CS 7280: Data Str and Algs for Scalable Computing

Spring 2025

Lecture 6 — January 29, 2025

Prof. Prashant Pandey

Scribe: Bada Kwon

1 Overview

Recap:

Discussing string inputs which could vary in universe size depending on the alphabet. Our goal is to be able to find matches of a pattern P in a string T, using **very little space and very quickly**

String Matching:

- Text T and Pattern $P = Strings \text{ over } \Sigma \text{ alphabet}$
- \bullet Goal: Find all occurrences of P in T, with location and number of occurrences

Methods we've covered so far.

- Brute Force with rolling hash (slightly better): O(T) time complexity.
- Tries: Space = Array, BST, Hash Table,... and efficient queries.
- Suffix Trees: O(P) query time, O(T) space.
- Suffix Arrays: $O(P \log T)$ query time, O(T) space.
- FM-index: A compressed representation using the Burrows-Wheeler Transform (BWT).

Human Genome Example:

- |T| = 3 Billion
- $|\Sigma| = 4$ (A,C,T,G)
- Suffix Tree = about 47GB
- Suffix Array = about 12GB
- FM-index = about 1.5GB

2 FM-index

The FM-index ([1]) uses indexes which combine the BWT with some small auxiliary data structures. The core of the the index consists of F and L columns from the BW-Matrix.

2.1 Key Components

- F: First column (sorted characters of the text).
- \bullet L: Last column from the BWT matrix.

idx	F	L
0	\$	 a_0
1	a_0	 b_0
2	a_1	 b_1
3	a_2	 a_1
4	a_3	 \$
5	b_0	 a_2
6	b_1	 a_3

Table 1: F and L

2.2 Pattern Matching with FM-Index

- T = abaaba\$
- \bullet P = aba
- Store F as $|\Sigma|$ indexes
- Try to find P within T by using F and L ...
 - Mapping from $\$ \to a_0$, then checking for a_0 in F to find the next predecessor in T
 - repeat the process...
 - With this, find the pattern match.

In order to find ALL occurrences of P, use index of CLUSTERS of similar characters in F

2.3 ISSUES

- 1. SLOW: if we scan characters in L, it is very slow.
 - O(m) time
 - (m = |L|)
- 2. Storing ranks takes too much space
- 3. Doesn't find WHERE the matches occur in T

2.4 SOLUTIONS

- 1. IDEA 1: Is there O(1) way to determine which b's preceded the a's in our range?
 - Pre-calculate number of a's and b's in L up to every row.
 - Space = m * $|\Sigma|$

	idx	a	b
	0	1	0
	1	1	1
	2	1	2
•	3	2	2
	4	2	2
	5	_	2
	6	4	2

- \bullet index 0 and 5: a precedes b
- 2. IDEA 2: If Suffix Array was part of the index, we can simplify, by looking up the offset.
 - Suffix Array takes O(T) space.
- 3. IDEA 3: SPARSIFY
 - Only store SOME rows, every fraction.
 - EXAMPLE:

•	idx	a	b
	0	1	0
	3	2	2
	6	4	2

- The size between each "Checkpoint" row should be small enough for intermediate information to be accessed with a linear scan in efficient time.
- FM-index Space: Human Genome Example
 - F: about $|\Sigma|$ integers \rightarrow 16 Bytes
 - * 16 Bytes = 4 Bytes (per integer) * 4 letters
 - L: m characters \rightarrow 750 megabytes
 - * 750 megabytes = 6 Billion bits (each letter as 2 bits, 2 * 3 billion) / 8 = 750k Bytes
 - Suffix Array Sample: m * a (fraction a = 1/32) $\rightarrow 400$ megabytes
 - * 400 megabytes = $\frac{3billion*4}{32}$
 - Checkpoint Tally: m * $|\Sigma|$ * b (fraction b = 1/128) \rightarrow 100 megabytes
 - * 100 megabytes = $\frac{3billion*4*4}{128}$
 - TOTAL: about 1.5 GB

3 Hashing: Balls and Bins preview

3.1 Probability Analysis

How many tosses of a 50/50 coin to have at least 1 heads result?

• WITH HIGH PROBABILITY:

- $P[E] = 1 \frac{1}{n^c}$, n = number of events
- $\lim_{x\to\inf} f(x) \to 1, c \ge 1$
- What order of "n" will be needed for high probability?

C value for at least one head:

- $P[\text{no head}] = \frac{1}{2}$, for one toss
- $P[\text{no head in "i" tosses}] = \frac{1}{2^i}$
- $i = 3lg(n) \rightarrow \frac{1}{2^{3lgn}} \rightarrow \frac{1}{n^3}$... so
- $P[\text{at least one head in n}] = 1 P[\text{no head in "i" tosses}] = 1 \frac{1}{n^3}$

References

[1] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. *FOCS*, 20000.