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ABSTRACT
Templates are an important asset for question answering over knowl-
edge graphs, simplifying the semantic parsing of input utterances
and generating structured queries for interpretable answers. State-
of-the-art methods rely on hand-crafted templates with limited cov-
erage. This paper presents QUINT, a system that automatically
learns utterance-query templates solely from user questions paired
with their answers. Additionally, QUINT is able to harness lan-
guage compositionality for answering complex questions without
having any templates for the entire question. Experiments with dif-
ferent benchmarks demonstrate the high quality of QUINT.
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1. INTRODUCTION
Motivation. Templates play an important role in question an-

swering (QA) over knowledge graphs (KGs), where user utterances
are translated to structured queries via semantic parsing [4, 35, 41].
Utterance templates are usually paired with query templates, guid-
ing the mapping of utterance constituents onto query components.

Table 1 shows two utterance-query templates used by Fader et
al. [13]. Each template i) specifies how to chunk an utterance
into phrases, ii) guides how these phrases map to KG primitives
by specifying their semantic roles as predicates or entities, and iii)
aligns syntactic structure in the utterance to the semantic predicate-
argument structure of the query.

A benefit of templates is that the mappings to the KG are trace-
able and can be leveraged to generate explanations for the user to
understand why she receives specific answers. For example, when
the utterance “Who invented the Internet?” returns the answer Al
Gore (known for funding the Internet), an explanation might tell us
that it was answered from the first template of Table 1, and that the
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KG predicate used was knownFor, originating from ‘invented’ in
the utterance through the pred1 alignment.

State of the Art and its Limitations. Many prior approaches
to QA over KGs rely on hand-crafted templates or rules, which in-
evitably results in limited coverage. Some methods use utterance-
query templates with alignments as in Table 1 [13, 23, 28, 35, 41,
48]. Bast and Haussmann [3] rely on three manually constructed
query templates without any utterance templates. Instead, they ex-
haustively instantiate each query template from the utterance. Yih
et al. [47] define a sequence of stages for generating queries, each
relying on a set of manually defined rules for how query conditions
are added. Berant et al. [4] rely on a manually specified grammar
for semantic parsing and mapping text spans onto KG primitives.

Our method supports complex questions that require multiple
KG predicates to obtain an answer. For example, the question
“Which were the alma maters of the PR managers of Hillary Clin-
ton?” is answered by a chain of KG predicates. Our system, called
QUINT, is able to exploit natural language compositionality and
templates learned from simple questions to answer complex ques-
tions without any templates that capture the complete question.

Approach and Contribution. Our approach is to automatically
learn utterance-query templates with alignments between the con-
stituents of the question utterance and the KG query (Section 3).
These templates are learned by distant supervision, solely from
questions paired with their answer sets as training data [19, 20].
Prior work used the same input for training QA systems over KGs,
but relying on hand-crafted templates [3, 47] or hand-crafted rules
in various formalisms such as DCS [4] to generate the structure of
KG queries. In contrast, our automatically learned utterance tem-
plates are based on standard dependency parse trees, thus benefit-
ing from methodological progress and tools on mainstream parsing
[11]. Dependency parse representations also enable us to cope with
compositional utterances. On the KG query side, templates are ex-
pressed in a SPARQL-style triple-pattern language. Our templates
include automatic support for semantic answer typing, an impor-

Table 1: Curated templates by Fader et al. [13]. Shared pred and
ent annotations indicate an alignment between a phrase in the ut-
terance template and a KG semantic item in the corresponding ut-
terance template.

# Utterance Template Query Template
1 Who VPpred1 NPent1 (?x, pred1, ent1)
2 What NPpred1 is NPent1 (ent1, pred1, ?x)
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Figure 1: Example KG fragment.

tant aspect where prior work relied on manually specified typing
patterns [3, 4]. The alignments between utterance and query are
computed by integer linear programming.

Template learning is an offline step. Online (Section 4), when
the user interacts with the system, QUINT performs light-weight
template matching. QUINT, uses basic templates to answer struc-
turally complex compositional questions without observing such
questions during training. QUINT accomplishes this by i) auto-
matically decomposing the question into its constituent clauses, ii)
computing answers for each constituent using our templates, and
iii) combining these answers to obtain the final answer.

Our salient contributions are: i) automatically learning role-aligned
question-query templates, ii) handling compositional complex ques-
tions, and iii) experiments with the WebQuestions and Free917
benchmarks and with complex questions.

2. SYSTEM OVERVIEW

2.1 Knowledge Graphs
Figure 1 shows a KG fragment. Nodes are entities e ∈ E (e.g.,

LucyPunch), types c ∈ C, also known as classes (e.g., actress)
or literals t ∈ T (e.g., dates). Nodes are connected by edges la-
beled with predicates p ∈ P (e.g., cast). Two nodes connected by
an edge form a fact (e.g., LucyPunch type actress). A KG
is a set of facts, which also form a graph (hence the name). Ad-
ditionally, artificial Compound Value Type (CVT) nodes are used
to represent n-ary relations by connecting the different entities and
literals participating in such a relation. For example, LucyPunch’s
role in BadTeacher as AmySquirrel, in Figure 1, requires a CVT
node cvt1. We deem a pair of predicates pointing to/from a CVT
node to be a predicate as well (e.g., cast.char). Any s ∈ S =
E ∪ C ∪ P is called a semantic item.

To query a KG we use a graph pattern-matching language based
on SPARQL. A triple pattern is a fact with one or more components
replaced by variables (e.g., ?x type actress). A query q is a
set of triple patterns. Figure 4 shows a graphical representation of
an example query. The variable ?x is designated as a projection
variable. An answer a to a query q over a KG is an entity such that
there is a mapping of the query variables to the semantic items of
the KG where the projection variable maps to a and the application
of the mapping to the query results in a subgraph of the KG.

2.2 Lexicons
To connect utterance vocabulary to semantic items in the KG,

we require a lexicon L. Our lexicon consists of a predicate lexi-
con LP and a type lexicon LC . Hakimov et al. [15] addressed the
lexical gap between the vocabulary used by users and the KG se-
mantic items and showed that when high quality lexicons are used
the performance of QA systems substantially improves. We con-
struct LP and LC using distant supervision [24], similar to the QA
work of Bast and Haussmann [3], Berant at al. [4], and Yih et al.

[47]. We utilize ClueWeb09-FACC1, a corpus of 500M Web pages
annotated with Freebase entities.

To create LP , we run the following extraction pattern over the
corpus: “e1 r e2”, where e1 and e2 are entities and r is a phrase.
For example, “[[Albert Einstein | AlbertEinstein]] was born in
[[Ulm | Ulm]] ...” Following the distant supervision assumption, if
(e1 p e2) is a triple in the KG, then r expresses p and we add r 7→ p
to LP . For the KG triple (AlbertEinstein birthPlace Ulm)
we add “was born in” 7→ birthPlace to LP . Of course, this as-
sumption will not always hold, so we assign the mapping a weight
w proportional to how many times it was observed in ClueWeb09-
FACC1. In Section 3.3, we present how we extract LPtrain ⊆ LP

at training time, which we give higher precedence over the full LP

at testing time.
For LC , we run Hearst patterns [16] over the annotated corpus,

where one argument is an entity and the other is a noun phrase. For
example, for “e and other np”, we add toLC the entry np 7→ c for
each c such that (e type c) ∈ KG. For example, given the sen-
tence “[[Albert Einstein | AlbertEinstein]] and other scientists
...” we add, for each type c to which the entity AlbertEinstein

belongs, the entry “scientist” 7→ c to ourLC . Again, entries are as-
signed a weight w proportional to their frequencies in ClueWeb09-
FACC1. Table 2 shows entries from our LP and LC .

For entities, we use an off-the-shelf named entity recognition and
disambiguation (NER/NED) system. We use the S-MART [44]
system which is designed for short informal texts such as tweets.
It was used in the QA pipeline of Yih et al. [47]. At testing time,
we found that we get the best results when we use our templates
for named entity recognition and then take the n best entity candi-
dates from S-MART for the recognized mentions and let our query
ranking scheme do the final disambiguation (see Section 5).
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Figure 2: An outline of how QUINT generates role-aligned tem-
plates at training time and how it uses them for question answering.

2.3 Templates
Figure 2 outlines our system for learning and subsequently us-

ing templates to answer natural language questions over knowl-
edge graphs. Templates are generated at training time (Figure 2,
left), and are used at testing (answering) time (Figure 2, right) for
answering questions. The input to the training stage is pairs of
question utterance u and its answer setAu from the KG. An exam-
ple of a training utterance is u =“Which actress played character
Amy Squirrel on Bad Teacher?” [sic], which is paired with the an-
swer set Au = {LucyPunch}. We use the letter u to refer to both
the utterance and its dependency parse tree interchangeably. A de-
pendency parse tree [18] of an utterance is a directed rooted tree
whose nodes correspond to utterance tokens and edges represent
grammatical relations between the nodes. Our utterance templates



are based on the dependency parse of utterances. Our motivation
is that a dependency parse (1) can capture long range dependencies
between the tokens of an utterance which helps when answering
compositional questions (Section 4.3) and (2) gives great flexibility
allowing QUINT to skip irrelevant tokens when instantiating query
templates (Section 4.1). Figure 3 shows the dependency parse of
the above utterance.
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Figure 3: The dependency parse tree of our example utterance (top)
together with the answer set (bottom).

QUINT starts by heuristically constructing a KG query q that
captures u. It constructs a backbone query q̂ for q by finding for
each a ∈ Au the smallest subgraph connecting the KG entities
detected in u and a (Section 3.1). For our example in Figure 3, this
is the subgraph connecting the black nodes in Figure 1. QUINT
forms q̂ from this subgraph by replacing the nodes corresponding
to a or a CVT with variables (Figure 4). To account for types,
it extends q̂ by adding the type constraints connected to a to the
corresponding variable (Section 3.2) – the gray nodes in Figure 1.
Figure 5 shows the resulting q̂.

Next, QUINT aligns q̂ with u, which gives us q ⊆ q̂ that best
captures u, a chunking of u, and an alignment between the con-
stituents of u and q. The alignment will be carried over to the tem-
plates created from u and q. We formulate the alignment problem
as a constrained optimization and find the best alignment m using
integer linear programming (ILP) (Section 3.3). Figure 7 shows u,
the resulting q, and alignment m indicated with shared ent, pred,
and type annotations between nodes in u and q, which also specify
the semantic role for this alignment.

Next, QUINT performs generalization to generate a template
from a concrete pair of aligned utterance dependency parse tree
and query graph (Section 3.4). It removes the concrete text in the
nodes participating in m and similarly for the semantic items in
q, keeping the annotations ent, pred, and type, thereby turning
these nodes into placeholders (Figure 8). The result is template
t = (ut, qt,mt) composed of an utterance template ut, a query
template qt, and an alignment mt between the two.

When the user issues a new question, QUINT matches its depen-
dency parse tree against the template library created during training
(Section 4.1). In Figure 9 the bold edges and nodes in u′ are those
matched by ut (Figure 8). For each match, the corresponding query
template qt is instantiated using the alignment mt and the lexicon.
Figure 9 also shows a query resulting from such an instantiation.
Finally, QUINT ranks these candidate queries using a learning-to-
rank approach (Section 4.2). The answers of the top-ranked query
are returned to the user. By showing which template was used and
how it was instantiated, QUINT can explain answers to the user.
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Figure 4: Backbone query q̂.

3. TEMPLATE GENERATION
We now present the details of the offline template generation

stage. The input to this stage is pairs of utterance u and its answer
set Au as in Figure 3.

3.1 Backbone Query Construction
To generate the backbone query q̂, QUINT starts by annotating a

training utterance u with the named entities it contains and disam-
biguating these to Freebase entities using an off-the-shelf named
entity recognition and disambiguation (NER/NED) system [44].
For our example, the resulting annotated question is:

“Which actress played character [[Amy Squirrel | AmySquirrel]]
on [[Bad Teacher | BadTeacher]]?”

Next, for each answer a ∈ Au, QUINT finds the smallest con-
nected subgraph of the KG that contains the above entities found
in the question as well as a. For our example and the KG of Fig-
ure 1, this is the subgraph with black nodes. To this end, starting
with an entity found in the question, QUINT explores all paths of
length two when the middle node is a CVT node and paths of length
one otherwise, to restrict the search space, similarly to [47]. If the
middle node is a CVT node and the question contains multiple en-
tities, QUINT explores paths of length one connecting the CVT
node with these entities. We assume that this subgraph captures
the meaning of the question and connects it to one of its answers
a. There may be multiple such graphs. QUINT then transforms
this subgraph into a query by replacing a with the variable ?x and
any CVT nodes with distinct variables (e.g., ?cvt1). The above
procedure is performed for each a ∈ Au for a given u, resulting
in multiple queries. We keep the query with the highest F1 with
respect to Au. Figure 4 shows q̂ for our example.

3.2 Capturing Answer Types
Capturing the answer types given in the question is important for

precision. In the question “Which actor died in New York?”, q̂ gen-
erated thus far would be {?x deathPlace NewYork}, which
does not capture the fact that the question is only interested in ac-
tors, hurting precision. Walker et al. [39] showed that identifying
the expected answer type of an utterance boosts the performance of
QA systems. This conclusion is proven in our experiments as well
(Section 5). Earlier QA systems either use manual rules to find
phrases in the question that evoke one of a number of predefined
set of possible types in the query [3, 4], or neglect type constraints
altogether [47]. QUINT automatically creates templates that cap-
ture which phrases in the question evoke types in the query, and
uses the full Freebase type system as potential mapping targets.

Starting with q̂ generated thus far (Figure 4), QUINT connects
to the answer variable node in q̂ one type constraint for each c ∈ C
such that the variable originates from the answer entity a ∈ Au

and (a type c) ∈ KG. In the KG of Figure 1, LucyPunch ∈ Au

has the types person and actress, the resulting q̂ is shown in
Figure 5. q̂ now contains more type constraints than actually given
in the question. In the next section we show how the correct one is
determined as part of the alignment step.

3.3 Utterance-Query Alignment
With (u, q̂) pairs at hand, QUINT proceeds to aligning the con-

stituents of the two. The alignment i) gives us a chunking of u into
phrases that map to semantic items in q̂, ii) removes spurious type
constraints from q̂, resulting in q ⊆ q̂, and iii) gives us an alignment
m between the constituents of u and q.

Alignment is driven by our lexicons LP and LC (Section 2.2),
but faces inherent ambiguity, either from truly ambiguous phrases
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Figure 5: Backbone query q̂ with types.

or from inevitable noise in the automatically constructed lexicons.
We model the resolution of this ambiguity as a constrained opti-
mization and use an ILP to address it. We start by building a bipar-
tite graph with Ph, the set of all phrases from u, on one side and
Sq̂ , the set of semantic items in q̂, on the other as shown in Figure
6. Ph = {ph1, ph2, ...} is generated by taking all subsequences of
tokens in u. We add an edge between each phi ∈ Ph and sj ∈ Sq̂

where (phi 7→ sj) ∈ LP ∪LC with a weightwij from the lexicon.
Table 2 shows a fragment of our lexicons.

Additionally, we add an edge connecting each entity in q̂ to the
phrase that evokes it in u. Entities are added to prevent their sur-
face forms in the question from mapping to a class or a predicate.
We use an off-the-shelf NER/NED system to identify entities in u
(Section 3.1). To resolve the ambiguity in the mapping of types
and predicates and obtain the intended alignment, the ILP decides
which subset of the edges we need to keep.

We extend our notation before presenting our ILP. For seman-
tic item sj , Ej , Cj and Pj are 0/1 constants indicating whether
sj is an entity, type, or predicate, respectively. Xij is a 0/1 deci-
sion variable whose value is determined by the solution of the ILP.
The edge connecting phi to sj in the bipartite graph is retained iff
Xij = 1. Given a set of types connected to a variable v from which
we want to pick at most one, this set of types is S(v) = {c1, c2, ...}
({actress,person} in our example) and the set of phrases that
can map to types in S(v) is Ph(v).

AmySquirrelBadTeacheractressperson

bipartite graph

play character

play onBad Teacher

character

actress

actress play

play

which

characterAmy Squirrel

cast.char cast.actor

AmySquirrelBadTeacheractressperson

play character

play 
onBad Teachercharacter actress

actress 
play

play

which

character Amy Squirrel

cast.char cast.actor

Figure 6: Bipartite graph provided to the ILP, with phrases at the
top and semantic items at the bottom. An edge corresponds to a
mapping from a phrase to a semantic item, and its thickness corre-
sponds to the mapping weight. Dashed box represents S(?x) for
?x in Figure 5.

The objective of the ILP is to maximize the total weight of the
mapped phrases:

∑
i,j wijXij , wherewij comes from the lexicon.

The constraints make sure that the resulting alignment is a mean-
ingful one:

1. Each semantic item is obtained from at most one phrase:
∀sj ∈ Sq̂ :

∑
i,j Xij ≤ 1. In Figure 6, this means that

cast.actor comes either from ‘play on’ or ‘play’.

2. A token contributing to an entity phrase cannot contribute to
any other phrase: ∀phi ∈ Ph, phi′ ∈ Ph(t), t ∈ phi, sj , sj′ ∈
Sq̂ : Xij + Ej ≤

∑
i′,j′ Xi′j′ + 1. In Figure 6, this means

that the tokens of ‘Amy Squirrel’ cannot be part of a mention
of a semantic item other than AmySquirrel (if there was
such a candidate).

Table 2: Fragment of our lexicons: LP and LC .

Ph. S. Item w Ph. S. Item w

“play on” cast.actor 0.5 “role” cast.char 0.6
“play” cast.actor 0.3 “actress” actress 0.7
“character” cast.char 0.6 “actress” person 0.3

3. For each variable v, at most one phrase in Ph(v) can map
to at most one type in S(v): ∀v, phi ∈ Ph(v), cj ∈ S(v) :∑

i,j Xij ≤ 1. In Figure 6, this means that either person or
actress will be chosen, and only one of the phrases map-
ping to the chosen type among these.
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Figure 7: Aligned utterance query pair (u, q,m). m is indicated
by shared ent, pred, and type annotations (e.g., “played on” is
aligned with cast.actor).

We solve the ILP using Gurobi to obtain the intended alignment
m, indicated by shared ent, type, and pred semantic annotations
between u and q̂. Additionally, by discarding all type constraints
not connected to a phrase in m (?x type person in our exam-
ple), we obtain q from q̂. Figure 7 shows the utterance from our
running example aligned with q (contrast with q̂ in Figure 5).

An important by-product of alignment at training time is a lexi-
con LPtrain ⊆ LP , composed of the phrase-predicate alignments
observed during training. This lexicon is much cleaner than the
noisier LP . We will use both at testing time, giving precedence to
mappings obtained from LPtrain when they exist.

3.4 Generalization to Templates
Next, QUINT constructs templates from aligned utterance-query

pairs (u, q,m) obtained from the alignment process above. On the
utterance side, QUINT takes the utterance u represented using its
dependency parse tree and restricts it to the smallest connected sub-
graph that contains the tokens of all phrases participating in m. In
Figure 7 this results in removing the node corresponding to ‘which’.
To create a template from this subgraph, we turn the nodes partic-
ipating in m into placeholders by removing their text and keep-
ing the POS tags and semantic alignment annotations (ent, type,
pred). We use universal POS tags [25] for stronger generalization
power. We replace compound nouns with a noun token that can be
used to match compound nouns at testing time to ensure general-
ization. At testing time, our templates allow for robust chunking
of an incoming question into phrases corresponding to entities (i.e.
as named entity recognizers), predicates (i.e. as relation extrac-
tors) and types (i.e. as noun phrase chunkers). For NER, we show
that using our templates at testing time gives superior results when
compared to using an off-the-shelf NER system.

On the query side, we take the query and remove the concrete
labels of edges (predicates) and nodes (entities and types) partici-
pating in m, keeping the semantic alignment annotations. We use



the number of utterance-query pairs which generate a template as a
signal in query ranking (Section 4).
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Figure 8: A template t = (ut, qt,mt). mt is indicated by shared
ent, pred, and type annotations. Figure 7 shows the concrete
utterance-query pair used to generate this template.

4. QUESTION ANSWERING WITH
TEMPLATES

4.1 Candidate Query Generation
At answering time, when a user poses a new utterance u′, QUINT

matches it against all templates in our repository. u′ matches a
template (ut, qt,mt) if a subgraph of its dependency parse tree is
isomorphic to ut considering their edge labels and the POS tags in
their nodes. Figure 9 shows an example of u′ whose dependency
parse matches the utterance template ut in Figure 8. Bold edges
and nodes are the ones participating in the isomorphism with ut.
Note how using a dependency parse to represent an utterance allows
us to ignore the token ‘popular’ in u′, which does not carry any se-
mantics that can be captured by our specific KG. If the question
asked, say, for an ‘American’ actress instead, then another template
learned at training time would allow us to instantiate a query that
captures this important constraint. Our ranking scheme described
below decides which is the best match.

For each matching utterance template (usually several), QUINT
instantiates the corresponding query template qt based on the align-
ment mt and the lexicon L. Lexicon lookups are guided by the
semantic alignment annotations in the query template, which re-
strict specific parts of the query to types, entities, or predicates. For
predicates, QUINT first performs a lookup in the cleaner LPtrain

created at training time (Section 3.3). If no results are returned,
QUINT queries the full predicate lexicon LP (Section 2.2). Figure
9 bottom shows a query q′ obtained from instantiating the template
of Figure 8 based on u′ shown at the top of the same figure.
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Figure 9: Template instantiation (using t in Figure 8).

Table 3: Query candidate ranking features.

Category # Description
Alignment 1,2 Average & sum of lexicon weights for predicates

3,4 Average & sum of lexicon weights for entities
5 # of utterance tokens literally matching their predicate
6 # of entity mentions matching their canonical

name in the KG
7 Indicator: question n-gram ∧ predicate p,

n = 1, 2 and 3
Semantic 8,9 Average & sum of entity popularity scores

10 # of predicates in the query
11 # of entities in the query

Template 12 Indicator: t captures a type constraint
13 # of training utterances that generate t
14 t coverage: % of tokens in utterance matched by ut

15 Indicator: utterance node with type annotation ∧
semantic answer type (if t is typed)

Answer 16 Indicator: answer set size
(=1, =2, =3, ∈ [4-10], > 10)

4.2 Query Ranking
Query generation yields multiple candidate queries for an utter-

ance, either due to multiple matching templates as discussed above
or due to ambiguity of phrases in the lexicon. We adopt a learning-
to-rank approach, analogously to Bast and Haussmann [3], to rank
the obtained queries, and return the highest ranking query as the
one intended by the question. We use a random forest classifier
to learn a preference function between a pair of queries [9]. Ta-
ble 3 lists the features used for the feature vector φ(u′, t, q′) as-
sociated with the instantiation of template t from utterance u′ re-
sulting in query q′, which we discuss below. For instantiations
of a pair of templates t1 and t2 matching utterance u′ and re-
sulting in the queries q1 and q2, respectively, the feature vector
used is a result of concatenating φ(u′, t1, q

′
1), φ(u′, t2, q

′
2), and

φ(u′, t1, q
′
1)− φ(u′, t2, q

′
2).

We compute four types of features as shown in Table 3. Align-
ment features measure the association between utterance tokens
and KG semantic items. Semantic features consider the query ex-
clusively. Template features measure the appropriateness of a tem-
plate t for a given an utterance. The answer feature template in-
dicates which of the predefined ranges the query answer set size
belongs to. Answer size is a good cue as empty answer sets or very
large ones are indicators of incorrect queries that are over or under-
constrained. Features 7, 15, and 16 define feature templates that are
instantiated based on the training data. For example, instantiations
of feature 7 are pairs of utterance n-gram and query predicate. Indi-
cator features take boolean values. For instance, from the utterance
and the query in Figure 9 we generate the feature “actress play ∧
cast.actor” with value 1.

4.3 Answering Complex Questions
The class of complex questions we target are those composed of

multiple clauses, each centered around a relationship, which col-
lectively describe a single “variable” (with possibly multiple bind-
ings in the KG). For example, the question “actors starring in
The Departed who were born in Cambridge, MA” is composed of
two clauses: “actors starring in The Departed” (e.g., MattDamon,
MarkWahlberg, JackNicholson) and the relative clause “actors
who were born in Cambridge, MA” (e.g., MattDamon, UmaThurman,
MarkWahlberg). MattDamon and MarkWahlberg are answers to
the complete question.

Handling complex questions is a natural extension of the proce-
dure in Section 4.1. We do this in three steps: i) automated depen-



dency parse rewriting when necessary, ii) sub-question answering,
and iii) answer stitching.

Automated dependency parse rewriting. The need for rewrit-
ing arises when we have complex questions that we are unable to
fully capture with our template repository. An example is “Who
acted in The Green Mile and Forrest Gump?”. For this question,
our templates trained on the simpler WebQuestions dataset, would
be unable to capture the second constraint, expressed through a co-
ordinating conjunction (using ‘and’). The problem can be seen in
Figure 10(a), where there is no direct connection between ‘Forst
Gump’ and the relation phrase ‘acted in’, which our templates would
expect given the data used to learn them. To overcome this, we
perform simple automated rewriting to get two separate interroga-
tive propositions following Del Corro and Gemulla [11] for relative
clauses and coordinating conjunctions. In our concrete example,
this is done by connecting ‘Gump’, the target of the conj edge, to
‘in’, the head of ‘Mile’ which is the source of the conj edge. We
give the new edge the label pobj, the same as the one connecting the
head of conj to its parent. The conj and cc edges are subsequently
removed. The resulting dependency graph and sub-questions cap-
tured by our templates are shown in Figure 10(b).

More generally, a rewriting is triggered if i) we detect a coordi-
nating conjunction or relative clause [11] and ii) matches against
our template repository result in less sub-questions than expected
(e.g., a single coordinating conjunction or relative clause should
result in two matched sub-questions). While the question above re-
quires rewriting, the question “What film directed by Steven Spiel-
berg did Oprah Winfrey act in?”, where both relations are spelled
out, requires no rewriting by QUINT.
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Figure 10: (a) shows the original dependency parse of the ques-
tion before rewriting (b) shows the dependency parse after rewrit-
ing i.e., dropping dashed edges in (a) and adding a new edge (bold)
connecting “Gump” to “in”.

Sub-question answering. We match our templates against the
complete automatically rewritten (if needed) dependency parse .
Each match corresponds to a sub-question that can be answered
independently. Here, we follow the procedure described in Sections
4.1 and 4.2 for each question independently, and keep the ranked
list of queries returned for each subquestion.

Stitching. For each sub-question detected and mapped to a list
of queries, we assign a query in its ranked list of queries (Sec-
tion 4.2) a score of 1

r
, where r is the rank of the query within the

list. The idea here is to assign a higher numerical score to a higher
ranked query. We return the answers resulting from the combina-
tion of queries, one for each sub-question, such that the intersec-
tion of their answer sets is non-empty and the sum of their scores
is highest.

5. EXPERIMENTS
We evaluate QUINT on the WebQuestions and Free917 datasets,

as well as a newly introduced set of complex questions. These ex-
periments serve two goals: (1) to show that automatically learned
templates can deliver high-quality results, and (2) that our tem-
plates provide a natural path toward handling complex questions.

5.1 Setup
Benchmarks. We compare QUINT to previous work using the

following benchmarks over Freebase:
• WebQuestions [4], which consists of 3778 training questions

and 2032 test questions, each paired with its answer set, col-
lected using the Google Suggest API and crowdsourcing.
• Free917 [10], which consists of 917 questions manually anno-

tated with their Freebase query; 641 training and 276 test ques-
tions. For Free917, we made use of a manually crafted entity
lexicon provided by the designers of the benchmark for entity
linking. All other systems in Table 4 used this lexicon. We used
the standard train/test splits for WebQuestions and Free917.
• ComplexQuestions. This benchmark is composed of 150 test

questions that exhibit compositionality through multiple clauses,
e.g., “What river flows through India as well as China?” Cru-
cially, ComplexQuestions contains no training questions: its
purpose is to demonstrate that our template-based approach,
while trained only on the simpler single-clause WebQuestions,
can handle more complex questions. We constructed this bench-
mark using the crawl of WikiAnswers (http://wiki.answers.
com), a large, community-authored corpus of natural language
questions, collected by Fader et al. [13]. We asked a human
annotator to collect questions with multiple clauses and also to
provide the gold standard answer set for them from Freebase.

Evaluation metrics. We use the evaluation metric adopted by
each of the benchmarks. For WebQuestions this is the average F1
score across all test questions. We also adopt F1 for evaluating sys-
tems on ComplexQuestions. For Free917, the metric is accuracy,
defined as the fraction of questions answered perfectly i.e., with the
exact gold standard answer set.

Template Generation. We analyze our templates generated at
training time. For WebQuestions, QUINT generates q̂ queries (Sec-
tions 3.1, 3.2) for 3555 of the 3778 training questions. For the oth-
ers, either no entity candidates were identified by the NER/NED
system or no subgraphs connecting the identified entities were found.
The ILP successfully aligned (Section 3.3) 3003 of the 3555 u–
q̂ pairs, resulting in 3003 (u, q,m) triples. The others could not
be aligned due to lexicon misses. These produced 1296 distinct
(ut, qt,mt) templates. We use these templates to answer test ques-
tions in WebQuestions and ComplexQuestions later on.

For Free917, QUINT generates q̂ queries for 602 of the 641 train-
ing questions. For the others, no subgraphs connecting the identi-
fied entities were found. The ILP successfully aligned 571 of the
602 u–q̂ pairs, resulting in 571 (u, q,m) triples. These produced
284 distinct (ut, qt,mt) templates.

 http://wiki.answers.com
 http://wiki.answers.com


WebQuestions Free917
Method Average F1 Accuracy
Cai and Yates [10] (2013) - 59.0
Berant et al. [4] (2013) 35.7 62.0
Kwiatkowski et al. [19] (2013) - 68.0
Yao and Van Durme [46] (2014) 33.0 -
Berant and Liang [5] (2014) 39.9 68.6
Bao et al. [2](2014) 37.5 -
Bordes et al. [8] (2014) 39.2 -
Yao [45] (2015) 44.3 -
Dong et al. [12] (2015) 40.8 -
Bast and Haussmann [3] (2015) 49.4 76.4
Berant and Liang [21] (2015) 49.7 -
Yih et al. [47] (2015) 52.5 -
Reddy et al. [28] (2016) 50.3 78.0

This Work

QUINT-untyped 50.8 78.6
QUINT 51.0 72.8

Table 4: Results on the WebQuestions and Free917 test sets.

5.2 Results on WebQuestions and Free917
Question Answering Performance. Table 4 shows the results

on the test sets for WebQuestions and Free917 with additional en-
tries for earlier work on these benchmarks. QUINT uses the tem-
plates generated by our full system described in Sections 3 and 4.
QUINT-untyped uses templates where we skip the step described
in Section 3.2 that allows the capturing of answer types.

On WebQuestions, QUINT outperforms existing approaches, while
performing slightly below the system of Yih et al. [47]. However,
the difference in F1 scores between our results and that of Yih et al.
is not statistically significant using a two-sided paired t-test at 95%
confidence level. Recent work has looked at a different setup com-
bining KGs with additional textual resources for answering ques-
tions. For example, Kun Xu et al. [40] and Savenkov et al. [29] use
Wikipedia and Web search results combined with community ques-
tion answering data, respectively. These systems achieve slightly
higher F1 scores than our system with these resources (53.3 and
52.2, respectively), but the performance drops without these (47.1
and 49.4, respectively). QUINT uses entity-annotated text corpora
for creating lexicons offline, but following the original benchmark
setup, does not invoke any other resources at answering time.

On Free917, QUINT-untyped outperforms all other methods and
obtains the best result to date. Interestingly, QUINT-untyped out-
performs QUINT on this benchmark. We comment on this below.

Templates as Named Entity Recognizers. In the above exper-
iment, we used our templates for named entity recognition, and
relied on the S-MART NER/NED system for generating the top
entity candidates for each recognized entity mention, with the final
entity resolution being done by our ranking stage. On average, S-
MART generated 2 entity candidates per mention. We tried fully
relying on S-MART, by adopting its NER annotations as well. In
this case, we restricted matches to those templates compatible with
S-MART’s annotations (i.e., their ent annotations agree with the
entity annotations produced by S-MART). In this case, our F1 score
drops to 49.0 as the number of questions with no matching tem-
plates increases. This shows the value of our templates as entity
recognizers in questions.

Effect of Typing. In our experiments, typing had a positive
impact on the results for WebQuestions, and a negative one on
Free917. In both cases, this shows the importance of typing. For
Free917, a large portion of the test questions ask for literals such
as dates or monetary values. However, our type system does not
capture these in a fine grained manner, limiting our ability to distin-
guish between, say monetary values and sizes. This is something to
explore in future work. For WebQuestions, our type system com-
prehensively covers those types used by the entities, so we see a
positive impact, which is in line with previous work [39].

Table 5 shows answers produced by QUINT for four sample
questions. In the first and second questions, QUINT (typed) was
able to restrict the answer set to only college/high school respec-
tively where the QUINT-untyped failed. In the third question, the
gold answer does not conform with answer type constraint in the
question (“city”). Therefore, QUINT (typed) produced only the
city as final answer, however, QUINT-untyped produced the cor-
rect answer. For the fourth question, typing the answer entity does
not add value since both the answer type (HumanLanguage) as well
as the type of the object of the KG predicate (languageSpoken)
agree. The type signature for this KG predicate is Country and
HumanLanguage for the subject and the object, respectively.

5.3 Results on ComplexQuestions
Results on ComplexQuestions reveal the full potential of QUINT.

For prior works to fully answer ComplexQuestions they would need
to have their manually created templates manually extended: a
cumbersome task that quickly blows up. In contrast, QUINT trains
on the structurally simple training subset of WebQuestions, which
does not capture the full complexity of ComplexQuestions. It ex-
ploits language compositionality to automatically decompose com-
plex question utterances to their constituent clauses and form sim-
pler “sub-questions” which it answers individually before combin-
ing their answers to answer the complete question (Section 4.3).

Table 7 shows the results on ComplexQuestions achieved by
QUINT and the system of Bast and Haussmann [3], the best pub-
licly available system on WebQuestions (Table 4). It is important
to keep in mind that the system of Bast and Haussmann is not
designed to handle ComplexQuestions. To guarantee a fair com-
parison, we ran two variants of this system; Bast and Haussmann-
basic is the officially published system and Bast and Haussmann++
where we i) manually decompose each complex question into its
constituent sub-questions, ii) answer each sub-question using Bast
and Haussmann-basic, and iii) run our stitching mechanism on the
answer sets of sub-questions to answer the complete question.

QUINT achieves an F1 of 49.2, outperforming the other two sys-
tems. The difference between QUINT and Bast and Haussmann++
comes from the difference between the two systems already ob-
served in Table 4. In both cases, this shows the effectiveness of
our procedure for handling complex question detailed in Section
4.3. When looking at the results of Bast and Haussmann-basic, we
see that this system is capturing one sub-question at most, to the
detriment of its precision. For the first sample complex question
shown in Table 6, Bast and Haussmann-basic captured only one
sub-question (movie starred Woody Harrelson) leading to low pre-
cision, while QUINT correctly answered it. For the second ques-
tion, capturing one sub-question is sufficient. QUINT failed on the
third question since it could not stitch the answer sets for the sub-
questions. It was able to generate the correct query for the first
sub-question (“everton”) but not for the second (“leeds”). Bast
and Haussmann-basic could not rank the correct query for the first
sub-question (the only one it could capture) on top.



Question Gold QUINT (typed) QUINT-untyped

“what college did john stockton go to?” Gonzaga University Gonzaga University Gonzaga Prep. School, Gonzaga University
“where did aaron rodgers go to Pleasant Valley High School Pleasant Valley High School Butte College, UC Berkeley,

high school?” Pleasant Valley High School
“what city is acadia university in?” Canada, Nova Scotia, Wolfville Wolfville Canada, Nova Scotia, Wolfville
“what language does cuba speak?” Spanish Language Spanish Language Spanish Language

Table 5: Anecdotal results from WebQuestions for both variants of QUINT: typed and untyped.

Question Gold QUINT Bast and Haussmann-basic

“which movie starred woody harrelson and White Men Can’t Jump, White Men Can’t Jump, White Men Can’t Jump, Wildcats,
wesley snipes?” Wildcats, Money Train Wildcats, Money Train Rampart, Cheers, Money Train, ...

“what movie included characters named louis Ghostbusters Ghostbusters Ghostbusters
tully and dr peter venkman?”

“which players have played for everton and leeds?” Ross Barkley - Goodison Park

Table 6: Sample ComplexQuestions for both QUINT and Bast and Haussmann-basic.

5.4 Discussion of Limitations
A detailed analysis of the results on the WebQuestions test set re-

veals that of the 2032 test questions, 3 could not be matched to any
of our templates. Another 33 test questions were matched to a tem-
plate, but no query candidates were generated. The first cause of
this issue is the incompleteness of our predicate lexicon, resulting
in empty lookups. This suggests that we can benefit from extend-
ing our lexicon construction scheme. The second cause is incorrect
dependency parse trees and POS tag annotations. For example, for
“what influenced william shakespeare to start writing?”, the verb
‘influenced’ was tagged as a noun, and therefore the question was
mapped to templates which could not generate any suitable query.
Methodological progress on mainstream parsing and POS tagging
would positively affect our system.

For 260 test questions, some query candidates were generated,
but none of them returned any correct answers. We identified mis-
takes made by the NER/NED system, missing entries in our lexicon
L as well as wrong gold standard as the causes. This meant that
QUINT could not generate the right query as input to the ranking
stage to begin with. Another important cause for this issue is the
lack of any appropriate templates for some questions. For example,
for the utterance “what countries are located near egypt?”, none of
the utterance templates that match this question are paired with the
appropriate query template. In this case, we need a query template
that connects Egypt to adjoining countries through a CVT node.

This leaves 1736 test questions for which QUINT generates at
least one candidate query that returns at least one correct answer. It
is also interesting to establish an upper bound on our performance
with the above issues. For this, we created an oracle ranker that
returns the generated query with the highest F1 for each question.
The result was an F1 of 70.0, which means that further improve-
ment to our ranking scheme is possible.

On Free917, a detailed analysis reveals that of the 276 test ques-
tions, 3 could not be matched to any of our templates. Another
31 test questions were matched to a template, but no query can-
didates were generated. For 13 questions, some query candidates
were generated, but none of them returned any correct answer. This
leaves 229 test questions for which QUINT generates at least one
candidate query that returns at least one correct answer.

On ComplexQuestions, we could answer 81 of 150. The remain-
ing 69 questions were not answered because either one of the sub-
questions did not have its correct query in the top-ranked ones, or
our templates failed to capture some sub-questions.

Method Average F1

Bast and Haussmann-basic 27.8
Bast and Haussmann++ 46.7
QUINT 49.2

Table 7: Results on ComplexQuestions.

6. RELATED WORK
With traditional Web search over textual corpora reaching ma-

turity, there has been a shift towards semantic search focusing on
entities, and more recently on relationships. This shift was brought
on by an explosion of structured [6] and semi-structured data [14].

Entity search over KGs has gained wide attention [1, 7, 17, 32,
33]. These are keyword queries asking for entities (or other re-
sources), and have been shown to be very common [26].

More recent efforts have focused on natural language questions
as an interface for knowledge graphs. Questions express complex
relation-centric information needs more naturally, allowing for bet-
ter KG utilization. They are also more natural when dealing with
new modalities such as voice interaction (e.g., Cortana, Google
Home). Multiple benchmarks have been introduced for this prob-
lem [4, 10, 34, 37]. These differ in the underlying KGs and support-
ing resources, size, and question phenomena they evoke, resulting
in various solutions from those heavily relying on machine learn-
ing to more hybrid approaches using a combination of rules and
hand-crafted scoring schemes. We presented experimental results
for QUINT on the benchmarks introduced by Berant et al. [4] and
Cai and Yates [10]. We could not conduct experiments on bench-
marks such as QALD [37] and BioASQ [34] due to the small size
of their training sets, and because they emphasize aspects not ad-
dressed by QUINT (e.g., aggregation, ordering).

Templates play an important role in QA over KGs. Unger at al.
[35, 36], Yahya et al. [41, 42], and Zou et al. [51] present ap-
proaches that use manually defined templates to handle complex
questions with compositionality. These systems use regularities in
how syntactic patterns map to semantic ones to create their tem-
plates. The drawback of these approaches is the limited coverage
of templates, making them brittle when it comes to unconventional
question formulations. By automating template generation, we can
learn new templates dynamically.

Fader et al. [13] use a small number of handcrafted templates
for QA over KGs, focusing on simple queries with a single triple



pattern, as illustrated in Table 1. In contrast, we use dependency
parsing on the utterance side, allowing for better generalization.
On the query side, we are not limited to single triple patterns.

Zheng et al. [50] tackle the problem of utterance-query template
construction in a setting different than ours with a query workload
and a question repository as input. The task is to pair questions with
workload queries that best capture them. Each pair is subsequently
generalized to a template. In contrast, our approach does not rely
on the availability of observed SPARQL queries.

Berant et al. [4] use a set of rules for composing logical forms in
the DCS semantic representation constructed from all pairs of non-
overlapping text spans. Bast and Haussmann [3] use three manu-
ally defined query templates, with no corresponding utterance tem-
plates. These are exhaustively instantiated based on the utterance.
This is similar to our query generation, but is performed at answer-
ing time. Yih et al. [47] use a staged approach to map utterances
to queries. Each stage uses a set of rules for adding conditions to
a query at answering time. Other works [8, 12, 43] rely on em-
bedding both questions and KG entities, paths, and subgraphs in a
shared space.

Yao and Van Durme [46] address QA over KGs as an informa-
tion extraction problem, reminiscent of traditional QA over text
corpora. This approach makes heavy use of manually defined tem-
plates for extracting cues about the answer entity and the relevant
KG predicates.

A popular formalism for mapping utterances into logical forms
is CCGs [31, 49]. Kwiatkowski et al. [19] use a probabilistic CCG
to build a linguistically motivated logical form. The subsequent
translation to a KG-specific semantic representation is performed
by a trained ontology matching model. Cai and Yates [10] com-
bine learning a CCG grammar from question-query pairs with an
approach for lexicon extension. We work with dependency parsing
to capture question syntax. This is a pragmatic choice to benefit
from the methodological progress and tools available [11]. Reddy
et al. [28] propose an approach to map a dependency parse to a
logical form in two steps. First, using a repository of manual rules,
a dependency parse is transformed into a logical form whose sym-
bols are words and edge labels. This is transformed into a semantic
representation following Reddy et al. [27] using graph matching.

Work has also been done to combine KGs with supporting tex-
tual data for QA. The role of text here is either to support ranking
of answer candidates [29, 40], or as a source of answers [13, 38].
In our work we use a text corpus linked to our KG for lexicon con-
struction offline. However, we stick to answering exclusively over
the KG at answering time.

Finally, going beyond a single KG, people have looked at QA
over interlinked KGs. PowerAqua [22] answers questions in this
setting, focusing on how to combine answers obtained from dif-
ferent sources. Shekarpour et al. [30] describes a two-stage sys-
tem for answering questions and keyword queries over linked data,
composed of two stages: question segmentation and segment dis-
ambiguation, followed by query generation.

7. CONCLUSION
We presented a method for automatically generating templates

that map a question to a triple pattern query over a KG. Our system
achieves performance close to the best state-of-the-art system on
the WebQuestions benchmark and achieves the best result to date
on the Free917 bechmark while requiring less human supervision.
Additionally, our approach can be used to answer compositional
questions despite never having seen such questions at training time.
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