Fixed-Parameter Algorithms

Venkatesh Raman

Theoretical Computer Science group
The Institute of Mathematical Sciences
Chennai

July 15, 2009, Talk at IGGA, IISc Bangalore

Outline

Introduction

Historical perspective

Algorithmic Techniques

Branching and Bounded search trees

Kernalization

Iterated Compression

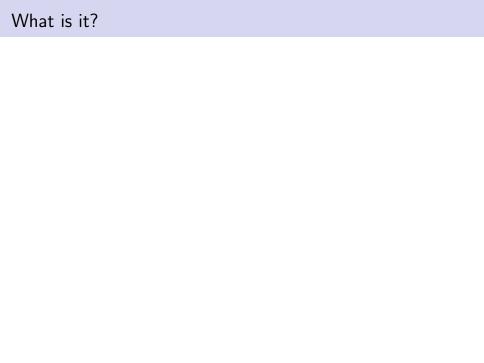
Color Coding

W-hardness and Parameterized Reductions

Approximation and FPT

Recent Trends

Conclusions



► A theoretically rich and practically useful paradigm to deal with NP-completeness

- ► A theoretically rich and practically useful paradigm to deal with NP-completeness
- ▶ A framework to do refined, *multidimensional* algorithmic complexity analysis.

- ► A theoretically rich and practically useful paradigm to deal with NP-completeness
- ► A framework to do refined, *multidimensional* algorithmic complexity analysis.
- Associated with the input instance x, is given a parameter k; The running time is analyzed in terms of both the input size and the parameter. The aim is to design algorithms that take $O(f(k)|x|^{O(1)})$ time where f is a (moderately) exponential function.

- ► A theoretically rich and practically useful paradigm to deal with NP-completeness
- ► A framework to do refined, *multidimensional* algorithmic complexity analysis.
- Associated with the input instance x, is given a parameter k; The running time is analyzed in terms of both the input size and the parameter. The aim is to design algorithms that take $O(f(k)|x|^{O(1)})$ time where f is a (moderately) exponential function.
- ► There are more than one ways to parameterize a problem; Natural parameters are: the solution size, the maximum degree, the treewidth, the pathwidth,

- ► A theoretically rich and practically useful paradigm to deal with NP-completeness
- ► A framework to do refined, *multidimensional* algorithmic complexity analysis.
- Associated with the input instance x, is given a parameter k; The running time is analyzed in terms of both the input size and the parameter. The aim is to design algorithms that take $O(f(k)|x|^{O(1)})$ time where f is a (moderately) exponential function.
- ► There are more than one ways to parameterize a problem; Natural parameters are: the solution size, the maximum degree, the treewidth, the pathwidth,
- Active area of research, there are sessions on this topic in major conferences, there are specialized conferences – IWPEC (international workshop on parameterized and exact computation).

▶ A parameterized language $L \subseteq \Sigma^* \times N$ where Σ is a finite alphabet.

- ▶ A parameterized language $L \subseteq \Sigma^* \times N$ where Σ is a finite alphabet.
- A parameterized language (YES instances of a decision problem) is *fixed-parameter tractable* (FPT) if there is an algorithm that can decide for any input (x, k), whether it is in the language in time $f(k)|x|^{O(1)}$ time where f is any function of k;

- ▶ A parameterized language $L \subseteq \Sigma^* \times N$ where Σ is a finite alphabet.
- A parameterized language (YES instances of a decision problem) is *fixed-parameter tractable* (FPT) if there is an algorithm that can decide for any input (x, k), whether it is in the language in time $f(k)|x|^{O(1)}$ time where f is any function of k;
 - it is in the class XP if there is a $|x|^{O(k)}$ algorithm.

- ▶ A parameterized language $L \subseteq \Sigma^* \times N$ where Σ is a finite alphabet.
- A parameterized language (YES instances of a decision problem) is *fixed-parameter tractable* (FPT) if there is an algorithm that can decide for any input (x, k), whether it is in the language in time $f(k)|x|^{O(1)}$ time where f is any function of k;
 - it is in the class XP if there is a $|x|^{O(k)}$ algorithm.
- ▶ FPT algorithms (with moderately growing f(k)) are useful in practice when the parameter k is small; and there are areas where small parameters capture most practical instances.

1. $L = \{F | F \text{ is a satisfiable boolean CNF formula on } n \text{ variables} \}$ Parameter: n

1. $L = \{F | F \text{ is a satisfiable boolean CNF formula on } n \text{ variables} \}$ Parameter: nThe problem is FPT by a $2^n |x|^{O(1)}$ algorithm.

- 1. $L = \{F | F \text{ is a satisfiable boolean CNF formula on } n \text{ variables} \}$ Parameter: nThe problem is FPT by a $2^n |x|^{O(1)}$ algorithm.
- 2. $L = \{ Triangle free graphs with a k independent set \}$ Parameter: k

- 1. $L = \{F | F \text{ is a satisfiable boolean CNF formula on } n \text{ variables} \}$ Parameter: nThe problem is FPT by a $2^n |x|^{O(1)}$ algorithm.
- 2. $L = \{ Triangle \ free \ graphs \ with \ a \ k independent \ set \}$ Parameter: kThen L is FPT by a $O(k^{2k} + n^{O(1)})$ algorithm.

- 1. $L = \{F | F \text{ is a satisfiable boolean CNF formula on } n \text{ variables} \}$ Parameter: nThe problem is FPT by a $2^n |x|^{O(1)}$ algorithm.
- 2. $L = \{ Triangle \ free \ graphs \ with \ a \ k independent \ set \}$ Parameter: k Then L is FPT by a $O(k^{2k} + n^{O(1)})$ algorithm. If n > R(3, k) (the Ramsey number), then $G \in L$

- 1. $L = \{F | F \text{ is a satisfiable boolean CNF formula on } n \text{ variables} \}$ Parameter: nThe problem is FPT by a $2^n |x|^{O(1)}$ algorithm.
- 2. $L = \{ \text{Triangle free graphs with a } k \text{independent set} \}$ Parameter: kThen L is FPT by a $O(k^{2k} + n^{O(1)})$ algorithm.
 If n > R(3, k) (the Ramsey number), then $G \in L$ else $(n \le R(3, k) \le k^2)$ check whether G has an independent set of size k by trying all subsets of size at most k.

- 1. $L = \{F | F \text{ is a satisfiable boolean CNF formula on } n \text{ variables} \}$ Parameter: nThe problem is FPT by a $2^n |x|^{O(1)}$ algorithm.
- 2. $L = \{ Triangle \ free \ graphs \ with \ a \ k-independent \ set \}$ Parameter: k Then L is FPT by a $O(k^{2k} + n^{O(1)})$ algorithm. If n > R(3,k) (the Ramsey number), then $G \in L$ else $(n \le R(3,k) \le k^2)$ check whether G has an independent set of size k by trying all subsets of size at most k.
- 3. $L = \{Planar \ Graphs \ with \ a \ k dominating \ set\}$ Parameter: k

- 1. $L = \{F | F \text{ is a satisfiable boolean CNF formula on } n \text{ variables} \}$ Parameter: nThe problem is FPT by a $2^n |x|^{O(1)}$ algorithm.
- 2. $L = \{ Triangle \ free \ graphs \ with \ a \ k-independent \ set \}$ Parameter: k Then L is FPT by a $O(k^{2k} + n^{O(1)})$ algorithm. If n > R(3,k) (the Ramsey number), then $G \in L$ else $(n \le R(3,k) \le k^2)$ check whether G has an independent set of size k by trying all subsets of size at most k.
- 3. $L = \{Planar \ Graphs \ with \ a \ k dominating \ set\}$ Parameter: kL is FPT by an $2^{O(\sqrt{k})} + n^{O(1)}$ algorithm.

- 1. $L = \{F | F \text{ is a satisfiable boolean CNF formula on } n \text{ variables} \}$ Parameter: nThe problem is FPT by a $2^n |x|^{O(1)}$ algorithm.
- 2. $L = \{ Triangle \ free \ graphs \ with \ a \ k-independent \ set \}$ Parameter: k Then L is FPT by a $O(k^{2k} + n^{O(1)})$ algorithm. If n > R(3,k) (the Ramsey number), then $G \in L$ else $(n \le R(3,k) \le k^2)$ check whether G has an independent set of size k by trying all subsets of size at most k.
- L = {Planar Graphs with a k − dominating set}
 Parameter: k
 L is FPT by an 2^{O(√k)} + n^{O(1)} algorithm.
 Domination number is a contraction closed bidimensional parameter, and hence treewidth of a planar graph with a k-dominating set is O(√k), apply dynamic programming.

Outline

Introduction

Historical perspective

Algorithmic Techniques

Branching and Bounded search trees

Kernalization

Iterated Compression

Color Coding

W-hardness and Parameterized Reductions

Approximation and FPT

Recent Trends

Conclusions

1. Robertson-Seymour's theorem on Wagner's conjecture (GMTheorem 1): Every *minor closed* family of finite graphs has a finite *forbidden set*.

- 1. Robertson-Seymour's theorem on Wagner's conjecture (GMTheorem 1): Every *minor closed* family of finite graphs has a finite *forbidden set*.
- 2. Minor of a graph graph obtained by contracting some edges and deleting some edges.
- 3. (RS: Theorem 2) Given a graph G on n vertices, and a (fixed) graph H, we can check in $O(f(|H|)n^3)$ time whether H is a minor of G.

- 1. Robertson-Seymour's theorem on Wagner's conjecture (GMTheorem 1): Every *minor closed* family of finite graphs has a finite *forbidden set*.
- 2. Minor of a graph graph obtained by contracting some edges and deleting some edges.
- 3. (RS: Theorem 2) Given a graph G on n vertices, and a (fixed) graph H, we can check in $O(f(|H|)n^3)$ time whether H is a minor of G.
- 4. For a fixed k, the following families are minor closed. $L_k = \{Graphs \ having \ at \ most \ k \ sized \ vertex \ covers(VC)\}$ $L_k = \{Graphs \ having \ at \ most \ k \ sized \ feedback \ vertex \ sets(FVS)\}$

- 1. Robertson-Seymour's theorem on Wagner's conjecture (GMTheorem 1): Every *minor closed* family of finite graphs has a finite *forbidden set*.
- 2. Minor of a graph graph obtained by contracting some edges and deleting some edges.
- 3. (RS: Theorem 2) Given a graph G on n vertices, and a (fixed) graph H, we can check in $O(f(|H|)n^3)$ time whether H is a minor of G.
- 4. For a fixed k, the following families are minor closed. $L_k = \{Graphs\ having\ at\ most\ k\ sized\ vertex\ covers(VC)\}$ $L_k = \{Graphs\ having\ at\ most\ k\ sized\ feedback\ vertex\ sets(FVS)\}$ and hence by the above two theorems, checking whether a graph has a VC or FVS of size at most k is FPT.

- 1. Robertson-Seymour's theorem on Wagner's conjecture (GMTheorem 1): Every *minor closed* family of finite graphs has a finite *forbidden set*.
- 2. Minor of a graph graph obtained by contracting some edges and deleting some edges.
- 3. (RS: Theorem 2) Given a graph G on n vertices, and a (fixed) graph H, we can check in $O(f(|H|)n^3)$ time whether H is a minor of G.
- 4. For a fixed k, the following families are minor closed.
 \$L_k = \{Graphs having at most k sized vertex covers(VC)\}\$
 \$L_k = \{Graphs having at most k sized feedback vertex sets(FVS)\}\$
 and hence by the above two theorems, checking whether a graph has a VC or FVS of size at most k is FPT.
- 5. However the f() had a HUGE towers of exponents and the proof of GMT is also non constructive!

Historical Perspective – Treewidth etc

1. (Bodlaender et al) Vertex Cover, Dominating Set, Independent Set, Feedback Vertex Set are FPT when the *treewidth* is the parameter. I.e. in $O(2^w n^{O(1)})$ time, one can find the minimum vertex cover, maximum independent set etc on graphs of treewidth at most w.

Historical Perspective – Treewidth etc

- 1. (Bodlaender et al) Vertex Cover, Dominating Set, Independent Set, Feedback Vertex Set are FPT when the *treewidth* is the parameter. I.e. in $O(2^w n^{O(1)})$ time, one can find the minimum vertex cover, maximum independent set etc on graphs of treewidth at most w.
- (Courcelle) Any property expressible in monadic second order logic has a linear time algorithm on bounded treewidth graphs.
- 3. Checking whether a (general) graph has a clique or an independent set or a dominating set of size k seems to require $\Omega(n^k)$ time.

Historical Perspective – Treewidth etc

- 1. (Bodlaender et al) Vertex Cover, Dominating Set, Independent Set, Feedback Vertex Set are FPT when the treewidth is the parameter. I.e. in $O(2^w n^{O(1)})$ time, one can find the minimum vertex cover, maximum independent set etc on graphs of treewidth at most w.
- (Courcelle) Any property expressible in monadic second order logic has a linear time algorithm on bounded treewidth graphs.
- 3. Checking whether a (general) graph has a clique or an independent set or a dominating set of size k seems to require $\Omega(n^k)$ time.
- 4. Downey-Fellows developed hardness theory (W[1], W[2]-complete problems) and opened up the area (in late eighties, early nineties).

Outline

Introduction

Historical perspective

Algorithmic Techniques

Branching and Bounded search trees

Kernalization

Iterated Compression

Color Coding

W-hardness and Parameterized Reductions

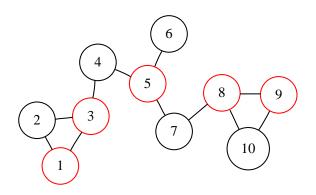
Approximation and FPT

Recent Trends

Conclusions

Bounded Search Trees – example Vertex Cover

Given a graph G = (V, E), and a parameter k, does G have a vertex cover of size at most k?



Branching Algorithms for k-Vertex Cover

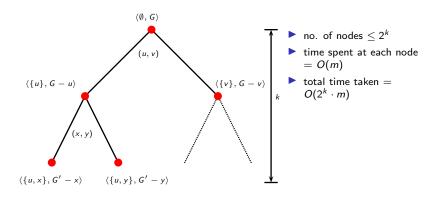
1. Try all subsets of size at most $k - O(n^k m)$.

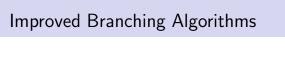
Branching Algorithms for k-Vertex Cover

- 1. Try all subsets of size at most $k O(n^k m)$.
- 2. For every edge (x, y) recursively check whether G x or G y has a vertex cover of size at most k 1 recursively.

Branching Algorithms for k-Vertex Cover

- 1. Try all subsets of size at most $k O(n^k m)$.
- 2. For every edge (x, y) recursively check whether G x or G y has a vertex cover of size at most k 1 recursively. $O(2^k m)$. Basic Idea: Given any edge (u, v) either u or v is in the solution.





- 1. For any vertex x of degree at least 2, check whether
 - G x has a vertex cover of size at most k 1 or

- 1. For any vertex x of degree at least 2, check whether
 - G x has a vertex cover of size at most k 1 or
 - ▶ G N(x) has a vertex cover of size at most k degree(x) recursively.

If every vertex has degree at most 1, solve in polynomial time.

- 1. For any vertex x of degree at least 2, check whether
 - G x has a vertex cover of size at most k 1 or
 - ▶ G N(x) has a vertex cover of size at most k degree(x) recursively.

If every vertex has degree at most 1, solve in polynomial time.

$$T(k) \leq T(k-1) + T(k-2)$$

- 1. For any vertex x of degree at least 2, check whether
 - G x has a vertex cover of size at most k 1 or
 - ▶ G N(x) has a vertex cover of size at most k degree(x) recursively.

If every vertex has degree at most 1, solve in polynomial time. $T(k) \leq T(k-1) + T(k-2)$ Fibonacci recurrence on k that results in $O((1.618)^k m)$.

- 1. For any vertex x of degree at least 2, check whether
 - G x has a vertex cover of size at most k 1 or
 - ▶ G N(x) has a vertex cover of size at most k degree(x) recursively.

If every vertex has degree at most 1, solve in polynomial time. $T(k) \leq T(k-1) + T(k-2)$ Fibonacci recurrence on k that results in $O((1.618)^k m)$.

2. Can be improved by branching on larger structures and doing a lot of case analyses; the current best is $O(1.27^k + kn)$.

Definition

Definition

Given an undirected graph G(V, E) and an integer k, are there k vertices whose removal makes G acyclic?

classical NP-hard problem;

Definition

- classical NP-hard problem;
- can be approximated to ratio-2 of optimal;

Definition

- classical NP-hard problem;
- can be approximated to ratio-2 of optimal;
- ▶ For each subset $S \subseteq V$ of size at most k check whether G S is acyclic.

Definition

- classical NP-hard problem;
- can be approximated to ratio-2 of optimal;
- ▶ For each subset $S \subseteq V$ of size at most k check whether G S is acyclic.
- ▶ Time complexity: $O(n^k m)$.

Standard Preprocessing for FVS algorithms:

1. Delete degree one vertices.

- 1. Delete degree one vertices.
- 2. Short circuit degree two vertices.

- 1. Delete degree one vertices.
- 2. Short circuit degree two vertices.
- Repeat steps 1 and 2 until no longer possible.

- 1. Delete degree one vertices.
- 2. Short circuit degree two vertices.
- ▶ Repeat steps 1 and 2 until no longer possible.
- ► Result: A (multi) graph with minimum degree 3.

Standard Preprocessing for FVS algorithms:

- 1. Delete degree one vertices.
- 2. Short circuit degree two vertices.
- Repeat steps 1 and 2 until no longer possible.
- ► Result: A (multi) graph with minimum degree 3.

Lemma (Erdos and Posa)

An undirected graph on n vertices with minimum degree 3 has a cycle of length $O(\log n)$.

An FPT Algorithm ...

1. Preprocess to get minimum degree 3.

An FPT Algorithm ...

- 1. Preprocess to get minimum degree 3.
- 2. Find a shortest cycle C.

An FPT Algorithm . . .

- 1. Preprocess to get minimum degree 3.
- 2. Find a shortest cycle C.
- 3. For every vertex $v \in C$ check whether G v has an FVS of size at most k 1.

An FPT Algorithm . . .

- 1. Preprocess to get minimum degree 3.
- 2. Find a shortest cycle C.
- 3. For every vertex $v \in C$ check whether G v has an FVS of size at most k 1.
- 4. If Step 3 is true for some v, then answer YES $(FVS(G v) \cup \{v\})$ is an FVS of size k; else answer NO.

An FPT Algorithm ...

- 1. Preprocess to get minimum degree 3.
- 2. Find a shortest cycle C.
- 3. For every vertex $v \in C$ check whether G v has an FVS of size at most k 1.
- 4. If Step 3 is true for some v, then answer YES $(FVS(G v) \cup \{v\})$ is an FVS of size k; else answer NO.
- ▶ Since C is of length $O(\log n)$, we get an $O((\log n)^k m)$ time algorithm.

An FPT Algorithm ...

- 1. Preprocess to get minimum degree 3.
- 2. Find a shortest cycle C.
- 3. For every vertex $v \in C$ check whether G v has an FVS of size at most k 1.
- 4. If Step 3 is true for some v, then answer YES $(FVS(G v) \cup \{v\})$ is an FVS of size k; else answer NO.
- ▶ Since C is of length $O(\log n)$, we get an $O((\log n)^k m)$ time algorithm.
- ▶ Since $(\log n)^k \le k^{2k} + n$, we have an FPT algorithm, where $f(k) = k^{2k}$.

Towards a better f(k)

A generalization of Erdos and Posa:

Lemma

Any graph with minimum degree 3 and FVS of size at most $\sqrt{n/2}$, has a cycle of length at most 6.

Using this, one can get a bound of $O^*((\log k)^k)$.

▶ Improving to $O^*(c^k)$, will be done later.

- 1. **Algorithmic idea:** Given (x, k) reduce in polynomial (in |x|, k) time to an 'equivalent instance' (x', k') such that
 - $(x,k) \in L$ iff $(x',k') \in L$ and
 - ▶ $|x'| \le g(k)$ for some function g of k.

- 1. **Algorithmic idea:** Given (x, k) reduce in polynomial (in |x|, k) time to an 'equivalent instance' (x', k') such that
 - $(x, k) \in L \text{ iff } (x', k') \in L \text{ and }$
 - ▶ $|x'| \le g(k)$ for some function g of k.
- 2. Such an algorithm *kernalizes* the problem, and such a problem is said to be *kernalizable*. x' is said to be the kernel and g(k) is the kernel size.

- 1. **Algorithmic idea:** Given (x, k) reduce in polynomial (in |x|, k) time to an 'equivalent instance' (x', k') such that
 - $(x,k) \in L$ iff $(x',k') \in L$ and
 - ▶ $|x'| \le g(k)$ for some function g of k.
- 2. Such an algorithm *kernalizes* the problem, and such a problem is said to be *kernalizable*. x' is said to be the kernel and g(k) is the kernel size.
- 3. Theorem (easy): A parameterized problem is kernalizable implies it is in FPT.

- 1. **Algorithmic idea:** Given (x, k) reduce in polynomial (in |x|, k) time to an 'equivalent instance' (x', k') such that
 - $(x,k) \in L$ iff $(x',k') \in L$ and
 - ▶ $|x'| \le g(k)$ for some function g of k.
- 2. Such an algorithm *kernalizes* the problem, and such a problem is said to be *kernalizable*. x' is said to be the kernel and g(k) is the kernel size.
- Theorem (easy): A parameterized problem is kernalizable implies it is in FPT.
- 4. Converse is also true: A parameterized problem is FPT implies it is kernalizable; but the kernel size will be exponential in k.

1. Include all vertices with degree more than k in a set S. (S is the proposed solution set).

1. Include all vertices with degree more than k in a set S. (S is the proposed solution set).

Observation: All vertices in S must be in any vertex cover of size at most k.

- 1. Include all vertices with degree more than k in a set S. (S is the proposed solution set).
 - Observation: All vertices in S must be in any vertex cover of size at most k.
- 2. If |S| > k, stop and return NO. Else, delete all vertices of S from G to get G'.

- 1. Include all vertices with degree more than k in a set S. (S is the proposed solution set).
 - Observation: All vertices in S must be in any vertex cover of size at most k.
- 2. If |S| > k, stop and return NO. Else, delete all vertices of S from G to get G'.
- 3. G' has degree at most k, and we need to find a vertex cover of size at most k |S| in G'.

- 1. Include all vertices with degree more than k in a set S. (S is the proposed solution set).
 - Observation: All vertices in S must be in any vertex cover of size at most k.
- 2. If |S| > k, stop and return NO. Else, delete all vertices of S from G to get G'.
- 3. G' has degree at most k, and we need to find a vertex cover of size at most k |S| in G'.
- 4. If G' has more than (k |S|)k edges, stop and return NO. Delete degree 0 vertices of G'.

size at most k.

- Include all vertices with degree more than k in a set S. (S is the proposed solution set).
 Observation: All vertices in S must be in any vertex cover of
- 2. If |S| > k, stop and return NO. Else, delete all vertices of S from G to get G'.
- 3. G' has degree at most k, and we need to find a vertex cover of size at most k |S| in G'.
- 4. If G' has more than (k |S|)k edges, stop and return NO. Delete degree 0 vertices of G'.
- 5. G' is the *kernel*. G' has at most k^2 edges and at most $2k^2$ vertices.

- Include all vertices with degree more than k in a set S. (S is the proposed solution set).
 Observation: All vertices in S must be in any vertex cover of size at most k.
- 2. If |S| > k, stop and return NO. Else, delete all vertices of S from G to get G'.
- 3. G' has degree at most k, and we need to find a vertex cover of size at most k |S| in G'.
- 4. If G' has more than (k |S|)k edges, stop and return NO. Delete degree 0 vertices of G'.
- 5. G' is the *kernel*. G' has at most k^2 edges and at most $2k^2$ vertices.
- 6. Now we can do branching on G'. Resulting run time is $O(kn + (1.28)^k)$.

1. There is a 2k vertex kernel for vertex cover using Nemhauser-Trotter LP based approximation algorithm for vertex cover.

- There is a 2k vertex kernel for vertex cover using Nemhauser-Trotter LP based approximation algorithm for vertex cover.
- 2. There is an $O(k^2)$ kernel for undirected feedback vertex set (SODA 2009) uses Hall's like theorem.

- There is a 2k vertex kernel for vertex cover using Nemhauser-Trotter LP based approximation algorithm for vertex cover.
- 2. There is an $O(k^2)$ kernel for undirected feedback vertex set (SODA 2009) uses Hall's like theorem.
- 3. Famous Open problems: Polynomial sized $(k^{O(1)})$ kernel for
 - 3.1 Directed feedback vertex set?
 - 3.2 Odd cycle transversal (set of vertices whose removal results in a bipartite graph)?

- 1. There is a 2k vertex kernel for vertex cover using Nemhauser-Trotter LP based approximation algorithm for vertex cover.
- 2. There is an $O(k^2)$ kernel for undirected feedback vertex set (SODA 2009) uses Hall's like theorem.
- 3. Famous Open problems: Polynomial sized $(k^{O(1)})$ kernel for
 - 3.1 Directed feedback vertex set?
 - 3.2 Odd cycle transversal (set of vertices whose removal results in a bipartite graph)?
- 4. Now, very recently (STOC 08, ICALP 08, 09) there is a machinery (composition) to show NON existence of polynomial sized kernal (unless $PH = \Sigma^3$)

- 1. There is a 2k vertex kernel for vertex cover using Nemhauser-Trotter LP based approximation algorithm for vertex cover.
- 2. There is an $O(k^2)$ kernel for undirected feedback vertex set (SODA 2009) uses Hall's like theorem.
- 3. Famous Open problems: Polynomial sized $(k^{O(1)})$ kernel for
 - 3.1 Directed feedback vertex set?
 - 3.2 Odd cycle transversal (set of vertices whose removal results in a bipartite graph)?
- 4. Now, very recently (STOC 08, ICALP 08, 09) there is a machinery (composition) to show NON existence of polynomial sized kernal (unless $PH = \Sigma^3$)
- 5. *k*-path, *k*-connected vertex cover are some problems that don't have polynomial sized kernel under this hypothesis.

1. A simple, but powerful technique (for minimization problems)

- 1. A simple, but powerful technique (for minimization problems)
- 2. Given a solution of size k + 1, check whether there is one of size k; This is the compression step; somehow starting with a solution helps.

- 1. A simple, but powerful technique (for minimization problems)
- 2. Given a solution of size k + 1, check whether there is one of size k; This is the compression step; somehow starting with a solution helps.
- 3. How do we get the given k + 1-sized solution? We iterate and compress!

- 1. A simple, but powerful technique (for minimization problems)
- 2. Given a solution of size k + 1, check whether there is one of size k; This is the compression step; somehow starting with a solution helps.
- 3. How do we get the given k + 1-sized solution? We iterate and compress!
- 4. Label the vertices $v_1, \ldots v_n$, $\{v_1, \ldots v_{k+1}\}$ is a k+1-sized solution for $G_{k+1} = G[\{v_1, \ldots v_{k+1}\}]$. Apply the compression step, if this can not be compressed, G_{k+1} has no k sized solution and G also has no k-sized solution.

- 1. A simple, but powerful technique (for minimization problems)
- 2. Given a solution of size k+1, check whether there is one of size k; This is the compression step; somehow starting with a solution helps.
- 3. How do we get the given k + 1-sized solution? We iterate and compress!
- 4. Label the vertices $v_1, \ldots v_n$, $\{v_1, \ldots v_{k+1}\}$ is a k+1-sized solution for $G_{k+1} = G[\{v_1, \ldots v_{k+1}\}]$. Apply the compression step, if this can not be compressed, G_{k+1} has no k sized solution and G also has no k-sized solution.
- 5. If G_{k+1} has a k-sized solution S, then $S \cup \{v_{k+2}\}$ is a (k+1)-sized solution for G_{k+2} and continue like this.
- 6. Overall time is O((n-k)*time for compression step).

▶ *Problem:* Given that G has an FVS S of size k+1, check whether it has one of size k.

▶ Problem: Given that G has an FVS S of size k+1, check whether it has one of size k. The proposed solution intersects S in some subset X such that $0 \le |X| \le k$. Hence,

- ▶ Problem: Given that G has an FVS S of size k+1, check whether it has one of size k. The proposed solution intersects S in some subset X such that $0 \le |X| \le k$. Hence,
- ▶ for every subset $X \subseteq S$, $|X| \le k$, we will check whether there is an FVS of G of size at most k containing all of X and none of S X.

- ▶ Problem: Given that G has an FVS S of size k+1, check whether it has one of size k. The proposed solution intersects S in some subset X such that $0 \le |X| \le k$. Hence,
- ▶ for every subset $X \subseteq S$, $|X| \le k$, we will check whether there is an FVS of G of size at most k containing all of X and none of S X.
- Since there are at most 2^{k+1} − 1 such subsets X, the problem is FPT if we show it FPT for a fixed X.

New Problem

▶ G has an FVS S of size k + 1.

New Problem

- ▶ G has an FVS S of size k + 1.
- \triangleright X is a fixed subset of S of size at most k.

New Problem

- ▶ G has an FVS S of size k + 1.
- X is a fixed subset of S of size at most k.
- ▶ We look for an FVS of G X of size at most k |X| containing no vertex of S X.
- X can be deleted from G.

Given G = (V, E), a subset S, which is a FVS of size k + 1, a subset X of S of size at most k, find a FVS of size at most k - |X| from V - S.

Given G = (V, E), a subset S, which is a FVS of size k + 1, a subset X of S of size at most k, find a FVS of size at most k - |X| from V - S.

Observations:

Given G = (V, E), a subset S, which is a FVS of size k + 1, a subset X of S of size at most k, find a FVS of size at most k - |X| from V - S.

Observations:

1. G[V - S] and G[S - X] are forests.

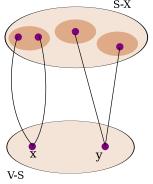
Given G = (V, E), a subset S, which is a FVS of size k + 1, a subset X of S of size at most k, find a FVS of size at most k - |X| from V - S.

Observations:

- 1. G[V S] and G[S X] are forests.
- 2. G[S-X] has at most k+1-|X| vertices and hence at most that many components

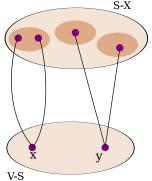
G[S-X] and G[V-S] are forests; find an FVS of size at most k-|X| from V-S (assume minimum degree 3).

G[S-X] and G[V-S] are forests; find an FVS of size at most k-|X| from V-S (assume minimum degree 3).



The Algorithm:

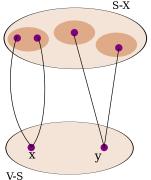
G[S-X] and G[V-S] are forests; find an FVS of size at most k-|X| from V-S (assume minimum degree 3).



The Algorithm:

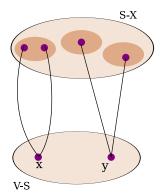
1. Let x be a vertex of degree at most 1 in G[V-S]. It has at least *two* neighbors in S-X.

G[S-X] and G[V-S] are forests; find an FVS of size at most k-|X| from V-S (assume minimum degree 3).

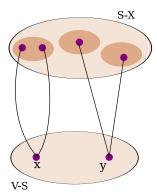


The Algorithm:

- 1. Let x be a vertex of degree at most 1 in G[V-S]. It has at least two neighbors in S-X.
- 2. If both neighbors are in the same component of G[S-X], then include x in FVS (forced).



- 1. Else (let y be a vertex whose neighbors are in at least two components of G[S-X]), we branch
 - 1.1 by picking y in FVS, in which case k drops by 1 in the recursion, or



- 1. Else (let y be a vertex whose neighbors are in at least two components of G[S-X]), we branch
 - 1.1 by picking y in FVS, in which case k drops by 1 in the recursion, or
 - 1.2 by not picking y in which case y is added to S-X reducing the number of components of S-X by 1.

Time Complexity

1. In either branch, k + number of components in G[S-X] decreases.

Time Complexity

- 1. In either branch, k + number of components in G[S X] decreases.
- 2. Since G[S-X] had at most k components in the beginning, the depth of the recursion is at most 2k, and hence the runtime is at most 4^k poly(n).

Time Complexity

- 1. In either branch, k + number of components in G[S-X] decreases.
- 2. Since G[S-X] had at most k components in the beginning, the depth of the recursion is at most 2k, and hence the runtime is at most $4^k \operatorname{poly}(n)$.
- 3. Overall runtime (with $2^{k+1} 1$ choices for X) is $4^k 2^k \text{poly}(n)$.
- 4. With a careful analysis, this turns out to be $O(5^k n^{O(1)})$.
- 5. This is the best known bound, the open problem is to improve 5^k .

More on Iterated Compression

Several recent results were shown FPT using iterated compression

- 1. Directed Feedback Vertex Set (STOC 08, JACM 2009)
- 2. Within k clauses from 2SAT (ICALP 08)
- 3. Cochromatic Number in perfect graphs
- 4. Odd Cycle Transversal (the first one, in ORL)

► A simple randomized technique (Alon, Yuster, Zwick JACM 95)

- ▶ A simple randomized technique (Alon, Yuster, Zwick JACM 95)
- **Problem:** Is there a simple path of length k (or more) in G?
- ▶ NP-complete as this is a decision version of Hamiltonian path.

- ▶ A simple randomized technique (Alon, Yuster, Zwick JACM 95)
- **Problem:** Is there a simple path of length k (or more) in G?
- ▶ NP-complete as this is a decision version of Hamiltonian path.
- Color Coding Algorithm
 - 1. Randomly color the vertices of the graph with integers 1 to k.

- ▶ A simple randomized technique (Alon, Yuster, Zwick JACM 95)
- **Problem:** Is there a simple path of length k (or more) in G?
- ▶ NP-complete as this is a decision version of Hamiltonian path.
- ► Color Coding Algorithm
 - 1. Randomly color the vertices of the graph with integers 1 to k.
 - 2. Find a colorful path (a path where all colors are distinct) of length *k* if exists (using Dynamic Programming, can have a start vertex).

- A simple randomized technique (Alon, Yuster, Zwick JACM 95)
- **Problem:** Is there a simple path of length k (or more) in G?
- ▶ NP-complete as this is a decision version of Hamiltonian path.
- ► Color Coding Algorithm
 - 1. Randomly color the vertices of the graph with integers 1 to k.
 - 2. Find a colorful path (a path where all colors are distinct) of length *k* if exists (using Dynamic Programming, can have a start vertex).
 - Remember color sets of size $i(\binom{k}{i})$ in paths of length i at intermediate steps.

- ▶ A simple randomized technique (Alon, Yuster, Zwick JACM 95)
- **Problem:** Is there a simple path of length k (or more) in G?
- ▶ NP-complete as this is a decision version of Hamiltonian path.
- Color Coding Algorithm
 - 1. Randomly color the vertices of the graph with integers 1 to k.
 - 2. Find a colorful path (a path where all colors are distinct) of length *k* if exists (using Dynamic Programming, can have a start vertex).
 - Remember color sets of size $i(\binom{k}{i})$ in paths of length i at intermediate steps. $O(2^k m)$

- A simple randomized technique (Alon, Yuster, Zwick JACM 95)
- **Problem:** Is there a simple path of length k (or more) in G?
- ▶ NP-complete as this is a decision version of Hamiltonian path.
- ► Color Coding Algorithm
 - 1. Randomly color the vertices of the graph with integers 1 to k.
 - 2. Find a colorful path (a path where all colors are distinct) of length *k* if exists (using Dynamic Programming, can have a start vertex).
 - Remember color sets of size $i(\binom{k}{i})$ in paths of length i at intermediate steps. $O(2^k m)$
 - 3. If there is a simple path of length k, it will be colorful with probability

- ▶ A simple randomized technique (Alon, Yuster, Zwick JACM 95)
- **Problem:** Is there a simple path of length k (or more) in G?
- ▶ NP-complete as this is a decision version of Hamiltonian path.
- ► Color Coding Algorithm
 - 1. Randomly color the vertices of the graph with integers 1 to k.
 - Find a colorful path (a path where all colors are distinct) of length k if exists (using Dynamic Programming, can have a start vertex).
 - Remember color sets of size $i(\binom{k}{i})$ in paths of length i at intermediate steps. $O(2^k m)$
 - 3. If there is a simple path of length k, it will be colorful with probability $k!/k^k$ which is $\Omega(e^{-k})$

- ▶ A simple randomized technique (Alon, Yuster, Zwick JACM 95)
- **Problem:** Is there a simple path of length k (or more) in G?
- ▶ NP-complete as this is a decision version of Hamiltonian path.
- ► Color Coding Algorithm
 - 1. Randomly color the vertices of the graph with integers 1 to k.
 - 2. Find a colorful path (a path where all colors are distinct) of length *k* if exists (using Dynamic Programming, can have a start vertex).
 - Remember color sets of size $i(\binom{k}{i})$ in paths of length i at intermediate steps. $O(2^k m)$
 - 3. If there is a simple path of length k, it will be colorful with probability $k!/k^k$ which is $\Omega(e^{-k})$
 - 4. Repeat if not found; expected # of repetitions $O(e^k)$.

- ▶ A simple randomized technique (Alon, Yuster, Zwick JACM 95)
- ▶ **Problem:** Is there a simple path of length *k* (or more) in *G*?
- ▶ NP-complete as this is a decision version of Hamiltonian path.
- ► Color Coding Algorithm
 - 1. Randomly color the vertices of the graph with integers 1 to k.
 - 2. Find a colorful path (a path where all colors are distinct) of length *k* if exists (using Dynamic Programming, can have a start vertex).
 - Remember color sets of size $i\left(\binom{k}{i}\right)$ in paths of length i at intermediate steps. $O(2^k m)$
 - 3. If there is a simple path of length k, it will be colorful with probability $k!/k^k$ which is $\Omega(e^{-k})$
 - 4. Repeat if not found; expected # of repetitions $O(e^k)$.
 - 5. Can be derandomized using perfect hash families

More on Color Coding

- 1. Can find *k*-path, *k*-cycle, *k*-tree, subgraphs of bounded treewidth with *k* vertices all in FPT time.
- 2. Recently applied to get a $2^{O(\sqrt{k}\log k)} + n^{O(1)}$ algorithm for finding Feedback Arc Set in tournaments (ICALP 2009).

Summary of Algorithmic Techniques

- 1. Graph Minor Theory, MSO, Treewidth machinery (mainly for Classification)
- 2. Bounded Search Trees
- 3. Reduction to Kernel
- 4. Iterated Compression
- 5. Color Coding

Outline

Introduction

Historical perspective

Algorithmic Techniques

Branching and Bounded search trees Kernalization Iterated Compression Color Coding

W-hardness and Parameterized Reductions

Approximation and FPT

Recent Trends

Conclusions

- 1. Parameterized reductions An algorithm that reduces (x, k) of problem A to equivalent (x', k') of problem B
 - time allowed is $f(k)|x|^c$ time,
 - but k' must be a function of k.

- 1. Parameterized reductions An algorithm that reduces (x, k) of problem A to equivalent (x', k') of problem B
 - time allowed is $f(k)|x|^c$ time,
 - \blacktriangleright but k' must be a function of k.

- 1. Parameterized reductions An algorithm that reduces (x, k) of problem A to equivalent (x', k') of problem B
 - time allowed is $f(k)|x|^c$ time,
 - \blacktriangleright but k' must be a function of k.

- 2. Canonical complete problems:
 - 2.1 W[1] Given a bounded CNF formula, does it have a weight k satisfying assignment?

- 1. Parameterized reductions An algorithm that reduces (x, k) of problem A to equivalent (x', k') of problem B
 - time allowed is $f(k)|x|^c$ time,
 - \blacktriangleright but k' must be a function of k.

- 2. Canonical complete problems:
 - 2.1 W[1] Given a bounded CNF formula, does it have a weight k satisfying assignment?
 - k-Independent Set, k-Clique are W[1]-complete.

- 1. Parameterized reductions An algorithm that reduces (x, k) of problem A to equivalent (x', k') of problem B
 - time allowed is $f(k)|x|^c$ time,
 - \blacktriangleright but k' must be a function of k.

So *B* is in FPT implies *A* is in FPT.

- 2. Canonical complete problems:
 - 2.1 W[1] Given a bounded CNF formula, does it have a weight k satisfying assignment?

k-Independent Set, k-Clique are W[1]-complete.

Also short TM acceptance (does the given NDTM accept a string in k steps).

- 1. Parameterized reductions An algorithm that reduces (x, k) of problem A to equivalent (x', k') of problem B
 - time allowed is $f(k)|x|^c$ time,
 - \blacktriangleright but k' must be a function of k.

- 2. Canonical complete problems:
 - 2.1 W[1] Given a bounded CNF formula, does it have a weight k satisfying assignment? k-Independent Set, k-Clique are W[1]-complete. Also short TM acceptance (does the given NDTM accept a
 - string in k steps). 2.2 W[2] – Given an unbounded CNF formula, does it have a
 - 2.2 W[2] Given an unbounded CNF formula, does it have a weight k satisfying assignment?

- 1. Parameterized reductions An algorithm that reduces (x, k) of problem A to equivalent (x', k') of problem B
 - time allowed is $f(k)|x|^c$ time,
 - \blacktriangleright but k' must be a function of k.

- 2. Canonical complete problems:
 - 2.1 W[1] Given a bounded CNF formula, does it have a weight k satisfying assignment? k-Independent Set, k-Clique are W[1]-complete. Also short TM acceptance (does the given NDTM accept a string in k steps).
 - 2.2 W[2] Given an unbounded CNF formula, does it have a weight k satisfying assignment? k-Dominating Set, k-hitting set are W[2] complete.

Outline

Introduction

Historical perspective

Algorithmic Techniques

Branching and Bounded search trees Kernalization Iterated Compression Color Coding

W-hardness and Parameterized Reductions

Approximation and FPT

Recent Trends

Conclusions

Approximation and FPT

- For all maximization problems in MAXSNP, their corresponding decision question is in FPT (with the solution size as the parameter)
- 2. There are easy to approximate problems whose decision versions are W-hard (rectangle stabbing) and
- 3. There are FPT problems (k-path, odd cycle traversal) whose optimization versions are hard to approximate.
- 4. EPTAS implies the corresponding decision version is FPT.
- 5. Last word not out yet!

Outline

Introduction

Historical perspective

Algorithmic Techniques

Branching and Bounded search trees

Kernalization

Iterated Compression

Color Coding

W-hardness and Parameterized Reductions

Approximation and FPT

Recent Trends

Conclusions

1. Lower and upper bounds for kernels

- 1. Lower and upper bounds for kernels
- 2. Subexponential Algorithms in restricted classes of graphs (bidimensionality theory and beyond)

- 1. Lower and upper bounds for kernels
- 2. Subexponential Algorithms in restricted classes of graphs (bidimensionality theory and beyond)
- 3. More width parameters (treewidth, pathwidth, cliquewidth, boolean width, ...)

- 1. Lower and upper bounds for kernels
- 2. Subexponential Algorithms in restricted classes of graphs (bidimensionality theory and beyond)
- 3. More width parameters (treewidth, pathwidth, cliquewidth, boolean width, ...)
- 4. Inclusion-Exclusion applications (finding and counting structures)

- 1. Lower and upper bounds for kernels
- 2. Subexponential Algorithms in restricted classes of graphs (bidimensionality theory and beyond)
- 3. More width parameters (treewidth, pathwidth, cliquewidth, boolean width, ...)
- 4. Inclusion-Exclusion applications (finding and counting structures)
- 5. New techniques, new problems, new applications (Geometry?)

- 1. Lower and upper bounds for kernels
- 2. Subexponential Algorithms in restricted classes of graphs (bidimensionality theory and beyond)
- 3. More width parameters (treewidth, pathwidth, cliquewidth, boolean width, ...)
- Inclusion-Exclusion applications (finding and counting structures)
- 5. New techniques, new problems, new applications (Geometry?)
- 6. FPT Approximation for W-hard problems

Outline

Introduction

Historical perspective

Algorithmic Techniques

Branching and Bounded search trees

Kernalization

Iterated Compression

Color Coding

W-hardness and Parameterized Reductions

Approximation and FPT

Recent Trends

Conclusions

Conclusions

- 1. Reasonably young, at the same time, has reasonably rich theory
- 2. Well-developed techniques some simple, some use heavy machinery
- 3. Lots of open problems, combinatorial results
- 4. Practical applications in computational biology, optimization

References

- Invitation to Fixed-Parameter Algorithms Rolf Niedermeir (Oxford UP 2006)
- 2. Parameterized Complexity Rod Downey and Mike Fellows (Springer 1999)
- Parameterized Complexity Theory Jörg Flum and Martin Grohe (Springer 2006)
- 4. Proceedings of IWPEC, and other conferences

