Physical Layer and Data Link Control

Guevara Noubir CSG150, lecture 2

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 1

Physical Layer: Modems

- Function:
 - Maps bits (from DLC) onto waveforms sent over the channel s(t)
 - s(t) is sent, and r(t) is received (distorted, delayed, attenuated)
 - How to recover s(t) from r(t)
- We focus on digital communication for point-to-point channels

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 3

Outline

- Physical Layer: virtual pipe
 - Brief introduction to this very large topic
- Data Link Control (DLC) layer:
 - Error detection
 - Retransmission strategies (ARQ)
 - Framing

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 2

Basic Encoding Schemes

- NRZ (Non Return to Zero)
- NRZI (Non return to Zero Inverted)
- Manchester coding
- Not to be confused with error-control codes

F2003, CSG150

Fundamentals of Computer Networking

Physical Transmission and Channel Effect

- Created by the system designer and by the channel
 - Focus on linear time-invariant filtering:
 - If $s(t) \rightarrow r(t)$, then $s(t-\tau) \rightarrow r(t-\tau)$
 - If $s(t) \rightarrow r(t)$, then for any real number α : $\alpha s(t) \rightarrow \alpha r(t)$
 - If $s(t)_1 \rightarrow r(t)_1$, and $s(t)_2 \rightarrow r(t)_2$, then $s(t)_1 + s(t)_2 \rightarrow r(t)_1 + r(t)_2$
- Effect of increasing the bitrate: increased distortion=> inter-symbol interference (ISI).

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 5

Frequency Response

- Let's assume that s(t) is a complex function:
 - E.g., $s(\tau) = e^{j2\pi f\tau} = \cos(2\pi f\tau) + i\sin(2\pi f\tau)$ then, $r(t) = H(f)e^{j2\pi ft}$ where $H(f) = \int_{-\infty}^{+\infty} h(\tau)e^{-j2\pi f\tau} d\tau$

H(f) is called the frequency response of the channel

The response of the channel to a real sinusoid input at frequency f is a sinusoid output at the same frequency:

- Scaling factor: |H(f)|
- Phase shift: $\angle H(f)$

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 7

Channel Impulse Response

- Let h(t) be the channel output corresponding to an infinitesimally narrow pulse of unit area at time 0
 - -h(t) is called the channel impulse response
 - $-\delta s(\tau) \rightarrow \delta s(\tau)h(t-\tau)$
 - Because of the channel linearity: $r(t) = \int_{-\infty}^{+\infty} s(\tau)h(t-\tau)d\tau$ convolution integral
 - The channel behavior is completely characterized by the impulse response
- · Remarks:
 - h(t) = 0 for t < 0.
 - The larger the non-zero duration of h(t) the more ISI

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 6

Fourier Transforms

- Any function s(t) can be represented as a superposition of complex sinusoids of weight: S(f)
 - Fourier transform

$$S(f) = \int_{-\infty}^{+\infty} s(t)e^{-j2\pi ft} dt$$

Inverse Fourier transform

$$s(t) = \int_{-\infty}^{+\infty} S(f) e^{j2\pi f t} df$$

• Since the channel is linear: $r(t) = \int_{-\infty}^{+\infty} H(f)S(f)e^{j2\pi/dt}df$

$$r(t) = \int_{-\infty}^{+\infty} H(f)S(f)e^{j2\pi ft} df$$

- Then: R(f) = H(f)S(f)
- Convolution in time domain = multiplication in frequency domain

F2003, CSG150

Fundamentals of Computer Networking

Sampling Theorem

Theorem: If a waveform is low-pass limited (S(f) = 0 for ∫f>W) then s(t) is completely determined by its values each 1/2W seconds:

$$s(t) = \sum_{i=-\infty}^{+\infty} s(\frac{i}{2W}) \frac{\sin[2\pi W(t - i/(2W))]}{2\pi W(t - i/(2W))}$$

- Conclusion: incoming digital data can be mapped into sample values spaced by 1/2W seconds. The resulting waveform is low-pass limited and can go through any ideal low-pass filter (W) unmodified. The received waveform can be used to recover the original data.
- How many bits can we transmit per Hertz?

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 9

Modulation

- Simplest modulation: Amplitude Modulation (AM)
 - NRZ signal is multiplied by a carrier sinusoidal signal (frequency f_0) $s(t)\cos(2\pi f_0 t)$
 - Signal recovery is achieved by multiplying the received signal again by the carrier frequency

$$r(t) = s(t)\cos^{2}(2\pi f_{0}t)$$
$$r(t) = \frac{s(t)}{2} + \frac{s(t)\cos(4\pi f_{0}t)}{2}$$

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 11

Band-pass Channels

- Low-pass channels assume that: |H(f)| nonzero only for a frequency band around f = 0.
- Most physical channels are band-pass: |H(f)| nonzero for $f_1 < f < f_2$; H(0) = 0. (no dc component).
- Two solutions:
 - Direct coding into signals with no-dc component (Manchester encoding)
 - Modulation

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 10

Higher Modulation Schemes

- $cos(2\pi ft)$ and $sin(2\pi ft)$ are "orthogonal" then:
 - Two signals/bits of data can be transmitted simultaneously (OAM)
 - Phase shift keying: QPSK, 8-PSK, 16-PSK, 64-PSK
 - Frequency Shift Keying (FSK)

F2003, CSG150

Fundamentals of Computer Networking

Shannon's Theorem

• The capacity of a channel (maximum achievable data rate in bps) is given by:

$$C = W \log_2(1 + \frac{S}{N_0 W})$$

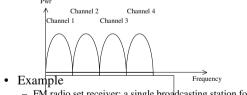
- W is the available bandwidth, S is the signal power (seen by the receiver), N_0 is the noise power per Hertz
- Signal-to-noise ratio is usually expressed in dB: 10log₁₀(S/(N₀W))
- Example: $S/N_0W = 30 \text{ dB} => \text{How many bps per Hertz?}$

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 13

Multiplexing Schemes


- Frequency Division Multiple
- Time Division
- Code Division
- Space Division

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 14

Frequency Division Multiple Access (FDMA)

- FM radio set receiver: a single broadcasting station for each frequency channel
- Concept
 - assign different frequency bands to different users
 - no sharing of a frequency band between several senders
 - user separation using band-pass filters
 - continuous flow
 - two-way: two frequency bands or Time Division Duplex (TDD)

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 15

Time Division Multiple Access (TDMA)

Timeslot 1 Timeslot 2 Timeslot 3 Timeslot 4

Concept

- use the same frequency over non-overlapping periods of time

F2003, CSG150

Fundamentals of Computer Networking

FDMA/TDMA: Comparing delays

- Transmission delay in a FDMA system
 - DelayFD = T (transmission time in FDMA)
- Transmission delay in a TDMA system
 - DelayTD = T/M + Average-waiting-time
 - Average-waiting-time = (T/2)*(1-1/M)
 - DelayTD = DelayFD -(T/2)*(1-1/M)

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 17

Code Division Multiple Access (CDMA)

- Concept
 - use the same frequency over overlapping periods of time with <u>different</u> codes
 - codes generate signals with "good-correlation" properties
 - signals from another user appear as "noise"
 - signals are spread over a wideband using pseudo-noise sequences
- Techniques: Spread Spectrum
 - Direct Sequence Spread Spectrum
 - IEEE802.11 (SS no CDMA), IS-95, CDMA2000, WCDMA
 - Frequency Hopping Spread Spectrum (slow and fast)

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 19

Combining FDMA and TDMA

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 18

CDMA

- Advantages
 - frequency diversity:
 - · resistance to jamming, selective fading, multi-path fading
 - easy frequency planning
 - soft-handover (macro-diversity)
 - better performance when load is low
- Drawbacks
 - requires efficient synchronization:
 - · easy on down-link, difficult on uplink
 - all users signals must reach the base-station with the same power: near-far problem
 - · power-control: accurate (1dB)
 - codes allocation

F2003, CSG150

Fundamentals of Computer Networking

SDMA and PDMA

- Space Division Multiple Access (resource reuse)
 - a frequency/time slot/code can be used by two different users but not at the same <u>location</u>
 - examples: distant cells, satellite spot beams
- Polarization Division Multiple Access
 - different antenna polarization are used
 - example: two-orthogonal antenna polarization in satellite communication

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 21

Error Detection

- Assume that we when know the beginning/end of the frames. The number of data bits in the frame is *K* bits.
- How can we detect if one/several bits changed duration their transmission?
- Since all the frames can potentially be received then we have to add some redundancy bits (*L*) to detect errors (checksum).

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 23

Digital Channels

- Several channels (wired) are designed to carry digital data directly (no need for a modem)
- When a digital repeater is used these channels provide an improved performance over channels carrying analog data.
 - The reason is that the noise is removed at each repeater in a digital channel, while it is amplified with an analog repeater.

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 22

Parity Checks

- Single parity checks:
 - For every string of data bits append a single bit: parity bit
 - If the number of 1's in the string is even then the parity = 0; otherwise 1.
 - E.g., ASCII characters of 7 bits + 1 parity bit.
 - Number of 1's in an encoded string is always even.
 - This encoding allows to detect all single errors and no-two errors, etc.
 - Not sufficiently reliable specially when errors occur in bursts

F2003, CSG150

Fundamentals of Computer Networking

Horizontal-Vertical Parity Checks

- Data is arranged into a two-dimensional array
 - A single parity bit is appended to each row and each column

1 1	1	0	0	0	1
0 1	0	1	1	0	1
1 1 0 1 1 0 1 0 1 1	1	0	1	1	0
1 0	0	0	0	1	0
1 1	1	1	1	0	1
0 1	1	0	1	0	1

F2003, CSG150

Fundamentals of Computer Networking

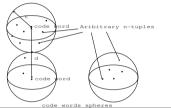
Lecture 2, 25

Example of Binary Block Code (7, 4)

• Any two different code words are different on at least three different coordinates. This code has Hamming distance 3.

nates. This code has	Hamming distance 3.
Message block	Code word
(0 0 0 0)	(0000000)
(1000)	(1 1 0 1 0 0 0)
(0 1 0 0)	(0 1 10 1 0 0)
(1 1 0 0)	(1011100)
(0 0 1 0)	(1110010)
(1010)	(0 0 1 1 0 1 0)
(0 1 1 0)	(1000110)
(1 1 1 0)	(0 1 0 1 1 1 0)
(0 0 0 1)	(1 0 1 0 0 0 1)
(1001)	(0 1 1 1 0 0 1)
(0 1 0 1)	(1 1 0 0 1 0 1)
(1 1 0 1)	(0 0 0 1 1 0 1)
(0 0 1 1)	(0 1 0 0 0 1 1)
(1011)	(1001011)
(0 1 1 1)	(0 0 1 0 1 1 1)
(1 1 1 1)	(1 1 1 1 1 1 1)

- Notice that the last 4 bits of the code word are the same as the message
 - This is a systematic coding
 - The other 3 bits are redundancy bits


F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 27

Hamming Distance for Block Codes

- The Hamming distance between two codewords is the number of places where they differ
- The Hamming distance of a Block code is the minimum distance between two code words

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 26

Cyclic Redundancy Checks (CRC)

- Data bits: $s_{K-1}, s_{K-2}, ..., s_1, s_0$
- Polynomial representation:

$$S(D) = S_{K-1}D^{K-1} + S_{K-2}D^{K-2} + \dots + S_1D + S_0$$

• The CRC is also viewed as polynomial:

$$C(D) = c_{L-1}D^{L-1} + c_{L-2}D^{L-2} + ... + c_1D + c_0$$

• The transmitted frame can be represented as:

$$x(D) = s(D)D^{L} + c(D)$$

 $x(D) = s_{\kappa-1}D^{L+\kappa-1} + \dots + s_0D^L + c_{L-1}D^{L-1} + c_{L-2}D^{L-2} + \dots + c_1D + c_0$

F2003, CSG150

Fundamentals of Computer Networking

Generating the CRC

• The CRC is the remainder of dividing the information polynomial S(D) by a generator polynomial g(D).

$$c(D) = \text{Remainder}\left[\frac{s(D)D^L}{g(D)}\right]$$

- $g(D) = D^{L} + g_{L-1}D^{L-1} + ... + g_{1}D + 1$
- Example: divide D^5+D^3 by D^3+D^2+1

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 29

Error Detection Capability of CRC

- All single bit errors are detected
- All errors of burst length less than L+1 are detected
- Primitive polynomials allow to detect all doubleerrors when the frame length is less than 2^L-1
- Choice of the generator polynomial:
 - Product of a primitive polynomial by (D+1)
 - CRC-16: $D^{16} + D^{15} + D^2 + 1$
 - CRC CCITT: $D^{16} + D^{12} + D^5 + 1$

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 31

Hardware Generation of the CRC

• Binary divisions can be efficiently implemented using Linear Feed-Back Shift Registers (LFSR)

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 30

Non-Binary Codes

- The data is a sequence of symbols of several bits
- A symbol is in error if any of its bits has an error
- Advantages:
 - Easier to implement in software (e.g., TCP checksum)
 - Handle bursts of errors

F2003, CSG150

Fundamentals of Computer Networking

Automatic Repeat reQuest (ARQ)

- Assumption:
 - The DLC knows the start/end of the frame
 - The DLC is able to detect frames with errors (e.g., using a CRC)
 - Frames that are not lost arrive in their transmission order
- ARQ retransmission strategies:
 - Stop-and-Wait ARQ
 - Go Back n ARQ
 - Selective Repeat ARQ

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 33

Stop-and-Wait ARQ Protocol

- Algorithm at node *A*:
 - 1. Set the integer variable SN to 0
 - 2. Accept/wait for a packet from higher layer and assign SN to this packet
 - 3. Transmit the SNth packet in a frame (sequence number=SN)
 - 4. If an error-free frame is received from *B* with *RN*>*SN*, increase *SN* to *RN* goto 2, otherwise [within some finite delay] goto 3.
- Algorithm at node *B*:
 - 1. Set RN to 0; loop on 2 and 3
 - 2. On receipt of an error-free frame with *SN=RN* release packet to higher layer and increment *RN*
 - 3. At arbitrary times (bounded delay) after receiving any error-free data from *A*, transmit a frame to *A* containing *RN* in the request number field

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 35

Stop-and-Wait ARQ Protocol

- Protocol for A is sending packets to B
- A simple but bogus strategy:
 - The first packet is sent in the first frame
 - If the packet is correctly received by B, B sends an Acknowledgement (Ack)
 - If the frame has errors, B sends a negative ACK (Nak)
 - If the frame, Ack/Nak is lost, or a Nak is received, then A retransmits the packet.
 - When the packet is acknowledged A proceeds to the next packet
- Malfunctions can occur due to variable transmission delays or loss of Ack.
- Conclusion: it is necessary to use frame numbering.

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 34

Correctness of Stop-and-Wait

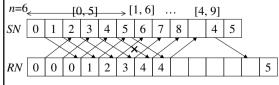
- Safety property: never produces an incorrect result
- Liveness property: no-deadlock

F2003, CSG150

Fundamentals of Computer Networking

Sequence Number Optimization for Stop-and-Wait ARQ

- The sequence number *SN* cannot increase without bound:
 - Loss of bandwidth, and requires a variable size SN field
- In the Stop-and-Wait protocol the uncertainty is always between:
 - B side: SN received are either RN(t) or RN(t)-1 (i+1, or i)
 - A side: RN received are either SN(t) or SN(t)+1 (i, or i+1)
- Sequence number is sent modulo 2: also called the alternating bit protocol


F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 37

Go-Back *n* ARQ Protocol

- Informal description:
 - Several successive packets are allowed to be sent: up to n.
 - The receiver accepts packets only in the correct order.
 - A request RN acknowledges all packets with SN<R and requests the transmission of packet RN

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 39

Limitation of S&W

- When the sender is waiting for the acknowledgment the channel is not used!
- Loss of bandwidth specially for channels with high round-trip-delay
 - E.g., satellite channels, channels with low-computation power nodes (buffering), etc.

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 38

Go-Back *n* Algorithm

- Transmitting side: A
 - 1. Set SN_{min} and SN_{max} to 0.
 - 2. Do steps 3, 4, 5 repeatedly in any order.
 - 3. If $SN_{max} < SN_{min} + n$, and if a packet is available from the higher layer, accept it, assign number SN_{max} to it and increment SN_{max} .
 - 4. If an error-free frame is received from *B* containing $RN > SN_{min}$, increase SN_{min} to RN
 - If SN_{min} < SN_{max} (+no frame being transmitted) choose SN: SN_{min} <= SN
 SN_{max} and transmit the SNth packet (generally on timout select SN=SN_{min})
- Receiving side: B
 - 1. Set RN to 0 and loop over steps 2 and 3
 - 2. Whenever an error-free frame is received containing a sequence number equal to *RN*, release the packet to the higher layer and increment *RN*
 - 3. At arbitrary times, within a bounded delay after receiving a frame from *A*, transmit a frame to *A* containing *RN* in the request number field

F2003, CSG150

Fundamentals of Computer Networking

Sequence Number Modulus in GBN

- If we assume that frames arrive in the their transmission order, then the GBN can use sequence number, and request numbers modulo m > n.
- Sketch of proof on A side (similar on B side):
 - Let t₁ bet the time when a frame is generated by A, and t₂
 the time it is received by B. The SN of this frame verifies:
 - $-SN_{min}(t_1) \le SN \le SN_{min}(t_1) + n 1$, and
 - $-SN_{min}(t_1) \le RN(t_2) \le SN_{min}(t_1) + n,$
 - $|RN(t_2) SN| \le n < m,$
 - Thus $RN = SN \pmod{m}$ iff SN = RN (there is no ambiguity)

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 41

GBN vs. SR

- Use GBN:
 - Some channels are subject to errors in bursts. There is a high probability that when a frame is lost, the following frames will also be lost.
 - Some communication nodes are limited in memory and processing. They cannot store packets that are out-of-order, or they cannot re-order them.
- Otherwise, use SR.

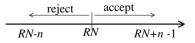
F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 43

Selective Repeat ARQ Protocol

- Go-Back-N is better than Stop-and-Wait
 - Channel usage is improved
- However, when a packet is lost, then all sub-sequent packets have to re-transmitted. This is because the receiver accepts packets only in correct order
- Idea behind Selective Repeat (SR) ARQ:
 - The receiver accepts all error-free frames in the range of RN to RN+n-1. Even if they are out-of-order.
 - The receiver sends RN and also sends the SN of other correctly received frames (with SN>RN).


F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 42

Sequence Numbers in SR

- If we assume that frames arrive in the their transmission order, then the SR can use sequence number, and request numbers modulo m => 2n.
- *Sketch of proof (A side)*:
 - $-RN(t_2) n \le SN \le RN(t_2) + n 1$

F2003, CSG150

Fundamentals of Computer Networking

Two-way communication

- SN and RN can be piggy-backed in the exchanged frames
- To avoid blocking one-direction when then other one is idle, it is necessary to permit frames containing only request. These frames are activated by a timer.

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 45

Error Recovery at Transport Layer

- Solutions to the order problem:
 - Require that the network delivers packets in order (e.g., fixed routing). However, this is generally not realistic since links may break and routing path will have to change.
 - Use a very large modulus.
 - Use a mechanisms that destroys packets after a limited time, and use a modulus large enough so that a wraparound does not happen during the lifetime of a packet.

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 47

Error Recovery at Transport Layer

- Difference between a link layer, and transport layer communications:
 - In transport layer: numbering of session packets. In link layer numbering of all link packets
 - Packets may arrive out-of-order in transport layer
 - Timers setup is much more critical at the transport layer because of congestion problems
- ARQ protocols:
 - Same basic protocols as in the link layer
 - If packets can arrive out-of-order: numbering packets modulus a number is no more possible

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 46

Framing

- The physical layer provide a mean to transmit a sequence of bits.
- How can one determine the beginning/end of a frame?
- Solutions:
 - Character-based framing (use special control characters)
 - Bit-oriented framing with flags
 - Length counts

F2003, CSG150

Fundamentals of Computer Networking

Character-Based Framing

 We can use a character code such the ASCII (American Standard Code for Information Interchange): sequence of 7 bits (usually with a parity bit).

SYN SYN STX Header Packet ETX CRC SYN SYN

- SYN: Synchronous idle, STX: Start of text, ETX: End of text
- Problem 1: if control characters appear within the header, or CRC.
 - These are known location, one can skip control characters in these fields
- Problem 2: if CTRL characters appear in the packet.
 - Use a Data Link Escape (DLE) character before STX (for start frame), and before ETX (for end frame), but not when it appears within the packet.
 - If DLE appears within the packet replace it with DLE DLE.
 - Example: DLE STX => start of frame, DLE ETX => end of frame,
 - DLE DLE STX => binary sequence DLE STX

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 49

Bit-Oriented Framing: Flags

- Use a flag to indicate the end of a frame. The appearance of the flag within the frame is masked through a technique called bit stuffing (e.g., High-level DLC).
- A bit-oriented frame can have any length.
- Example:
 - Flag: 01111110 (= 01^60) (other flags could be used).
 - Rule of bit stuffing: insert a 0 after any sequence of five 1's
- Expected number of insertions = $(E(K)-j+3)2^{-j}$.
 - K is frame length, bit j-1 counts twice.
 - Optimal $j = \lfloor \log_2 E\{K\} \rfloor$

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 51

Character-based Framing (Cont'd)

- Disadvantages:
 - Excessive overhead: DLE STX and DLE ETX for each frame, for each DLE within the packet and additional character has to be inserted (potentially doubling the size of the frame)
 - The frame has to contain an integral number of characters
- Potential errors:
 - Error in the DLE ETX => undetected end of frame
 - Error leading to the appearance of a DLE ETX

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 50

Length Fields

- SYN + Length field in the frame header
 - E.g., DECNET
- Can an encoding method require a smaller expected number of bits? Answer Shannon's source coding theorem of information theory.
- The minimum expected number of bits is at least the entropy of the distribution:

 $H = \sum_{K} P(K) \log_2 \frac{1}{P(K)}$

- Idea: map more likely values of K into shorter bit strings
- Example the unary-binary encoding $(j = \lfloor \log_2 E\{K\} \rfloor)$:
 - K=i2j+r is encoded as 0j1r

F2003, CSG150

Fundamentals of Computer Networking

Framing with Errors

- Lost flag (the receiver will stop at the next flag). Detection through CRC (2^{-L}).
- Error within the frame to change a bit into a flag (e.g., 01⁶0). Detection through CRC.
- Error in the length field. Detection through CRC or header CRC.

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 53

Frequency Division Multiple Access (FDMA)

- Advantages: simple receivers
 - longer symbol duration: no-need for equalization
 - · low inter-symbol interference
 - e.g., 50kb/s QPSK \Rightarrow 40 μ s >> 1-10 μ s delay spread
- Drawbacks
 - frequency guard bands, costly tight band-filters
 - long fading duration: need slow frequency hopping

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 55

- Let γ be the expected number of transmitted frames from *A* to *B* per successfully accepted packet at *B*
- Let β be the expected number of transmitted frames between the transmission of a frame and reception of feedback about that frame
- Let *p* be the probability that a frame arriving at *B* contains errors
- A is always busy transmitting frames and n is large enough (A never goes back in absence of feedback)
- Then: $\gamma = 1 + p(\beta + \gamma)$

F2003, CSG150

Fundamentals of Computer Networking

Lecture 2, 54

Time Division Multiple Access (TDMA)

- Advantages
 - simple filters (window)
 - possibility to transmit and receive over the same frequency channel
- Drawbacks
 - users must be synchronized
 - guard times
 - short symbol duration: need for equalization, training sequences...
 - · high inter-symbol interference
 - e.g., 50Kbps, QPSK, 8 users:
 - 5 μs symbol duration
 - delay spread: 1μs (cordless), upto 20μs for cellular

F2003, CSG150

Fundamentals of Computer Networking