CS 7280/4973: Data Str & Alg for Scalable Computing Spring 2025

Prashant Pandey

p.pandey@northeastern.edu

Why?

there is enough evidence that laptops and phones slow you down

Ask questions

... and answer my questions.

Our main **goal** is to have **interesting discussions** that will help to gradually understand the material

(it's ok if not everything is clear, as long as you have questions!)

Today's agenda

Course logistics overview

Why scalable computing?

I want you to speak up!
[and you can always interrupt me]

Course objectives

- Learn about advanced data structures and algorithms to solve massive-scale data processing/analysis problems.
- Next-generation challenges in data systems.

- Students will become proficient in:
 - Advanced data structures and algorithms
 - Writing high-performance and concurrent code
 - Working on a large code base
 - Modern data system internals

Course topics

- Compact trees
- Succinct data structure
- Hashing/Hash tables
- Filters and sketches
- Cardinality estimation
- Locality sensitive hashing
- Nearest neighbor search (Vector databases)
- External memory algorithms
- Distributed hash tables

Background

- I assume you have already taken undergrad/grad Data Str & Alg course (e.g., CS 3000 and 5800) or similar.
- You are comfortable with basic data structures and algorithms and writing C/C++ code.
- We will discuss modern variations to classical data structures and algorithms that are designed for massive-scale data.

Things that we will <u>not</u> cover:

Basic data structures, algorithms, asymptotic analysis, recursion.

Course logistics

- Course policies + Schedule
 Refer to canvas
- Course website

https://www.khoury.northeastern.edu/home/pandey/courses/cs7280/spring25/index.html

- Academic honesty
 - Refer to Northeastern Academic Integrity Policy.
 - If you are not sure, ask me.
 - I am serious. DO NO PLAGIARISE.

What is plagiarism

- Listening while someone dictates a solution.
- Basing your solution on any other written solution.
- Copying another student's code or <u>sharing</u> your code with any other student.
- Searching for solution online (e.g., stack overflow, Github, ChatGPT).

What is collaboration

- Asking questions on Piazza.
- Working together to find a good approach for solving a problem.
 - Students with similar understanding of the material.
- A high-level discussion of solution strategy.
- If you collaborate with other students, <u>declare</u> it upfront

Instructor office hours

- Before class in my office
 - Mon Wed 1:30 PM 2:30 PM
 - WVH 446
- Things that we can talk about:
 - Issues on projects
 - Paper clarification/discussions
 - Getting involved in a research project
 - Help with your research

Teaching assistant

- TA: Zixuan Chen
 - 5th year PhD student
- Research on:
 - Truth discovery
 - Graph-related problems
 - Databases
- Interests
 - Movies, basketball (only watch, rarely play)

Instructor

• Research:

- Large-scale data management
- Computational biology
- Graph processing

• Previous:

- Research Scientist, VMware Research
- Postdoc: CMU/UC Berkeley

• Interests:

- Outdoors (Running/Hiking/Biking/Swimming/Skiing/...)
- Sports (Cricket/Soccer/Racket sports)

Rio Celeste Rainforest Costa Rica

Course rubric

- Programming assignment
- Project
- Final exam
- Class participation and scribe

Scribing lectures

- Use the latex template to scribe
- Each student may have to scribe 1-2 lectures, depending on class size.
- Pick a date and send an email to the TA. First-come first-served.
- Submit scribe notes (pdf + source).
- Scribe notes are due by 9pm on the day after lecture.

Assignments

- Assignment will include a combination of:
 - Small programming tasks
 - Benchmarking and writing report

- Do all development on your local machine.
 - Can also use Discovery machines
- Do all benchmarking using Discovery clusters.

Project

- Each group (3 people) will choose a project that is:
 - Relevant to the materials discussed in class.
 - Requires a significant theory/programming effort from <u>all</u> team members.
 - Unique (i.e., two groups cannot pick same idea).
 - Approved by me.
- We will provide sample project topics.
- Will have two milestones.

Assignments/Projects

- The assignment will be done individually
- The project will be done in a groups of 2 to 3 students
 - You should form groups based on talking to other students
 - Otherwise, we will form groups randomly

Plagiarism warning

These projects must be all of your own code.

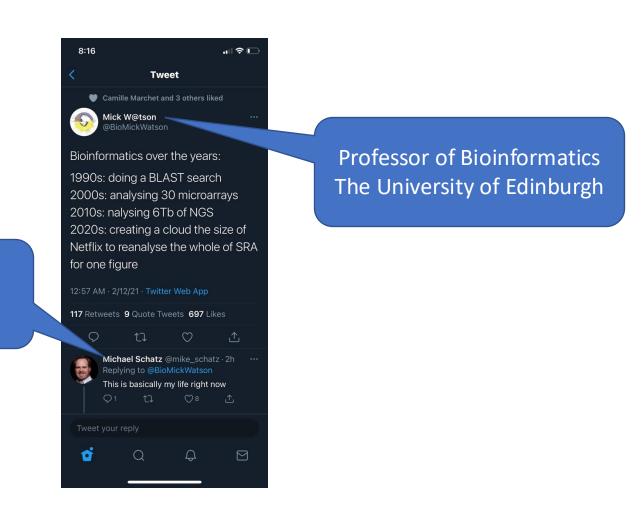
You may <u>not</u> copy source code from other groups or the web.

Plagiarism will <u>not</u> be tolerated.
 See <u>Northeastern Academic Integrity Policy</u> for additional information.

Grade breakdown

- Assignment 20%
- Final project 40%
- Class participation 20%
- Final 20%

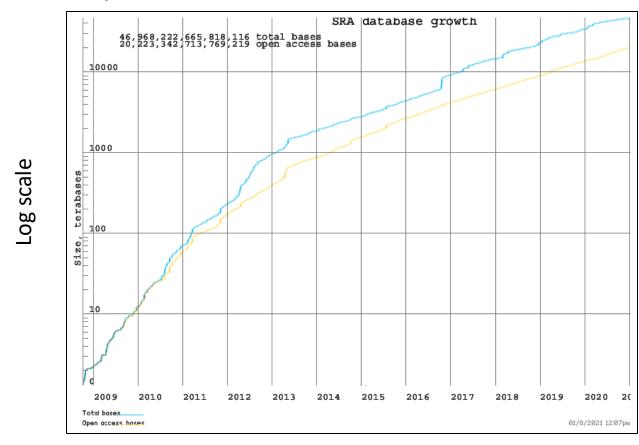
Course mailing list


- Online discussion through Piazza
 - https://piazza.com/northeastern/spring2025/cs7280cs4973202530

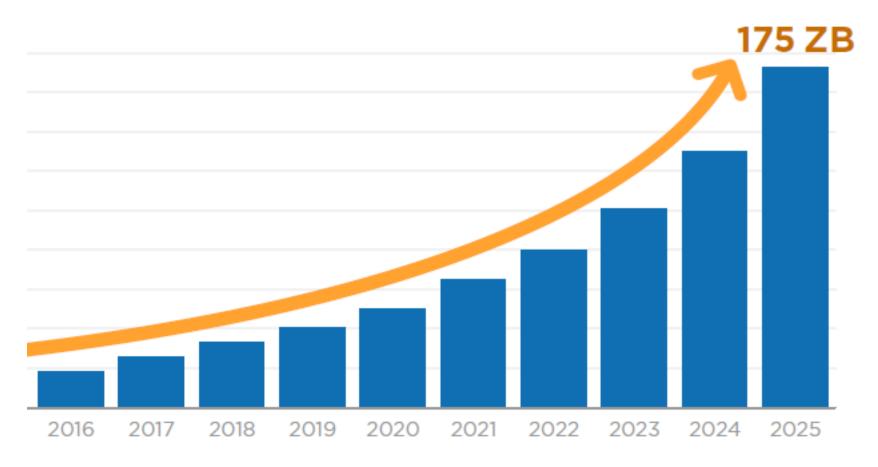
- If you have a technical question about the projects, please use Piazza
 - Don't email me or TAs directly

All non-assignment/non-project questions should be sent to me.

Why scalable computing?


Scalability challenge in a tweet!

Professor of Comp Bio Johns Hopkins University


Sequence read archive (SRA) growth

SRA contains a lot of diversity information

What if I find, e.g., a new disease-related gene, and want to see if it appeared in other experiments?

Big growth forecasted for Big Data

IDC says 175 ZB will be created by 2025 (image courtesy IDC)

Scalability is a ubiquitous challenge

- People generate 2.5 quintillion bytes of data each day. (IBM, 2016)
- More than 150 zettabytes (150 trillion gigabytes) of data will need analysis by 2025.
 (Forbes, 2019)
- 90 percent of the world's data was created between 2015 and 2016 alone. (IBM, 2016)

24. 88% of data is ignored by companies.

(Forrester Research)

A widely-quoted figure from a 2012 paper from Forrester Research says that, on average, companies analyze only 12% of the available data. Reasons for this include a lack of analytics tools, repressive data silos, and the difficulty in knowing which information is valuable and which is worth leaving.

How to handle massive data

Shrink it

Make data smaller to fit in RAM

Organize it

Organize data in a disk friendly way

Distribute it

Distribute data on multiple nodes

Next lecture

Compact trees