graph, where CO is the set of vertices.
For each pair x, y ∈ CO, we calculate the edge weight w(x, y) as follows:

(a) Add a weight of wt if the same teacher is required to teach both x and y.
(b) Add a weight of wr if the same room must be used for both x and y.
(c) Add a weight of ws for each student who wishes to take both x and y.
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The weights wt, wr, ws can vary, though in practice it is most logical to set
high values of wt and wr and low values for ws (e.g. wt = 100, wr = 100, ws = 1).

For each integer i ≥ 0, define Gi to be the graph with vertex set CO whose
edge set only consists of edges with weight greater than i. By definition, there
exists a sufficiently large integer i for which Gi is an empty graph with no edges.

For each Gi, the chromatic number χ(Gi) is the fewest number of colors
needed to color the vertices of Gi so that no two vertices joined by an edge share
the same color.

If χ(G0) is at most |B|, the number of blocks in the timetable, then all of the
one-section courses assigned the same color can be “bundled” together in the
same block. This guarantees that every student will be able to take all of their
desired one-section courses, since no pair will be offered at the same time. These
bundles can be thought of as the “supernodes” of the conflict graph [2].

If χ(G0) > |B|, then by definition, it is impossible to create a timetable that
enables every student to get into all of their desired courses. In this case, we find
the smallest index t for which χ(Gt) ≤ |B|, and once again, the color classes
correspond to our bundles for the one-section courses.

Although it is NP-complete to determine the chromatic number of a general
graph [13], for many large graphs we can compute χ(G) using state-of-the-art
algorithms based on local search [12]. We can also compute χ(G) by solving the
corresponding 0-1 ILP, and adding the constraint that no color class can contain
more than R courses, where R is the number of rooms available for teaching.

This motivates our solution to the Post-Enrollment Course Timetabling Prob-
lem, where we use graph coloring to reduce the number of variables in our ILP.

(i) Construct the weighted conflict graph G, where the vertex set is CO.
(ii) Starting with i = 0, calculate χ(Gi). If χ(Gi) ≤ |B|, then stop. Otherwise

increment i by 1 until we find some index i = t for which χ(Gi) ≤ |B|.
(iii) Find a |B|-coloring of χ(Gi) where the number of one-section courses in each

color class is at most the number of available rooms. Let Xj be the set of
courses in CO assigned to color j.

(iv) Redefine C to equal CM ∪X1∪X2∪ . . .∪X|B|, where there are |CM | courses
that have multiple sections, and |B| bundles, each of which is a one-section
“super-course” with multiple teachers that can be assigned to any number
of students. We then solve the previously-defined ILP, using this new set C.

For example, suppose that there are |C| = 120 courses to be timetabled into
|B| = 10 blocks, where |CM | = 20 and |CO| = 100. The above algorithm bundles
the 100 one-section courses into |B| = 10 bundles. Thus, instead of considering
|C| = 120 courses in our ILP, we now only need to consider |CM | + |B| = 30
courses. By reducing the number of variables by a factor of four, we create
a massive reduction in the total running time while only sacrificing a small
percentage in quality, as measured by the value of our objective function.

Our approach is particularly useful in small interdisciplinary institutions that
offer numerous one-section courses desired by different sets of students. We now
provide an example of such an educational institution, and apply our algorithm
to create the optimal Master Timetable for this all-girls independent school.
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6 Application

St. Margaret’s School (SMS) is located in Victoria, the capital city of the Cana-
dian province of British Columbia. Since 1908, educators at SMS have dedicated
themselves to inspiring girls who want to change the world and helping them
become women who do change the world. The school has an enrollment of ap-
proximately 375 students, starting from Junior Kindergarten (age 3 and 4).

As mentioned in their online handbook [28], SMS prides itself on their small-
scale learning environment, which provides teachers with the flexibility to per-
sonalize learning for each student and challenge each girl to realize her own
potential. In order to achieve this goal, the school spends several months each
year constructing the Master Timetable, by hand, with several dozen iterations.

The biggest challenge is timetabling the courses for the Grade 11 and 12
students, i.e., the juniors and seniors at the high school. Unlike students in the
lower grades who take mostly required (core) courses, there are numerous elective
courses in the final two years, and each student wants to enroll in a different
combination of courses from the eighty offerings that are available, including
Advanced Placement Calculus, Law Studies, Studio Art, and Creative Writing.

The |S| = 58 students going into Grade 11 and 12 completed a survey indi-
cating their course choices for the following year. The administrators used these
responses to decide to offer |C| = 39 of the 80 possible courses. To ensure a
maximum class size of 18, the administrators assigned two sections to |CM | = 9
courses requested by more than 18 students, and one section for the remaining
|CO| = 30 courses that were requested by at most 18 students.

There are five periods in each day, and a total of |B| = 9 blocks. The nine
blocks are fixed in the schedule, as follows:

Monday Tuesday Wednesday Thursday Friday
Block 1 Block 2 Assembly Block 1 Block 2
Block 7 Block 8 Block 8 Block 9 Block 3
Block 4 Block 3 Block 6 Block 5 Block 7
Block 5 Block 9 Block 4 Block 6 Block 8
Block 6 Block 7 Block 5 Block 4 Block 9

Of the |C| = 39 courses, 18 are “short” courses offered in blocks 1/2/3 with
two weekly classes, and the other 21 are “long” courses in blocks 4/5/6/7/8/9
with three weekly classes. Each student is required to take a set of core courses,
with the rest being freely-chosen electives. Most (but not all) of the core courses
are long, and most (but not all) of the elective courses are short.

Each student s updated their survey with their most desired courses for
2019-2020, listing up to 3 short courses and up to 6 long courses. This selection
included the core courses of English and Career/Leadership, as well as an addi-
tional English Language Learner course for non-native English speakers. Finally,
Grade 11 students were required to take a Physical Education course. Thus, all
Grade 11s had at most 4 core courses, while Grade 12s students had at most 3.
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The |S| = 58 students requested a total of 447 courses, which is fewer than the
maximum total of |S|×|B| = 58×9 = 522. This occurred because some students
had no preference for certain electives (e.g. they viewed every Social Science
course as interchangeable), and also because many of the students qualified to
take eight courses with their ninth one being a “self-study period”.

For each block b, we set the preference coefficient Ps,c,b as follows:

(i) 10 points if c is a core course
(ii) 3 points if c is an elective course and s is a Grade 12 student
(iii) 1 point if c is an elective course and s is a Grade 11 student

The SMS leadership team pre-assigned each of the 9 + 9 + 30 = 48 course
sections to one of the |T | = 19 teachers in the Senior School, based on exten-
sive consultations with each teacher. With teacher preferences pre-assigned, this
reduces our ILP’s objective function to maximizing student preferences. Mathe-
matically this is equivalent to setting the desirability coefficient Dt,c,b to equal 0
if teacher t could be assigned to course c in some block b, and −1000 otherwise.

In addition to the eight constraints we mentioned previously, we also included
extra constraints requested by the school. For example, some of the teachers
work part-time, and are only available to teach on Mondays, Wednesdays, and
Thursdays. This forced all of their teaching blocks to be 1, 4, 5, or 6. Two courses
are “two-block combination courses” (e.g. Pre-Calculus 11 and Pre-Calculus 12),
and these double courses must be offered in Block 1 and Block 8.

Our optimization program, written in Python, requires two Excel sheets as
input: one called “Student Data” and one called “Course Data”. These two
documents encapsulate all of the information described above. For the actual
optimization, we use COIN-OR Branch and Cut (CBC), an open-source MIP
solver, with the Google OR-Tools linear solver wrapper [9]. The final model has
a total of (|T |+ |S|) · |C||B| = 77× 39× 9 = 27027 binary decision variables.

Our ILP generates the optimal timetable in 201.6 seconds on a stand-alone
laptop, specifically a 8GB Lenovo running Windows 10 with a 2.1 Ghz processor.
The student author has created a repository containing all of the Python code
used in this paper, as well as the input files of the student course choices. The
repository can be found at https://github.com/ifabrisarabellapark/Timetabling.

Here are the summary statistics.

Grade 12 Grade 11
Total Students 25 33

Requested Core Courses 64 103
Enrolled Core Courses 64 103

Requested Elective Courses 129 151
Enrolled Elective Courses 122 141

Every teacher is assigned to their desired set of courses, with at most 18
students in any class. Our timetable enrolls students in 167 out of 167 core
courses (100%) and 263 out of 280 elective courses (94%), corresponding to an
objective value of 167× 10 + 122× 3 + 141× 1 = 2177.
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Of the |S| = 58 students, 41 receive all of their desired courses, while the
remaining 17 receive all courses except for one elective. This provably-optimal
Master Timetable, presented below, was accepted by St. Margaret’s School for
the 2019-2020 academic year.

Optimal Timetable for St. Margaret’s School

Block 1 Block 2 Block 3

Culinary Arts 11A (DR) Culinary Arts 11B (DR) Comp. Prog. 11 (WF)
Core French Intro 11 (AS) Life Education 11A (DH) Life Education 11B (DH)
Philosophy 12 (JP) Entrepreneurship 11 (CJ) Spoken Language 11 (MC)
Economics 12 (SW) Drama 11/12 (NC) Japanese Intro 11 (MH)
Life Connections 12A (KD) Life Connections 12B (KD) Composition 12 (NP)
EarthSci 11/12 Combo (CJ) Law Studies 12 (SW) Spanish 12 (BP)
Pre-Calc 11/12 Combo (CT) Social Justice 12 (JP) Comp. Cultures 12 (SW)

Block 4 Block 5 Block 6

Chemistry 11A (SB) Art Studio 11 (LH) Physics 11 (CT)
Active Living 11 (JS) Fitness 11 (JS) Life Sciences 11 (DR)
AP Studio Art 12 (LH) Japanese 12 (MH) Pre-Calculus 11A (WF)
English Studies 12A (NP) Pre-Calculus 12A (CT) English Studies 12B (NP)
AP Calculus 12 (CT) Chemistry 12A (SB)

Block 7 Block 8 Block 9

New Media 11 (NP) Pre-Calculus 11B (WF) Chemistry 11B (SB)
Creative Writing 11A (CN) Creative Writing 11B (NP) Core French 12 (AS)
Anatomy/Physio 12 (SB) Chemistry 12B (SB) Human Geog 12 (LZ)
Pre-Calculus 12B (CT) EarthSci 11/12 Combo (CJ) Univ/Grad Prep 12 (KD)
Physics 12 (WF) Pre-Calc 11/12 Combo (CT)

In the above timetable, the teacher’s initials appear in parentheses, and
multiple-section courses are indicated - e.g. Chemistry 11A and Chemistry 11B.

Our optimal Master Timetable allocates seven Grade 11 and 12 courses in
blocks 1/2/3, and four or five Grade 11 and 12 courses in blocks 4/5/6/7/8/9,
resulting in a symmetric well-balanced schedule. Once these course assignments
were confirmed, it was easy to manually schedule the Grade 9 and 10 courses
since these students take the same set of required courses, taught by the same
set of teachers.

The final Senior School timetable was delivered in May 2019, months before
the start of the 2019-2020 academic year. The early deliverable enabled the school
guidance counsellor to have one-on-one meetings with each of the students before
they left for the summer. The seventeen Grade 11 and 12 students who were
not given one of their most-desired elective courses worked with the guidance
counsellor to select an alternative course in the same subject area.
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Given that our ILP solved to optimality in just over three minutes, there was
no need to apply the time-reducing “course-bundling algorithm” we developed
prior to receiving the final data sets from the school. However, we now provide
this information to illustrate the effectiveness of this approach, especially when
we have more than |T | = 19 teachers, |S| = 58 students, and |C| = 39 courses.

We create our conflict graph G on our |CO| = 30 one-section courses. For
each pair of courses c1 and c2, we assign a weight of 100 if these two courses
must be taught by the same teacher or if they must take place in the same
classroom. For each student s desiring both c1 and c2, we assign a weight of
min(Ps,c1,b, Ps,c2,b). This conflict graph G has 30 vertices and 94 edges.

G is a two-component graph, since the set of “short” courses that must be
scheduled in blocks 1/2/3 is disjoint from the set of “long” courses that must be
scheduled in blocks 4/5/6/7/8/9. We determine that χ(G) = 5 + 7 = 12 using
GrinPy, an open source program that quickly calculates graph invariants [11].

Let G1 be the same graph as G, except we only include edges with weight
more than 1. Then G1 becomes a graph with 30 vertices and 69 edges, with
χ(G1) = 3 + 6 = 9. Following the algorithm described in Section 5, we find a
3-coloring of the short courses and a 6-coloring of the long courses.

We then take each pair of one-section courses in the same bundle (e.g. c1 and
c2), determine the assigned teachers for those two courses (e.g. t1 and t2) and
add the following constraint to our ILP:

Xt1,c1,b = Xt2,c2,b ∀ b ∈ B (9)

This constraint ensures that courses c1 and c2 are assigned to the same block,
i.e., bundled together. Our modified ILP has only |CM | + 3 + 6 = 18 courses
instead of 39, since have cleverly combined one-section courses to virtually elim-
inate student conflicts.

This ILP is rapidly solved, requiring only 5.3 seconds of computation time.
The generated timetable enrolls students in 167 out of 167 core courses (100%)
and 246 out of 280 elective courses (88%), corresponding to an objective value
of 167× 10 + 118× 3 + 128× 1 = 2152.

Of course, the quality of the final timetable is dependent on the initial 3-
coloring of the short courses and 6-coloring of the long courses. Thus, we run a
simulation of 1000 trials, using the NetworkX package for graph coloring [21]. We
use the built-in greedy color method to randomly order the vertices and assign
the first available color to each vertex. (If the greedy coloring of G1 requires more
than χ(G1) colors, then we re-run the method until a valid coloring is attained.)

The average objective value of our 1000 trials is 2155.03, with a minimum of
2141 and a maximum of 2170. The average running time is 4.17 seconds, with a
minimum of 1.4 seconds and a maximum of 8.9 seconds. Thus, for this data set,
our graph-theoretic bundling algorithm reduces the total running time by 98%
(from 201.6 seconds to an average of 4.17 seconds) while reducing the solution
quality by just 1% (from an objective value of 2177 to an average of 2155.03).

In all 1000 trials, the generated timetable enrolls students in 167 out of 167
core courses (100%), and on average, in 249 out of 280 elective courses (89%).
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The latter result is lower than our rate of 94% in our optimal ILP, yet it is only
moderately lower given the substantial time improvement

Our bundling technique reduced the total running time by 98% at virtually no
cost to the objective function. However, as we will see in the following section, our
graph-theoretic bundling technique does not guarantee nearly-optimal solutions
in all cases. We now explore the general applicability of our approach, and discuss
the strengths and limitations of our methods for much more complex instances
of School Timetabling.

7 Strengths and Limitations

At many large university campuses, each faculty is its own distinct entity, with
their own buildings, classrooms, courses, professors, and registered students. Be-
cause there is little to no overlap between faculties (e.g. between the Business
School and the Medical School), we can think of the university-wide timetabling
process as solving hundreds of discrete timetabling problems, and combining
these non-overlapping solutions to produce a single Master Timetable.

For example, the largest university in our province has over 50,000 under-
graduate students, with nearly 20% in the Faculty of Science. Within the Faculty
of Science are twelve different Departments, including botany, mathematics, and
zoology. Each department chair is responsible for their own timetabling, and no
effort is made to coordinate timetabling to serve the small minority of students
who have multiple specializations, e.g. a mathematics and zoology double major.

This is why our two-step timetabling approach holds much promise, even for
large institutions. Each department chair is responsible for timetabling a number
of third-year and fourth-year courses, many of which will be single-section courses
appealing only to the students pursuing a major offered by that department.
If the department has thousands of registered students, generating an optimal
timetable might be computationally intractable, but a nearly-optimal timetable
could be generated using our graph-theoretic course bundling approach.

At St. Margaret’s School, most of the teachers have their own dedicated
classroom, which meant that we could ignore constraints such as “there are
only 3 science labs available, and so we cannot schedule 4 lab-based courses
in the same block”. Fortunately, there exist ways we can ensure feasible room
assignments in situations like this, by analyzing a specific partial transversal
polytope [16], to complement our two-step timetabling algorithm.

We can also consider the effect of relaxing or eliminating the pre-allocation
of teachers to courses. If each teacher has a ranked preference list of courses
they wish to teach, and each teacher is qualified to teach dozens of courses, then
this will significantly increase the running time of our algorithm. For St. Mar-
garet’s School, all courses were pre-assigned to a teacher. For a high school whose
timetable we are creating now, only student preferences are to be considered in
the optimization. Thus, all teacher assignments are made after the courses are
assigned to blocks, and we will optimally assign teachers to courses to ensure
everyone has a feasible schedule maximizing the total “preference score”.
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Despite the promising results we have found thus far, there are limitations of
course bundling. As an extreme example, consider the following scenario where
we wish to schedule 5 one-section courses {a, b, c, d, e} and 2 two-section courses
{x, y} into a 3-block timetable. Suppose that the students wish to take the
following set of courses, in any order:

Student Course 1 Course 2 Course 3
S1 a b e
S2 c d e
S3 a b x
S4 c d x
S5 a b y
S6 c d y
S7 a y e
S8 d y e
S9 b x e
S10 c x e

It is straightforward to show there is only one optimal timetable that enables
all ten students to enroll in a desired course in each of the three blocks.

Block 1 = {a, d, x}
Block 2 = {b, c, y}
Block 3 = {x, y, e}

For example, student S10 can register for c, x, e in Blocks 2, 1, 3, respectively.
Let CO = {a, b, c, d, e} be our single-section courses. We construct the conflict

graph G by adding a weight of 1 to each pair of courses desired by a student.
Below is the graph G with all edges of non-zero weight.

Fig. 1. The conflict graph of the single-section courses

Clearly, χ(G) = 3, and there are two possible colorings up to isomorphism:
the color classes are either [{a, d}, {b, c}, {e}] or [{a, c}, {b, d}, {e}]. In the former,
we bundle a and d into Block 1 and bundle b and c into Block 2. This immediately
generates the optimal solution shown on the previous page.
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In the latter, we bundle a and c into Block 1 and bundle b and d into Block
2. In this case, it is impossible to create a 3-block timetable that allows every
student to get into all of their desired courses. The best timetable, shown below,
necessitates a conflict for students S8 and S10.

Block 1 = {a, c, x}
Block 2 = {b, d, y}
Block 3 = {x, y, e}

Thus, our course bundling algorithm has a 50% chance of creating a timetable
that reduces by 20% the number of students getting into all of their desired
courses. While this is an extreme example, this result highlights the importance
of not relying on a single coloring, since an unlucky assignment of colors to
one-section courses may generate a sub-optimal Master Timetable.

However, if we run our course bundling algorithm n times on this instance,
and accept the best result of all n iterations, then we have a probability of 1− 1

2n

of generating the optimal timetable.
In general, if there are |B| blocks in the timetable, at least one |B|-coloring

of the conflict graph must be identical to the optimal solution. By running our
course bundling algorithm many times and selecting the best result, we increase
the probability of producing the best possible timetable.

For St. Margaret’s School, course bundling reduced the computation time by
an average of 98% while having a minimal reduction on the quality of the gen-
erated timetable. We are optimistic that this technique can be applied to larger
timetabling instances, to produce solutions to previously-intractable timetabling
instances that are close to optimal.

8 Conclusion

In this paper, we presented an ILP-based model to optimally solve a real-
life instance of the Post-Enrollment Course Timetabling Problem. Our Master
Timetable for St. Margaret’s School (SMS) enrolled Grade 11 and 12 students
into 100% of their core courses and 94% of their most desired elective courses.

We also developed a “pre-processing phase” that partitioned one-section
courses into discrete bundles using graph coloring. On the SMS data set, this
approach decreased the total running time by 98%, with only a 1% reduction in
the value of our objective function.

The collaboration with St. Margaret’s School was a tremendous success, and
our Master Timetable has been well-received by the school leadership, and more
importantly, from their teachers and students.

During the past month, we have been approached by three different inde-
pendent high schools in British Columbia, who have learned about the new
“happiness-maximizing timetable” at St. Margaret’s School and have requested
our services to design their 2020-2021 Master Timetable. We are looking for-
ward to these collaborations and learning ways to further improve the speed and
quality of our timetabling algorithm on larger data sets.
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There are many directions for future research. One natural direction is to test
the performance of our two-step timetabling algorithm on benchmark instances
maintained by scholars in Operations Research. Specifically, we propose testing
our algorithm on XHSTT-2011, a High School Timetabling Archive containing 21
real-life instances from eight countries [25]. This archive includes an evaluator
that checks syntax consistency and returns a cost value proportional to the
number of violated constraints. Thus, the online evaluator allows us to compare
the quality of our solution against multiple published algorithms.

To generate the best possible results, we will need to apply more sophis-
ticated ways to color the nodes of the conflict graph beyond our approach of
randomly ordering the vertices and assigning the first available color to each
vertex. There exist systematic and deterministic approaches on how to color
the nodes, including ordering the vertices by decreasing degree. The Python
NetworkX package contains various algorithms, including one based on “degree
saturation” [1], where the vertex order is determined dynamically, based on the
number of colors that cannot be used because of conflicts with previously colored
vertices.

Another direction is to commercialize a cloud-based application to allow
school administrators to run our timetabling algorithm on their own machines.
The current product requires the client to email us two Excel documents from
which our Python program generates the optimal Master Timetable in the form
of another Excel document. We are excited by the prospect of developing a
cloud-based solution that can be deployed by the administration of high schools
and universities from around the world, especially those institutions who wish
to create timetables that optimize for student course preferences.
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