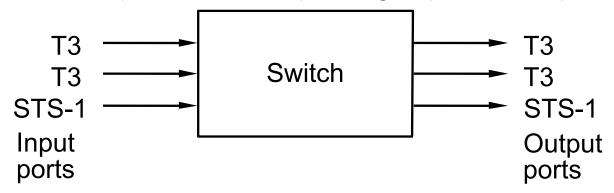
#### **Packet Switching**

#### Guevara Noubir Fundamentals of Computer Networks

**Textbook:** Computer Networks: A Systems Approach,

L. Peterson, B. Davie, Morgan Kaufmann

Chapter 3.

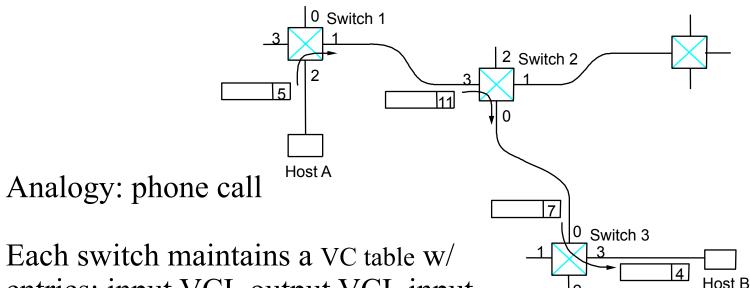

#### **Outline**

Store-and-Forward Switches
Cell Switching
Segmentation and Reassembly
Bridges and Extended LANs
Switch Design

#### Scalable Networks

#### Switch

- Forwards packets from input port to output port
- Port selected based on address in packet header
  - Virtual circuit (connection-oriented) vs. Datagram (connectionless)




#### Advantages

- Cover large geographic area (tolerate latency)
- Support large numbers of hosts (scalable bandwidth)

## Virtual Circuit (VC) Switching

- Explicit connection setup (and tear-down) phase
- Subsequent packets follow same circuit
- Sometimes called connection-oriented model



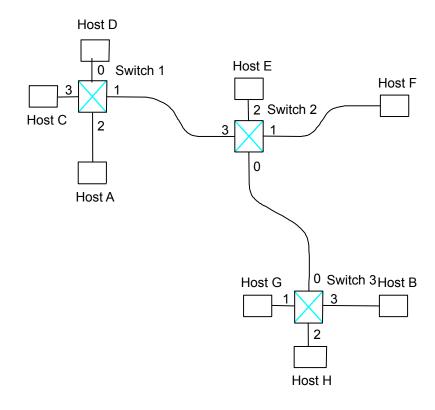
• Each switch maintains a VC table w/ entries: input VCI, output VCI, input port, output port

### Virtual Circuit Switching

#### Connection Setup approaches:

- Permanent Virtual Circuits (PVC): manually setup/removed by network administrators
- Switched Virtual Circuits (SVC): dynamically setup through signaling over some control channels
- Connection state => VC table
  - Incoming interface, VC Identifier (VCI), outgoing interface, outgoing VCI

#### SVC:


- The setup message is forwarded over the network
- New entries are created in the VC table and destination switches choose incoming VCI
- When the setup message reaches the destination, connection acknowledgements and chosen VCI are communicated back to the source

#### **Virtual Circuits**

- Examples of Virtual Circuit Technology:
  - Frame Relay, X.25, Asynchronous Transfer Mode (ATM)
- Frame Relay was popular for creating virtual private networks (VPNs) using PVC.
- ATM is a more complex technology that provides mechanisms for supporting quality of service
  - More success in Wide Area Networks, DSL but not on LAN

#### **Datagram Switching**


- No connection setup phase
- Each packet forwarded independently
- Sometimes called connectionless model
- Analogy: postal system
- Each switch maintains a forwarding (routing) table



### **Source Routing**

- The information to route the packet is provided by the source host and included in the packet
- Example of implementing source routing:
  - Assign a number to each switch output port
  - Include the list of output ports that the packet has to go through
  - The list is rotated by the intermediate switches before forwarding
- Disadvantage:
  - Packet initiators need to have a sufficient information about the network topology
  - The header has a variable length

## **Source Routing**



#### Virtual Circuit Model

- Typically wait full RTT for connection setup before sending first data packet.
- While the connection request contains the full address for destination, each data packet contains only a small identifier, making the per-packet header overhead small.
- If a switch or a link in a connection fails, the connection is broken and a new one needs to be established.
- Connection setup provides an opportunity to reserve resources.

#### Datagram Model

- There is no round trip time delay waiting for connection setup; a host can send data as soon as it is ready.
- Source host has no way of knowing if the network is capable of delivering a packet or if the destination host is even up.
- Since packets are treated independently, it is possible to route around link and node failures.
- Successive packets may follow different paths and be received out of order.
- Since every packet must carry the full address of the destination, the overhead per packet is higher than for the connection-oriented model.

## Cell Switching (ATM)

- Connection-oriented packet-switched network
- Used in both WAN and LAN settings
- Signaling (connection setup) Protocol: Q.2931
- Specified by ATM forum (www.atmforum.com)
- Packets are called cells
  - 5-byte header + 48-byte payload
- Commonly transmitted over SONET (Synchronous Optical NETwork)
  - other physical layers possible: SDH, Wireless, DSL

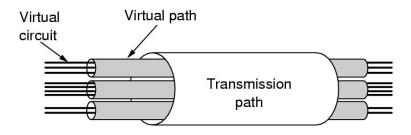
#### Variable vs Fixed-Length Packets

- No Optimal Length
  - if small: high header-to-data overhead
  - if large: low utilization for small messages
- Fixed-Length Easier to Switch in Hardware
  - simpler
  - enables parallelism

#### Big vs Small Packets

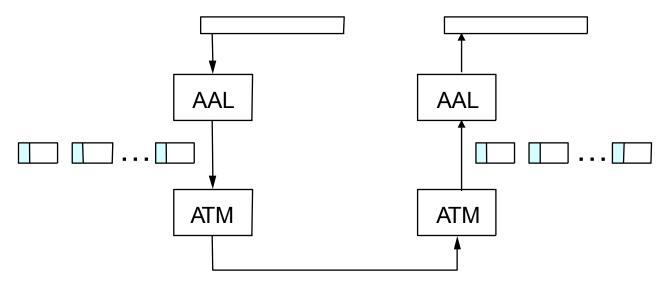
- Small Improves Queue behavior
  - finer-grained pre-emption point for scheduling link
    - maximum packet = 4KB
    - link speed = 100Mbps
    - transmission time = 4096 x 8/100 = 327.68us
    - high priority packet may sit in the queue 327.68us
    - in contrast, 53 x 8/100 = 4.24us for ATM
  - near cut-through behavior
    - two 4KB packets arrive at same time
    - link idle for 327.68us while both arrive
    - at end of 327.68us, still have 8KB to transmit
    - in contrast, can transmit first cell after 4.24us
    - at end of 327.68us, just over 4KB left in queue

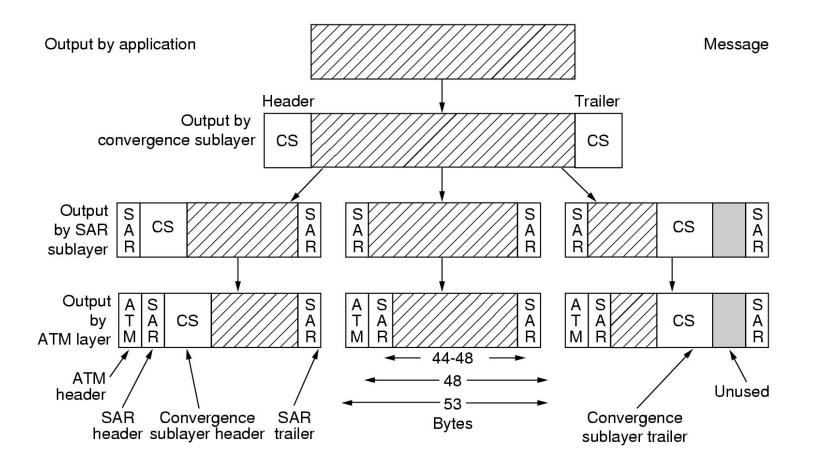
## Big vs Small (cont)


- Small Improves Latency (for voice)
  - voice digitally encoded at 64Kbps (8-bit samples at 8KHz)
  - need full cell's worth of samples before sending cell
  - example: 1000-byte cells implies 125ms per cell (too long)
  - smaller latency implies no need for echo cancellers
- ATM Compromise: 48 bytes = (32+64)/2

#### **Cell Format**

User-Network Interface (UNI)


| 4   | 8   | 16  | 3    | 1   | 8           | 384 (48 bytes) |
|-----|-----|-----|------|-----|-------------|----------------|
| GFC | VPI | VCI | Туре | CLP | HEC (CRC-8) | Payload        |


- host-to-switch format
- GFC: Generic Flow Control (not used)
- VCI: Virtual Circuit Identifier
- VPI: Virtual Path Identifier
- Type: management, congestion control, AAL5 (later)
- CLPL Cell Loss Priority
- HEC: Header Error Check (CRC-8)
- Network-Network Interface (NNI)
  - switch-to-switch format
  - GFC becomes part of VPI field



## Segmentation and Reassembly

- ATM Adaptation Layer (AAL)
  - AAL 1 (CBR) and 2 (VBR) designed for applications that need guaranteed rate (e.g., voice, video)
  - AAL 3/4 designed for packet data
  - AAL 5 is an alternative standard for packet data. Designed by the computer industry. Most used interface to ATM.





## **AAL 3/4**

 Convergence Sublayer Protocol Data Unit (CS-PDU)



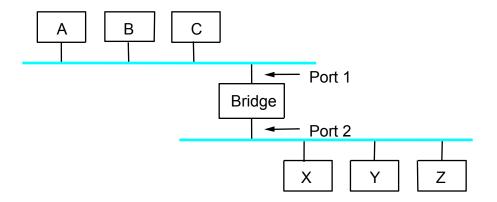
- CPI: common part indicator (version field: currently 0)
- Btag/Etag:beginning and ending tag
- BAsize: hint on amount of buffer space to allocate
- Length: size of whole PDU

#### **Cell Format**

| 40         | 2    | 4   | 10  | 352 (44 bytes) | 6      | 10     |
|------------|------|-----|-----|----------------|--------|--------|
| ATM header | Туре | SEQ | MID | Payload        | Length | CRC-10 |

- Type
  - BOM: beginning of message
  - COM: continuation of message
  - EOM end of message
- SEQ: sequence number
- MID: message id
- Length: number of bytes of PDU in this cell

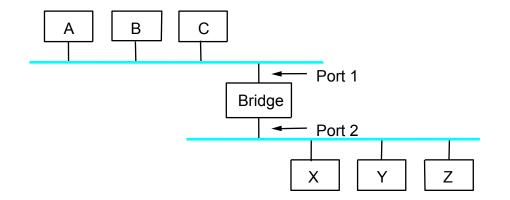
#### AAL5


#### CS-PDU Format

| < 64 KB | 0–47 bytes | 16       | 16  | 32     |
|---------|------------|----------|-----|--------|
| Data 7  | Pad        | Reserved | Len | CRC-32 |

- pad so trailer always falls at end of ATM cell
- Length: size of PDU (data only)
- CRC-32 (detects missing or misordered cells)
- Cell Format
  - end-of-PDU bit in Type field of ATM header

#### **Bridges and Extended LANs**

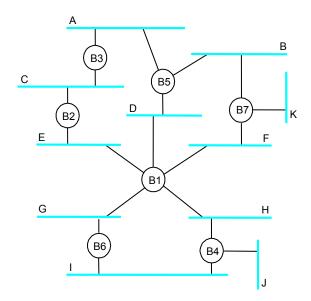

- LANs have physical limitations (e.g., 2500m)
- Connect two or more LANs with a bridge
  - Accept and forward strategy
  - Level 2 connection (does not add packet header)



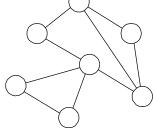
• Ethernet Switch is a LAN Switch = Bridge

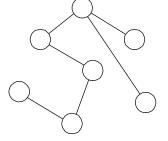
#### **Learning Bridges**

- Do not forward when unnecessary
- Maintain forwarding table



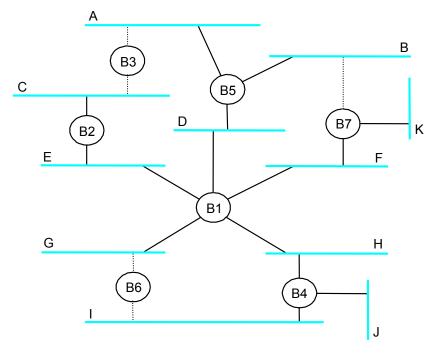

| Por |
|-----|
| 1   |
| 1   |
| 1   |
| 2   |
| 2   |
| 2   |
|     |


- Learn table entries based on source address
- Table is an optimization; need not be complete
- Always forward broadcast frames


### **Spanning Tree Algorithm**

• Problem: loops




- Bridges run a distributed spanning tree algorithm
  - select which bridges actively forward
  - developed by Radia Perlman
  - now IEEE 802.1 specification





### **Algorithm Overview**

- Each bridge has unique id (e.g., B1, B2, B3)
- Select bridge with smallest id as root
- Select bridge on each LAN closest to root as designated bridge (use id to break ties)
- Each bridge forwards frames over each LAN for which it is the designated bridge



## **Algorithm Details**

- Bridges exchange configuration messages
  - id for bridge sending the message
  - id for what the sending bridge believes to be root bridge
  - distance (hops) from sending bridge to root bridge
- Each bridge records current best configuration message for each port
- Initially, each bridge believes it is the root

## Algorithm Detail (cont)

- When learn not root, stop generating config messages
  - in steady state, only root generates configuration messages
- When learn not designated bridge, stop forwarding configmessages
  - in steady state, only designated bridges forward config messages
- Root continues to periodically send config messages
- If any bridge does not receive config message after a period of time, it starts generating config messages claiming to be the root

#### **Broadcast and Multicast**

- Forward all broadcast/multicast frames
  - On all active ports except the one on which the frame was received
- Learn when no group members downstream
- Accomplished by having each member of group G send a frame to bridge multicast address with G in source field

#### **Limitations of Bridges**

- Do not scale
  - Spanning tree algorithm does not scale
  - Broadcast does not scale
- Do not accommodate heterogeneity
- Caution: beware of transparency
  - Bridged LANs do not always behave as single shared medium LAN: they drop packets when congested, higher latency

### Virtual LANs (VLAN)

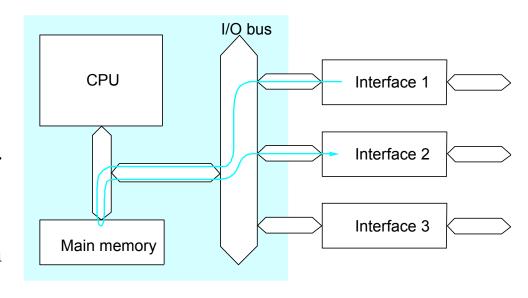
- VLANs are used to:
  - Increase scalability: reduce broadcast messages
  - Provide some basic security by separating LANs
- VLANs have an ID (color).
- Bridges insert the VLAN ID between the ethernet header and its payload
- Packets (unicast and multicast) are only forwarded to VLAN with the same ID as the source VLAN

#### Design of Switches

- Design goals: Throughput, Scalability, Cost
- Throughput:
  - Is not equal to the sum of speeds of input/output links
  - Depends also on packet size (some operations have to be executed for all packets independently of their size): packet per second metric
  - => Throughput is a function of traffic
- Scalability:
  - How does hardware cost increase as a function of IN/ OUT

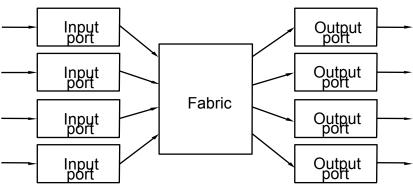
#### **Ports and Fabrics**

#### • Ports:


- Functions: Interface with links, buffer packets, maintain tables for VCI (incoming/outgoing VCI)
- FIFO buffers are not suitable because of head-of-line blocking
- QoS policies have to be embedded in the buffer management (e.g., scheduling, discarding)

#### • Fabrics:

Function: deliver packet to the right output


#### Workstation-Based

- Aggregate bandwidth
  - 1/2 of the I/O bus bandwidth
  - capacity shared among all hosts connected to switch
  - example: 133MHz, 64 bits bus => 8Gbps/2 => few 100MHz ports
- Packets-per-second
  - must be able to switch small packets
  - 1000,000 packets-persecond is achievable for a PC
  - e.g., 64-byte packets
     implies 512Mbps which
     is too small for a switch

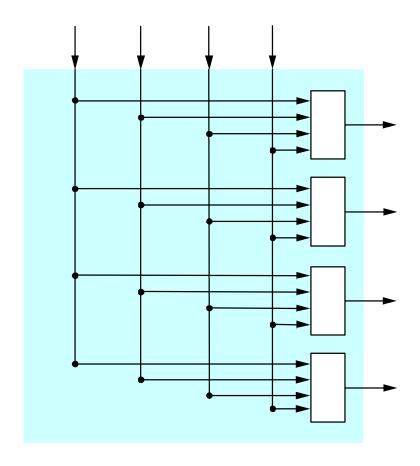


#### **Switching Hardware**

- Design Goals
  - Throughput (depends on traffic model)
  - Scalability (a function of *n*)

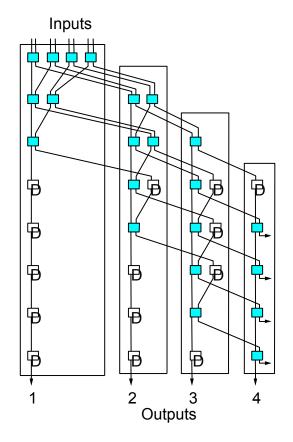


- Ports
  - Circuit management (e.g., map VCIs, route datagrams)
  - Buffering (input and/or output)
- Fabric
  - As simple as possible
  - Sometimes do buffering (internal)


## Buffering

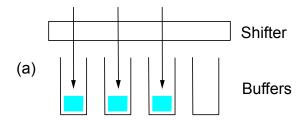
- Wherever contention is possible
  - input port (contend for fabric)
  - internal (contend for output port)
  - output port (contend for link)
- Head-of-Line Blocking

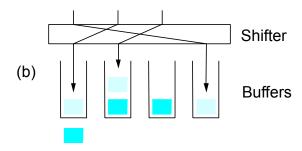
input buffering: avoid FIFO

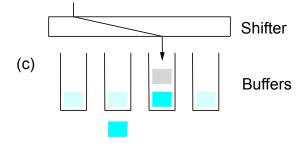



### **Crossbar Switches**




#### **Knockout Switch**

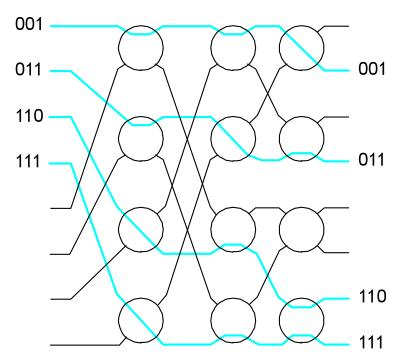

- Example crossbar
- Concentrator
  - select / of n packets
- 2x2 switches randomly select a winner
- Complexity is sill: n<sup>2</sup>




# **Knockout Switch (cont)**

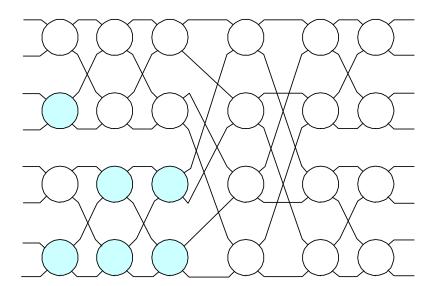
Output Buffer








## **Self-Routing Fabrics**

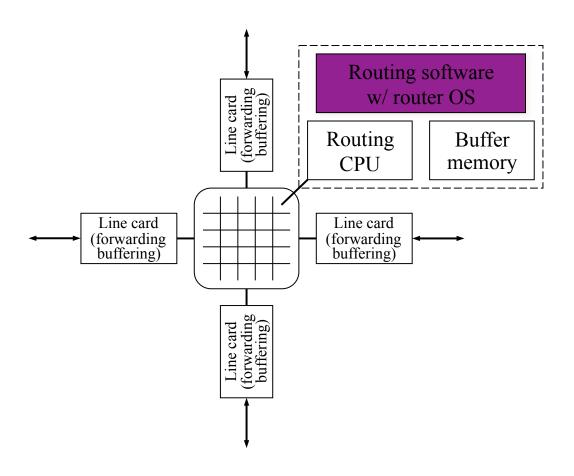

#### Banyan Network

- constructed from simple 2 x 2 switching elements
- self-routing header attached to each packet
- elements arranged to route based on this header
- no collisions if input packets sorted into ascending order
- complexity:  $n \log_2 n$

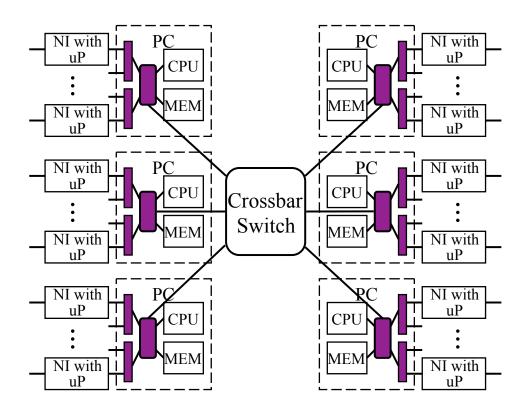


## Self-Routing Fabrics (cont)

- Batcher Network
  - switching elements sort two numbers
    - some elements sort into ascending (clear)
    - some elements sort into descending (shaded)
  - elements arranged to implement merge sort
  - complexity:  $n \log_2^2 n$




• Common Design: Batcher-Banyan Switch


### **High-Speed IP Router**

- Switch (possibly ATM)
- Line Cards + Forwarding Engines
  - link interface
  - router lookup (input)
  - common IP path (input)
  - packet queue (output)
- Network Processor
  - routing protocol(s)
  - exceptional cases

## **High-Speed Router**



# **Alternative Design**



#### ATM in the LAN

- ATM is used generally used for backbones
- ATM can also be used for LAN but requires special mechanisms to emulate LAN characteristics (e.g., broadcast used by ARP)
- Solutions:
  - New protocols that do not require broadcast (e.g., ATMARP)
  - Emulate shared media LAN: LAN Emulation (LANE)

#### **LANE**

- LANE servers:
  - LAN Emulation Configuration Server (LECS): configuration
  - LAN Emulation Server (LES): configuration
  - Broadcast and Unknown Server (BUS): data transfer
- LAN Emulation Client (LEC):
  - Is connected to the LECS through a predefined VC
  - Gets config info from LECS (e.g., type of LAN, maximum packet size, ATM address of the LES)
  - LEC registers with LES (ATMADDR, MACADDR), and gets the BUS ATMADDR
  - Broadcast is sent to BUS
  - Unicast: first packet sent to BUS + Address resolution request to LES, subsequent packets are directly sent to the destination over a newly established VC.