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Abstract

To enable robots to instruct humans in collaborations, we
identify several aspects of language processing that are not
commonly studied in this context. These include location,
planning, and generation. We suggest evaluations for each
task, offer baselines for simple methods, and close by dis-
cussing challenges and opportunities in studying language for
collaboration.

Significance
Humans generally want robots to do as they are told – this is,
indeed, the second of Asimov’s laws. But if a robot can solve
a problem better than we can, perhaps it should be telling us
what to do.

Most language research in robotics has been on language
grounding, in which a robot translates human instructions
into actions (Anderson et al. 2018b,a; Fried et al. 2018; Ma-
jumdar et al. 2020; Li, Tan, and Bansal 2021; Wang et al.
2019). We take the reverse approach, identifying language
skills with which robots may advise humans: locating, plan-
ning, and speaking. Developing these understudied skills
will improve robot grounding, but it will also make for bet-
ter robot collaborators.

In collaboration, each partner brings its own abilities.
When robots are used for their strength, speed, and en-
durance, they need only understand language to follow in-
structions. But as robots get better at problem solving, they
can offer us more than obedience.

For example, in industrial contexts like manufacturing
and shipping, robots often operate without much language
ability. But if an embodied agent could generate language, it
could use its extensive memory, planning ability, and knowl-
edge of its environment to provide its human teammate
with reminders and instructions. These instructions are of-
ten helpful even if imperfect.

In this paper, we define, describe, and summarize liter-
ature on the language skills robots need to advise us. We
set the collaboration problem in the context of navigation,
suggest a common environment, and provide baselines with
simple methods. We close with a discussion of the chal-
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lenges and opportunities in creating robots that can give in-
structions as well as take them.

General Problem Definition and Related Work
For sake of generality, we refer to our robot as an agent, and
its human partner as a user. To give instructions, an agent
needs several skills:

• Location: Interpret user’s language, l, to recognize the
user’s current state s and goal state g.

• Planning: Find a trajectory x to bring the user from s to
g.

• Generation: Draft natural language instructions w to ex-
press x to the user.

Ideally, the agent could repeat this cycle to collaborate in
real time, as in fig. 1.

Example Problem Context for Study Agents can give in-
structions in many settings, for example cooking and equip-
ment assembly. We chose navigation as an example con-
text because it is an old problem with good data and bench-
marks (Anderson et al. 2018b).

Moreover, navigation allows us to directly evaluate our
instructions. Evaluating language is difficult because there
is no single standard for good language (Zhao et al. 2021;
Reiter and Belz 2009). But in navigation, we can compare
instructions by giving them to a user and measuring its per-
formance in meters and seconds. We can then use this eval-
uation to improve our methods.

Within navigation, we study the “vision-and-language
navigation” (VLN) task, described in Anderson et al.
(2018b). This task uses the Matterport3D environment,
which divides real indoor settings into a graph of ‘view-
points’ spaced about 3m apart (Chang et al. 2017).
Each viewpoint has a unique identifier associated with a
panoramic RGB-D image taken by a Matterport camera at
that location in the environment. Anderson et al. (2018b)
provide a simulator for the environment.

In this environment, VLN uses the Room-to-Room (R2R)
(and similar) datasets (Anderson et al. 2018b), in which
human ‘guides’ describes trajectories of paths in Matter-
port3D. Human ‘followers’ ground these descriptions, try-
ing to recreate the original trajectory. The resulting dataset



Figure 1: The collaboration problem and its tasks as a cycle.

is a collection of trajectories paired with instructions, where
each trajectory is a series of viewpoints in Matterport3D,
x = (vs, . . . , vg), and instructions are series of words,
w = (w0, . . . , wn).

We can now define each language skill in context, sum-
marizing the current literature and opportunities for new re-
search.

Location The user begins at a start viewpoint vs, describ-
ing this and its goal viewpoint vg with language l to the
locator. The locator must infer v̂s and v̂g from l.

Studying a similar problem, Tse and Campbell (2018) use
a bag-of-words model and a Bayes filter to track a belief
distribution of the agent’s location. This is a fast and sim-
ple method, but it cannot generalize to unseen environments,
because it relies on language occurring alongside locations
during training to estimate likelihoods. Moreover, the bag-
of-words approach discards useful information about word
order. Banerjee, Thomason, and Corso (2020) created a
dataset for a navigation task involving location and ground-
ing. They give a benchmark for the grounding task, but do
not address location. This illustrates the gap we identify in
this paper – language grounding is well studied at the cost
of other skills.

Planning Given the locator’s guesses of v̂s and v̂g , the
planner finds a feasible path between the estimated start-
goal pair, a trajectory x = (v̂s, . . . , v̂g).

In navigation, we have excellent search strategies, so it
is tempting to treat this problem as solved. In our base-
lines, we use A* search. A more sophisticated planner, how-
ever, would take its user into account. An optimal path for
one user might be a poor choice for another. The user of a
wheelchair should not be told to take the stairs, for example.
The planner could also consider how well it can describe
a path, choosing a simple suboptimal path rather than risk
confusion with a shorter one.

We might term this ‘user-aware planning’. This is an un-
derstudied concept, at least within navigation, and we high-
light it as an opportunity for growth.

Generation The generator writes instructions w to de-
scribe x. In Matterport3D, each viewpoint vi is associated
with a panoramic image pi, which can be used for genera-
tion.

Because the language is conditioned on a trajectory, we
cannot directly use unconditional probabilistic language
models such as GPT-3 (Brown et al. 2020). Rather, our prob-
lem is more similar to another conditional generation task,
image and video captioning (You et al. 2016). But unlike
captions, instructions must come in order and might be quite
detailed.

To solve this problem, a common method is to fill tem-
plates, such as “Turn [blank] at the [blank]”. Daniele,
Bansal, and Walter (2017) used templates in a 3-D navi-
gation task, chunking trajectories into series of “Compound
Action Specifictions”. These specifications reduce instruc-
tions to a pattern of orientation (which way to turn) and dis-
tance (how far to walk). Their templates were effective, but
the method required engineering features by hand for that
environment. Templates are also inflexible; an instruction
might need details like “Remember that people in Britain
drive on the other side.”

For the VLN task, Zhao et al. (2021) gives an excel-
lent summary of generation in this context. They give stan-
dards for instructions and evaluate several generators, in-
cluding their own template generator model, Crafty. They
found generators like the sequence-to-sequence Speaker-
Follower (Fried et al. 2018) to be relatively successful. How-
ever, VLN researchers mainly use their generators to boot-
strap synthetic data and train better grounding models. This
is a great application of a generator, but so far there is less
interest in generating instructions for human users: there
are many grounding models for VLN, but few generators,
and those that do exist are far from human ability (VLN-
Leaderboard 2018; Zhao et al. 2021).

Data and Standards for Evaluation

We suggest some simple means to evaluate an agent’s ability
to give instructions. Where possible, we use data and metrics
from the VLN community. For the generation task, we use
the unmodified R2R dataset, and test on its validation seen
and unseen splits (Anderson et al. 2018b).

The R2R dataset cannot be used directly to train a locating
agent, because it does not associate language to locations.
Instead, we started with the Room-Across-Room (RxR) (Ku
et al. 2020), which is similiar but includes pose traces and
times for each word wi in w. We split up each instruction,
matching each phrase of w0 . . . wj to its closest graph loca-
tion v, to make our language dataset.



Figure 2: Notation and metrics for evaluating tasks individually and as a pipeline.

Location Evaluation We evaluate the locator on its error,
the graph distance within the Matterport simulator between
its viewpoint v̂ and the target viewpoint v. We also report
success rate; the task is a success if the error falls within a
3m threshold, a convention for this dataset (Anderson et al.
2018a).

Planning Evaluation In the sparse graph of the Matter-
port environment, there tends to be one clearly best plan for
any two points, so evaluating the planner made little sense
here. In other environments, we could evaluate planned tra-
jectories by length, elevation change, etc. We could also test
‘user-aware’ planners by giving them two arbitrary locations
and running their resulting plan through a fixed generator
and grounder. Different planners would elicit different per-
formance from the generator and grounder, giving us a basis
for comparison.

Generation Evaluation Generators are usually evalu-
ated by comparing their output to reference translations
using metrics like BLEU (Papineni et al. 2002) and
BERTScore (Zhang et al. 2020). There are also models like
SPICE (Anderson et al. 2016), which evaluate image cap-
tions. These measures were not meant to evaluate instruc-
tions per se, and are often of limited value (Zhao et al. 2021).

Zhao et al. (2021) developed a neural network ‘compati-
bility model’ to assign instructions and trajectories a similar-
ity score, which correlated well with human evaluation. We
do not use their model here; instead, we evaluate our gener-
ator directly on how well the user grounds its instructions,
producing grounded trajectory x̂ = (x̂0, . . . , x̂n).

As in location, we compare the final position of the
grounded trajectory x̂n with the final position of the ac-
tual trajectory xn to find error. In addition to success rate,
there is the more generous oracle success rate, measuring
whether the agent ever encountered the goal. Finally, there

is success weighted by path length, SPL, which penalizes
agents for taking a longer path than necessary (Anderson
et al. 2018a).

The R2R dataset includes human descriptions of trajec-
tories x; we denote these ground-truth descriptions as w.
By using a fixed model to ground first those human instruc-
tions, then our generator’s description of the same x, we get
a sense of how close our generator comes to human ability.
We use a single pretrained grounding model, the Speaker-
Follower model (Fried et al. 2018), as the fixed grounder. It
is no longer state of the art, but is easily implemented, and
good enough for a reasonable comparison of a generator.
A better evaluation would include an ensemble of different
grounding models, as well as a human evaluation on the sim-
ulator.

End-to-End Evaluation As location, planning, and gen-
eration are parts of a single process, we suggest an end-to-
end evaluation as depicted in fig. 2. This allows us to test an
agent’s performance in a closed loop, ideally with a human
user. We tested our baseline models end-to-end as shown,
but they performed worse than random agents, so we omit
the results table here.

Baseline Results and Discussion
We report empirical results on location and generation using
some baseline models, highlighting the large performance
gap between existing models and ideal.

Location

• Bag of Words: Empirically estimates p(vi|l) from word
frequency in the training text, then greedily chooses from
among all viewpoints. By design, cannot generalize to un-
seen viewpoints.



Table 1: Baseline results for generation. Navigation metrics obtained by grounding generated language using a fixed grounding
model (see ”Data and Standards for Evaluation”). Human-level success rates are ≈ 86%.

Error (m) ↓ Success (%) ↑ Oracle Succ. (%) ↑ SPL (%) ↑
seen unseen seen unseen seen unseen seen unseen

Random Grounder 9.66 9.46 17.05 19.41 22.35 22.47 16.07 16.92
Human Instructions 3.33 6.64 66.70 35.20 74.05 44.70 60.69 28.13

Seq2Seq 3.58 6.68 64.11 33.84 71.76 44.40 59.18 27.04
Reinforce (BLEU) 3.42 6.61 65.00 32.31 72.35 44.32 59.24 25.80
Reinforce (BERT) 3.69 6.62 64.68 35.52 69.71 44.70 58.42 28.23
Reinforce (Agent) 3.87 6.38 59.90 36.44 69.41 47.13 54.90 29.18

• RNN/ResNet: Encodes image pi at viewpoint vi with a
ResNet (He et al. 2016) trained on ImageNet (Deng et al.
2009), producing hv . Encodes word embeddings of l with
an LSTM (Hochreiter and Schmidhuber 1997) to make a
context vector hw. Trains a deep neural network to pro-
duce y = f(hv, hw), choosing the highest y.

• Stacked Cross Attention: SCAN (Lee et al. 2018) uses
attention to align parts of the viewpoint image p with in-
dividual words l ∈ l, giving an overall similarity score.
Chooses the most similar viewpoint.

Table 2: Baseline results for location. Success rates are too
low to locate users using language.

Error (m) ↓ Success (%) ↑
seen unseen seen unseen

Random 9.58 8.31 6.56 8.00
Bag of Words 29.14 - 8.08 -
RNN/ResNet 8.81 8.13 19.85 20.71

SCAN 8.06 7.93 29.82 27.34

Generation
• Sequence to Sequence: A sequence-to-sequence LSTM

with attention (Fried et al. 2018). Minimizes cross-entropy
loss of output tokens, w against target tokens, w.

• REINFORCE: Starting with the pretrained generator
above, uses the REINFORCE method (Williams 1992) to
backpropagate an undifferentiable loss to the model. We
test two losses based on the standard language metrics
BLEU and BERTScore. A third loss (Agent) explores the
idea of training a generator directly to produce better in-
structions. We use a pretrained grounding model to take
actions in the simulator according to the generated instruc-
tions, and return loss equal to the distance between the
goal location vg and the agent’s final location x̂n.

Discussion Our baseline results show that there is ample
room for improvement across tasks. We close with a few
points to summarize and extend our work.

To train our locator, we had to do surgery on our language
dataset. Since the language skills we describe are understud-
ied in robotics, we must augment existing data, as well as
collect new data.

Although we spent little time on planning, it is part of the
collaborative process and should be studied alongside it. In
planning, the instruction agent is not only choosing the best
path for navigation, it is choosing the best path to tell the
user. Capturing user outcomes in a cost function will help us
train better planners.

Finally, we note that our tasks of location, planning, and
generation are closely tied to grounding. Generators can
make better training data for grounding, but grounding is
helpful in training generators, by providing an objective
evaluation mechanism for scoring generated language.

This is good reason to build robots that understand both
sides of the communication process, opening new opportu-
nities for human-robot collaboration.
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