Internet Protocol (IP)

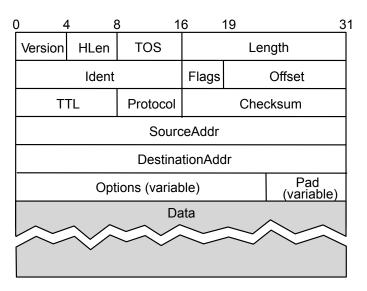
Guevara Noubir

Textbook: Computer Networks: A Systems Approach,

L. Peterson, B. Davie, Morgan Kaufmann

Chapter 4.

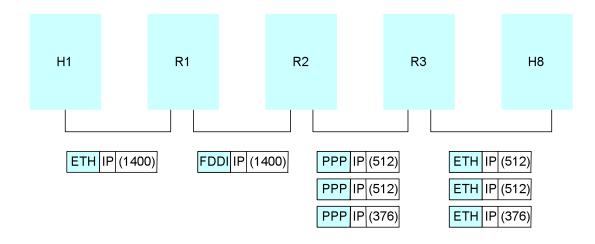
Lecture Outline

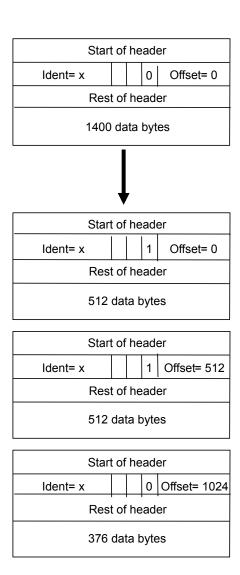

Internet Protocol
Addressing
IP over LAN
Routing
IPv6

IP Internet

Network 1 (Ethernet) Concatenation of Networks H7 H8 Network 4 (point-to-point) Network 2 (Ethernet) |H4| Network 3 (FDDI) Protocol Stack H1 H8 TCP TCP R1 R2 R3 IΡ IΡ ΙP IΡ ETH FDDI ETH FDDI PPP PPP ETH ETH

Service Model


- Connectionless (datagram-based)
- Best-effort delivery (unreliable service)
 - packets are lost
 - packets are delivered out of order
 - duplicate copies of a packet are delivered
 - packets can be delayed for a long time
- Datagram format



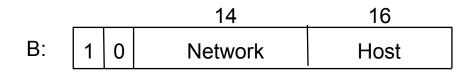
Fragmentation and Reassembly

- Each network has some MTU
- Strategy
 - fragment when necessary (MTU < Datagram)
 - re-fragmentation is possible
 - fragments are self-contained datagrams
 - use CS-PDU (not cells) for ATM
 - delay reassembly until destination host
 - do not recover from lost fragments
 - hosts are encouraged to perform "path MTU discovery"

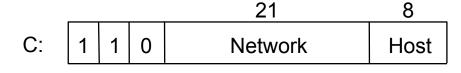
Example

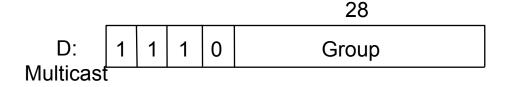
Internet Control Message Protocol (ICMP) RFC 792

- Integral part of IP but runs as ProtocolType = 1 using an IP packet
- Codes/Types:
 - Echo (ping)
 - Redirect (from router to source host)
 - Destination unreachable (protocol, port, host, cannot fragment)
 - TTL exceeded (so datagrams don't cycle forever)
 - Cannot fragment
 - Checksum failed
 - Reassembly failed


Global Addresses

A:


- Properties
 - globally unique
 - hierarchical: network + host,


____24 Host

- Dot Notation
 - -10.3.2.4
 - -128.96.33.81
 - -192.12.69.77

Network

Datagram Forwarding

Strategy

- every datagram contains destination's address
- if directly connected to destination network, then forward to host
- if not directly connected to destination network, then forward to some router
- forwarding table maps network number into next hop
- each host has a default router
- each router maintains a forwarding table

Example (R2)

Network Number	Next Hop
1	R3
2	R1
3	interface 1
4	interface 0

Address Translation

- Map IP addresses into physical addresses
 - destination host
 - next hop router
- Techniques
 - encode physical address in host part of IP address
 - table-based
- ARP
 - table of IP to physical address bindings
 - broadcast request if IP address not in table
 - target machine responds with its physical address
 - table entries are discarded if not refreshed

ARP Details

Request Format

- HardwareType: type of physical network (e.g., Ethernet)
- ProtocolType: type of higher layer protocol (e.g., IP)
- HLEN & PLEN: length of physical and protocol addresses
- Operation: request or response
- Source/Target-Physical/Protocol addresses

Notes

- table entries timeout in about 15 minutes
- update table with source when you are the target
- update table if already have an entry
- do not refresh table entries upon reference

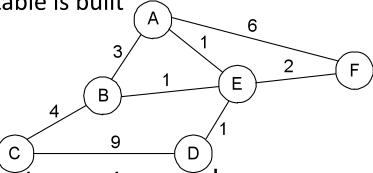
ARP Packet Format

0 8	3 1	6 3		
Hardware type = 1		ProtocolType = 0x0800		
HLen = 48	PLen = 32	Operation		
SourceHardwareAddr (bytes 0 -3)				
SourceHardwareAddr (bytes 4 - 5)		SourceProtocolAddr (bytes 0 - 1)		
SourceProtocolAddr (bytes 2 - 3)		TargetHardwareAddr (bytes 0 - 1)		
TargetHardwareAddr (bytes 2 - 5)				
TargetProtocolAddr (bytes 0 −3)				

ATMARP

- ATM is not a broadcast network. There is a need for a specific address resolution mechanism.
- Use an ARP server:
 - Each node in the Logical IP Subnet (LIS) is configured with the ATM address of the ARP server
 - Each establishes a VC to the ARP server and register its <IP-ADDR, ATM-ADDR >
 - All address resolution requests are sent to the ARP server

Dynamic Host Configuration Protocol (DHCP)


- IP addresses of interfaces cannot be configured when manufactured (like for Ethernet)
- Configuration is an error-prone process
- Solution: centralize the configuration information in a DHCP server:
 - DHCP server discovery: broadcast a DHCPDISCOVER request
 - Request are relayed (unicast) to the server by DHCP relays
 - DHCP server broadcast replies with <HWADDR, IPADDR, lease-info>

Routing Overview

- Forwarding vs Routing
 - forwarding: to select an output port based on destination address and routing table

routing: process by which routing table is built

Network as a Graph

- Problem: Find lowest cost path between two nodes
- Factors
 - static: topologydynamic: load

Distance Vector

- Each node maintains a set of triples
 - (Destination, Cost, NextHop)
- Exchange updates directly connected neighbors
 - periodically (on the order of several seconds)
 - whenever table changes (called triggered update)
- Each update is a list of pairs:
 - (Destination, Cost)
- Update local table if receive a "better" route
 - smaller cost
 - came from next-hop
- Refresh existing routes; delete if they time out

Example

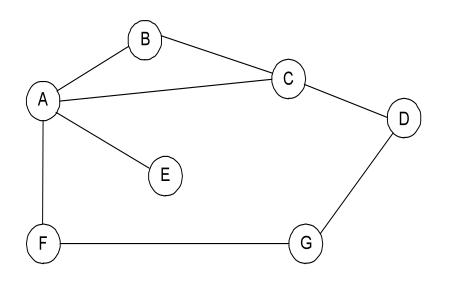


Table for node B

Destination	Cost	NextHop
Α	1	Α
С	1	C
D	2	C
E	2	Α
F	2	Α
G	3	Α

Routing Loops

Example 1

- F detects that link to G has failed
- F sets distance to G to infinity and sends update to A
- A sets distance to G to infinity since it uses F to reach G
- A receives periodic update from C with 2-hop path to G
- A sets distance to G to 3 and sends update to F
- F decides it can reach G in 4 hops via A

Example 2

- link from A to F fails
- A advertises distance of infinity to E
- B and C advertise a distance of 2 to E
- B decides it can reach E in 3 hops (through C); advertises this to A
- A decides it can read E in 4 hops (through B); advertises this to C
- C decides that it can reach E in 5 hops...

Loop-Breaking Heuristics

- Set infinity to 16
- Split horizon
- Split horizon with poison reverse
- Waiting upon hearing failure
- Sequence number

Routing Information Protocol (RIP)

- Uses Bellman-Ford's algorithm
- Protocol over UDP, port 520
- Distance-vector protocol
- Protocol overview:
 - Init: send a request packet over all interfaces
 - On response reception: update the routing table
 - On request reception:
 - if request for complete table (address family=0) send the complete table
 - else send reply for the specified address (infinity=16)
 - Regular routing updates:
 - every 30 seconds part/entire routing table is sent (broadcast) to neighboring routers
 - Triggered updates: on metric change for a route
 - Simple authentication scheme

Link State

- Strategy
 - send to all nodes (not just neighbors)
 information about directly connected links (not entire routing table)
- Link State Packet (LSP)
 - id of the node that created the LSP
 - cost of link to each directly connected neighbor
 - sequence number (SEQNO)
 - time-to-live (TTL) for this packet

Link State (cont)

- Reliable flooding
 - store most recent LSP from each node
 - forward LSP to all nodes but one that sent it
 - generate new LSP periodically
 - increment SEQNO
 - start SEQNO at 0 when reboot
 - decrement TTL of each stored LSP
 - discard when TTL=0

Route Calculation

- Dijkstra's shortest path algorithm
- Let
 - N denotes set of nodes in the graph
 - I(i, j) denotes non-negative cost (weight) for edge (i, j)
 - s denotes this node
 - M denotes the set of nodes incorporated so far
 - C(n) denotes cost of the path from s to node n

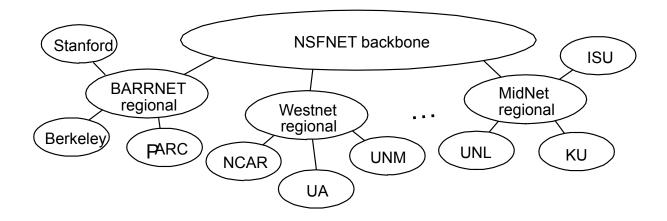
```
M = {s}
for each n in N - {s}

    C(n) = 1(s, n)
while (N != M)
    M = M union {w} such that C(w) is the minimum for
    all w in (N - M)
    for each n in (N - M)
        C(n) = MIN(C(n), C (w) + 1(w, n))
```

Open Shortest Path First

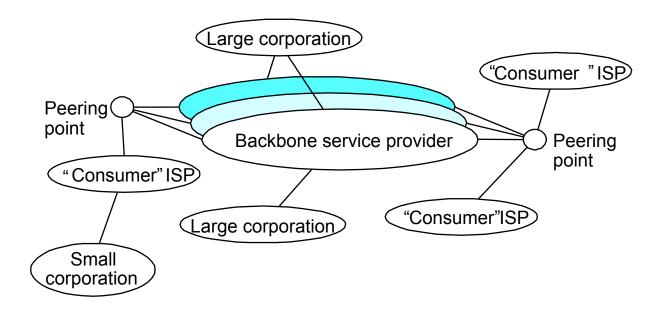
- IP protocol (not over UDP), reliable (sequence numbers, acks)
- Protocol overview: link state protocol
 - The link status (cost) is sent/forwarded to all routers (LSP)
 - Each router knows the exact topology of the network
 - Each router can compute a route to any address
 - Simple authentication scheme
- Advantages over RIP
 - Faster to converge
 - The router can compute multiple routes (e.g., depending on the type of services, load balancing)
 - Use of multicasting instead of broadcasting (concentrate on OSPF routers)

Metrics


- Original ARPANET metric
 - measures number of packets enqueued on each link
 - took neither latency nor bandwidth into consideration
- New ARPANET metric
 - stamp each incoming packet with its arrival time (AT)
 - record departure time (DT)
 - when link-level ACK arrives, compute
 Delay = (DT AT) + Transmit + Latency
 - if timeout, reset **DT** to departure time for retransmission
 - link cost = average delay over some time period
- Fine Tuning
 - compressed dynamic range
 - replaced **Delay** with link utilization

Popular Interior Gateway Protocols

- RIP: Route Information Protocol
 - distributed with Unix
 - distance-vector algorithm
 - based on hop-count
- OSPF: Open Shortest Path First
 - recent Internet standard
 - uses link-state algorithm
 - supports load balancing
 - supports authentication


Internet Structure

Recent Past

Internet Structure

Today

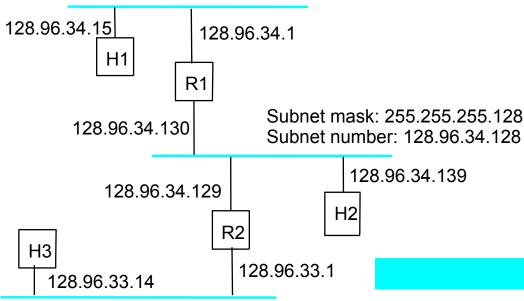
How to Make Routing Scale

- Flat versus Hierarchical Addresses
- Inefficient use of Hierarchical Address Space
 - class C with 2 hosts (2/255 = 0.78% efficient)
 - class B with 256 hosts (256/65535 = 0.39% efficient)
- Still Too Many Networks
 - routing tables do not scale
 - route propagation protocols do not scale

Subnetting

- Add another level to address/routing hierarchy: subnet
- Subnet masks define variable partition of host part
- Subnets visible only within site

Network number	Host number		
Class B address			
111111111111111111111111111111111111111		00000000	


Subnet mask (255.255.25.0)

Network number | Subnet ID | Host ID

Subnetted address

Subnet Example

Subnet mask: 255.255.255.128 Subnet number: 128.96.34.0

Subnet mask: 255.255.255.0 Subnet number: 128.96.33.0

Subnet Number	Subnet Mask	Next Hop
128.96.34.0	255.255.255.128	interface 0
128.96.34.128	255.255.255.128	interface 1
128.96.33.0	255.255.255.0	R2

Forwarding Algorithm

```
D = destination IP address
for each entry (SubnetNum, SubnetMask, NextHop)
   D1 = SubnetMask & D
   if D1 = SubnetNum
      if NextHop is an interface
           deliver datagram directly to D
       else
           deliver datagram to NextHop
```

- Use a default router if nothing matches
- Not necessary for all 1s in subnet mask to be contiguous
- Can put multiple subnets on one physical network
- Subnets not visible from the rest of the Internet

Supernetting

- Assign block of contiguous network numbers to nearby networks
- Called CIDR: Classless Inter-Domain Routing
- Represent blocks with a single pair

```
(first_network_address, count)
```

- Restrict block sizes to powers of 2
 - E.g., 192.4.16 192.4.31
- Use a bit mask (CIDR mask) to identify block size
- All routers must understand CIDR addressing

Route Propagation

- Know a smarter router
 - hosts know local router
 - local routers know site routers
 - site routers know core router
 - core routers know everything
- Autonomous System (AS)
 - corresponds to an administrative domain
 - examples: University, company, backbone network
 - assign each AS a 16-bit number
- Two-level route propagation hierarchy
 - intradomain routing protocol (each AS selects its own)
 - interdomain routing protocol (Internet-wide standard)

EGP: Exterior Gateway Protocol

Overview

- designed for tree-structured Internet
- concerned with reachability, and policies not optimal routes

Protocol messages

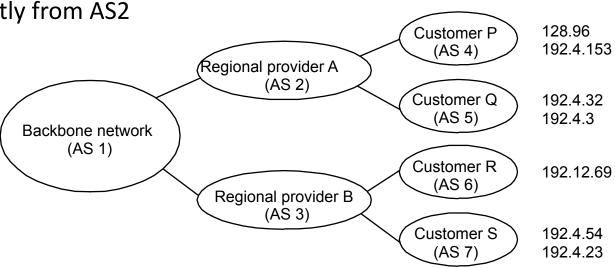
- neighbor acquisition: one router requests that another be its peer; peers exchange reachability information
- neighbor reachability: one router periodically tests if the another is still reachable; exchange HELLO/ACK messages; uses a k-out-of-n rule
- routing updates: peers periodically exchange their routing tables (distance-vector)

BGP-4: Border Gateway Protocol

AS Types

- stub AS: has a single connection to one other AS
 - carries local traffic only
- multihomed AS: has connections to more than one AS
 - refuses to carry transit traffic
- transit AS: has connections to more than one AS
 - carries both transit and local traffic

• Each AS has:


- one or more border routers
- one BGP speaker that advertises:
 - local networks
 - other reachable networks (transit AS only)
 - gives path information
- BGP-4 runs on top of TCP

BGP Example

Speaker for AS2 advertises reachability to P and Q

network 128.96, 192.4.153, 192.4.32, and 192.4.3, can be reached

directly from AS2

- Speaker for backbone advertises
 - networks 128.96, 192.4.153, 192.4.32, and 192.4.3 can be reached along the path (AS1, AS2).
- Speaker can cancel previously advertised paths

IP Version 6

- Features
 - 128-bit addresses (classless)
 - multicast
 - real-time service
 - authentication and security
 - autoconfiguration
 - mobility
 - end-to-end fragmentation
 - protocol extensions
- Addresses
 - notation: x:x:x:x:x:x:x where x is a hex representation of 16 bits
 - supports IPv4 addresses, multicast, link and site local addresses, anycast
- Header
 - 40-byte "base" header
 - version, priority, flow label, payload length, next header, hop limit, src, dst
 - no checksum
 - extension headers (fixed order, mostly fixed length)
 - e.g., NextHeader, Offset, M, Ident
 - fragmentation
 - source routing
 - authentication and security
 - other options
- Auto-configuration concatenate
 - interface ID (e.g., MAC address)
 - prefix (e.g., for a printer use link local prefix 1111 1110 10)

Misc.

Network Address Translation

Virtual Private Networks

Multi Protocol Label Switching (MPLS)