
IPsec (AH, ESP), IKE

Guevara Noubir Network Security noubir@ccs.neu.edu

SSL vs. IPsec

- SSI
 - Avoids modifying "TCP stack" and requires minimum changes to the application
- Mostly used to authenticate servers
- IPsec
 - Transparent to the application and requires modification of the network stack
 - Authenticates network nodes and establishes a secure channel between nodes
 - Application still needs to authenticate the users

CSG254: Network Security

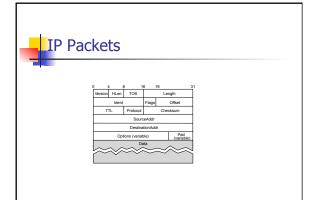
IPsec - IK

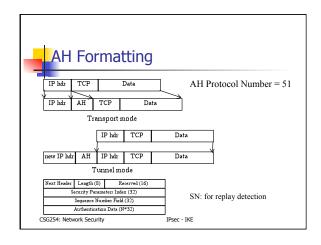
IPsec Protocol Suite (IETF Standard)

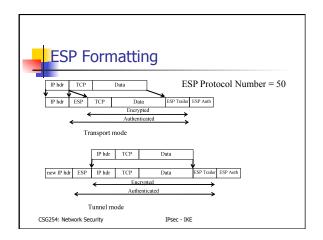
- Provides inter-operable crypto-based security services:
 - Services: confidentiality, authentication, integrity, and key management

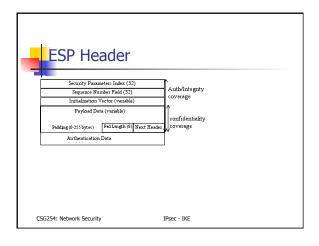
 - Protocols:Authentication Header (AH): RFC2402
 - Encapsulated Security Payload (ESP): 2406
 - Internet Key Exchange (IKE)
 - Environments: IPv4 and IPv6
 - Modes:
- Transport (between two hosts)Tunnel (between hosts/firewalls)

CSG254: Network Security




- Assumption:
- End nodes already established a shared session key:
 - Manually or IKE
- Security Association:
 - Each secure connection is called a *security association* (SA)
 - For each SA: key, end-node, sequence number, services, algorithms
 - SA is unidirectional and identified by:
 - (destination-address, SPI = Security Parameter Index)
- Protocols:


CSG254: Network Security


- Authentication Header: integrity protection
- Encapsulated Security Payload: encryption and/or integrity

CSG254: Network Security IPsec - IKE

- NAT boxes:
 - IPsec tunnel mode doesn't easily work
- Firewalls
 - IPsec encrypts information used by firewalls to filter traffic (e.g., port number)
- AH mutable/immutable/predictable fields:
 - Some fields get modified by the intermediate routers and can't be protected by the AH

 - Mutable: type of service, flags, fragment offset, TTL, header checksum
 Why is PAYLOAD-LENGTH considered immutable (even if packets can be fragmented) and not fragment offset. Inconsistency!
 - Mutable but predictable fields are included in the AH computation using their expected value at the destination (e.g., destination address even when using source routing)

CSG254: Network Security

IPsec - IKE

- - Mutual authentication and establishment of a shared secret session key
 - Pre-shared secret key or public signature-only key, or public encryption key
 - Negotiation of features and cryptographic algorithms
- Specification documents:
 - ISAKMP (Internet Security Association and Key Management Protocol):
 - IKE: RFC 2409
 - DOI (Domain Of Interpretation): RFC 2407

CSG254: Network Security

IPsec - IKE

- Photuris goal: signed Diffie-Hellman exchange
 - $A \rightarrow B$: C_A
 - $B \rightarrow A$: $C_{A'}$ $C_{B'}$ crypto offered
 - $A \rightarrow B$: $C_{A'}$ $C_{B'}$ $g^a \mod p$, crypto selected

 - B -> A: C_N, C_B, , g^b mod p
 A -> B: C_N, C_B, g^{ab} mod p{A, signature on previous messages}
 B -> A: C_N, C_B, g^{ab} mod p{B, signature on previous messages}

 - Role of CA, CB, and messages
 - Additional features: SPI selection
 - Why not sign messages 3 & 4...?

CSG254: Network Security

Simple Key-Management for Internet Protocol (SKIP)

- Uses long term Diffie-Hellman keys
- Parties assumed to know each other public keys (i.e., g^a mod p) or exchange certificates
- Session key $X = g^{ab} \mod p$ is established in 0 messages
- Each packet is encrypted using data key S and each packet contains: X(S)
 - Same S can be used for several packets
- Later on PFS was added by periodically forgetting the keys and doing a new DH

CSG254: Network Security

IPsec - IKE

ISAKMP (RFC2408)

- Proposed by NSA as a framework and accepted by IETF
 - Runs over UDP and allows to exchange fields to create a protocol
- IKE (RFC2409) based on OAKLEY & SKEME using ISAKMP syntax
- IKE phases:
 - Mutual authentication and session key establishment (also called ISAKMP SA or IKE SA)
 - AH/ESP SAs establishment
- Each source/destination/port has its own SA/keys otherwise ESP traffic not using integrity could be decrypted...

CSG254: Network Security

IPsec - IKE

Phase 1 IKE

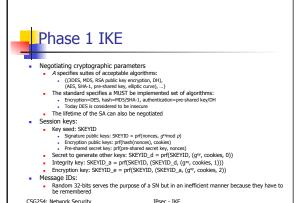
- Two modes:
 - Aggressive mode: mutual authentication and session key establishment in three messages
 - A -> B: g^a mod p, A, crypto proposal
 - B -> A: g^b mod p, crypto choice, proof I'm B
 A -> B: proof I'm A
 - Main: additional features such as hiding end-points identities and negotiating crypto DH algorithm
 • A -> B: crypto suite I support

 - B-> A: crypto suite I choose
 - A -> B: g^a mod p
 B -> A: g^b mod p

 - A -> B: g^{ab} mod p {A, proof I'm A}
 B -> A: g^{ab} mod p {B, proof I'm B}

5

Phase 1 IKE Key types: Pre-shared secret key Public encryption key: fields are separately encrypted using the public key Optimized public encryption key: used to encrypt a random symmetric key, and then data is encrypted using the symmetric key Public signature key: used only for signature purpose 8 variants of IKE phase 1: 2 modes x 4 key types Proof of Identity:


Required in messages 2-3 aggressive mode and 5-6 main mode
 Proves the sender knows the key associated with the identity

Depends on the key type
 Hash of identity key, DH values, nonces, crypto choices, cookies

Alternative: MAC of previous messages

CSG254: Network Security

IPsec - IKE

IKE Phase 1: Public Signature Keys, Main Mode

CSG254: Network Security

- Both parties have public keys for signatures
- Hidden endpoint identity (except for ...?)
- Protocol:
 - A -> B: CP
 - B-> A: CPA
 - A -> B: g^a mod p, nonce_A
 B -> A: g^b mod p, nonce_B

 - $K = f(g^{ab} \mod p, \operatorname{nonce}_{B})$ A > B: $K\{A, \operatorname{proof I'm} A, \operatorname{[certificate]}\}$ B > A: $K\{B, \operatorname{proof I'm} B, \operatorname{[certificate]}\}$
- Questions:
 - What is the purpose of the nonces?
 - Can we make to protocol shorter (5 messages)? At what expense?

IKE Phase 1: Public Signature Keys, Aggressive Mode Protocol: • $A \rightarrow B$: CP, $g^a \mod p$, $\operatorname{nonce}_{A'} A$ ■ $B \rightarrow A$: CPA, $g^b \mod p$, $nonce_B$, B, proof I'm <math>B, [certificate] ■ A -> B: proof I'm A, [certificate] CSG254: Network Security IPsec - IKE IKE Phase 1: Public Encryption Keys, Main Mode, Original Protocol: ■ A -> B: CP ■ B -> A: CPA • $A \to B$: $g^a \mod p$, $\{nonce_A\}_{B'}$, $\{A\}_B$ • $B \to A$: $g^b \mod p$, $\{nonce_B\}_A$, $\{B\}_A$ $K = f(g^{ab} \mod p, \text{ nonce}_A, \text{ nonce}_B)$ ■ A -> B: K{proof I'm A} ■ *B* -> *A*: *K*{proof I'm *B*} CSG254: Network Security IPsec - IKE IKE Phase 1: Public Encryption Keys, Aggressive Mode, Original Protocol: • $A \rightarrow B$: CP, $g^a \mod p$, $\{nonce_A\}_B$, $\{A\}_B$ • $B \rightarrow A$: CPA, $g^b \mod p$, $\{nonce_B\}_A$, $\{B\}_A$, proof I'm B■ A -> B: proof I'm A

CSG254: Network Security

IKE Phase 1: Public Encryption Keys, Main Mode, Revised Protocol: A -> B: CP B -> A: CPA K_A = hash(nonce_A, cookie_A) A -> B: {nonce_A}_B, K_A{g^a mod p}, K_A{A}, [K_A{A\$ cert}] K_B = hash(nonce_B, cookie_B) B -> A: {nonce_B}_A, K_B{g^b mod p}, K_B{B} K = f(g^{ab} mod p, nonce_B, cookie_A, cookie_B)

CSG254: Network Security IPsec - IKE

A -> B: K{proof I'm A}
 B -> A: K{proof I'm B}

IKE Phase 1: Public Encryption Keys, Aggressive Mode, Revised

- Protocol:
 - $K_A = \text{hash(nonce}_A, \text{cookie}_A)$
 - $A \rightarrow B$: CP, {nonce_A}_B, $K_A(g^a \mod p)$, $K_A(A)$, $[K_A(A \text{s cert})]$ $K_B = \text{hash(nonce}_B, \text{cookie}_B)$
 - $B \rightarrow A$: CPA, $\{nonce_B\}_A$, $K_B\{g^b \bmod p\}$, $K_B\{B\}$, proof I'm B $K = f(g^{ab} \bmod p$, $nonce_A$, $nonce_B$, $cookie_A$, $cookie_B)$
 - A -> B: K{proof I'm A}

CSG254: Network Security

IPsec - IKE

IKE Phase 1: Shared Secret Keys, Main Mode

- Assumption A and B share a secret J
- Protocol:
 - A -> B: CP
 - B -> A: CPA
 - A -> B: g^a mod p, nonce_A
 - $B \rightarrow A$: $g^b \mod p$, nonce_B

 $K = f(J, g^{ab} \mod p, \text{nonce}_{A'} \text{nonce}_{B'} \text{cookie}_{A'} \text{cookie}_{B})$

- *A* -> *B*: *K*{proof I'm *A*}
- *B* -> *A*: *K*{proof I'm *B*}

CSG254: Network Security

IPsec - IKE

IKE Phase 1: Shared Secret Keys, Aggressive Mode Protocol: • $A \rightarrow B$: CP, $g^a \mod p$, $nonce_A$, A■ $B \rightarrow A$: CPA, $g^b \mod p$, $nonce_B$, B, proof I'm <math>B■ *A* -> *B*: proof I'm *A*

IPsec - IKE

IKE: Phase 2

CSG254: Network Security

- Also known as "Quick Mode": 3- messages protocol
- Also known as Quick Mode: 3- miessages protocol
 A -> B: X, Y, CP, traffic, SPI_x, nonce_x [g^a mod p]_{optonal}
 B -> A: X, Y, CPA, traffic, SPI_y, nonce_g [g^b mod p] _{optonal}
 A -> B: X, Y, ack
 All messages are encrypted using SKEYID_e, and integrity protected using SKEYID_a (except X, Y)
- Parameters:
 X: pair of cookies generated during phase 1
 Y: 32-bit number unique to this phase 2 session chosen by the initiator
 - CP: Crypto Proposal, CPA: Crypto Proposal Accepted

 - DH is optional and could be used to provide PFS
 Nonces and cookies get shuffled into SKEYID to produce the SA encryption and integrity keys

CSG254: Network Security

IPsec - IKE