
Measure Based Metasearch

ABSTRACT
In this short paper we propose a simple method for turning
any query retrieval performance measure into a metasearch
algorithm. While motivation is mainly a better exploration,
understanding, evaluation and/or comparison of the IR mea-
sures rather than designing a new metasearch algorithms,
we also demonstrate good metasearch results in compari-
son with popular metasearch techniques. In particular, we
consider the most common reported measures: precision at
standard cutoffs (PC), R-precision (RP) and average preci-
sion (AP).

1. INTRODUCTION
The basic idea of our work is that IR measures evalu-

ate performances of runs by ”looking” into the list returned
(in different ways) for relevant documents returned. The
better method is, the more is ”looking” at the right ranks
and therefore should be able to identify more relevant doc-
uments. Therefore any given method, in a multi run setting
(like TREC) , can be used for metasearch by identifying the
documents at the [averaged] ranks believed to be relevant.
The metasearch performance (measured also with AP) will
give an insight of the quality of the measure used.

Metasearch is the well-studied process of fusing the ranked
lists of documents returned by a collection of systems in re-
sponse to a given user query in order to obtain a combined
list whose quality equals or exceeds that of any of the under-
lying lists. Many metasearch techniques have been proposed
and studied [3, 5, 9, 2, 7]. In this work, we consider two
benchmark techniques: the first is based on combining the
normalized scores given to each document by the underly-
ing systems (CombMNZ [4, 6]), and the second is based on
viewing the metasearch problem as a multi-candidate elec-
tion where the documents are candidates and the systems
are voters expressing preferential rankings among the can-
didates (Condorcet [8]).

2. METHOD
We now break the method into subparts. R denotes the

number of relevant documents in a given query and Z de-
notes the length of a given retrieved list of documents to be
evaluated.

rank weighting scheme. Most IR measures for ranked
lists induce a ”rank importance” , formally rank weighting
scheme, when assess the quality of a given list. For example,
the PC at cutoff c=10 takes into account only the 10 top
ranks with a uniform weighting; therefore it induces equal
weights on those 10 ranks and weight=0 for the rest.

Consider now any measure used for evaluating a ranked
list of documents. If we write the mathematical formula that
produces the measurement, will try to look at this formula
as weighed average ( Z=length of the list measured)

measurement =
Z∑

i=1

wi · ri

where the vector w is ”rank importance” and r has to do
with relevance judgments at ranks. Now this may easy for
some measures (RP) but definitely challenging for measures
that operate not on individual ranks but rather on pairs of
ranks or other subsets(AP).

Metasearch.Every document has associated a set of weights
(one weight per run), corresponding to the ranks the docu-
ment is retrieved at in every run. On a document by docu-
ment basis, the sum (or average) of these weights gives an
overall weight of the document, for that particular weight-
ing scheme (associated with an IR measure). Ranking the
documents by this overall weight we obtain a metasearch
algorithm, by outputing top Z (think Z=1000) documents.

We believe this idea can be generalized to most of the
measures. Next are details of rank weights for each of the
three measures PC —PC, RP and AP— for a generic given
list (a run).

precision at cutoffs. Lets fix a cutoff c and denote PC
as ”precision at cutoff c”. Because no recall is involved, it is
easy to see that essentially PC puts a uniform distribution
of weights over the top c ranks and 0 for all other ranks in
the list.

R precision. RP is very similar with PC (use c=R =
number of relevant documents in the query), except R is
unknown as no relevance judgment is revealed. In this pa-
per we assume that R is ”magically” given; that is because,
as stated above, our purpose is to investigate the measures
and the corelations between them; in an implementation for
metasearch purposes, R needs to be estimated or guessed
from data.
There is a second fundamental difference between RP and
PC. In standard IR settings , like TREC, the performance
of anything is usually averaged over many (50) queries. In
that case c= PC-cutoff level is a constant over queries while
R varies, making the RP-cutoff appropriate for each query

average precision. AP formula is significantly more dif-
ficult to see as weighted average across ranks because it op-
erates on pairs of documents (at ranks) . We have
AP = 1

R

∑
i≤Z,rel(i)=1

Preci =

1
R

∑
i≤Z

rel(i) · 1
i

∑
j≤i

rel(j) =

1
R

∑
1≤j≤i≤Z

1
i
· rel(i) · rel(j)

This sum is a weighted average between 1/i vector and
rel(i)·rel(j) vector but two vectors are associated with pairs
of ranks , and not with ranks as we need. For that, we will
build a joint distribution(JD) over pairs (i, j) using the 1/i
vector and then use marginalization to obtain the weights-
per-rank vector W . After marginalization, we have
W (r) = 1

2Z
(1 + 1

r
+ 1

r+1
+ ... 1

Z
)



3. EXPERIMENTAL RESULTS
We test the metasearch associated with AP,RP and PC

for standard cutoffs (5,10,15,20,30,50,100,200,500,1000) us-
ing TREC 5,6,7,8,9 (Table 1). We also include the perfor-
mances of CombMNZ and Condorcet techniques. CombMNZ
and Condorcet produce quality ranked lists of documents by
fusing the ranked lists provided by a collection of underly-
ing systems. Given ranked lists produced by possibly cor-
related systems of varying performance, these metasearch
techniques will most often produce fused lists whose per-
formance exceeds that of the “average” underlying list but
which rarely exceeds that of the best underlying list. We
included those two methods performance for a baseline com-
parison.

First we see once again that AP and RP are strongly cor-
related. This argument, based on metasearch performance
just confirms the correlation, well known by statistical, al-
gebraic and geometrical means.

As for the metasearch performance, both AP and RP
demonstrate good results in comparison with previous meth-
ods.

While the metasearch for AP is a valid and easy-to im-
plement method, the one coresponding to RP is not. Thats
simply because R is unknown and critical for this algorithm
to work. While the results in the table are useful for ana-
lyzing the measures, for practical metasearch purposes one
has to come up with a guess for R, for each query.

We also show (Table 2) statistics on R over the TREC
queries. Because of the mean at almost all TRECs (except
TREC9) is around 100 it is expected that PC with cutoff
c=100 does the best of all cutoffs, being relatively close to
AP or RP numbers. For PC to work reasonably compared
to RP, even at the best c, here c=100, it is necessary that the
R values over the queries have a relatively small variation
(or standard deviation). In particular, for TREC 9 we see
that the ratio std/mean is significantly high , therefore the
drop in performance.

TREC R mean R std
5 109.9 137.7
6 92.1 103.1
7 93.4 85.1
8 94.5 80.0
9 52.3 84.1

Table 2: R stats over 50 queries

4. CONCLUSIONS AND FUTURE WORK
We showed how to do metasearch based on any given mea-

sure for ranked lists. Besides the good metaseach perfor-
mances, it is a usefull tool in analyzing the measure.

In the near future we plan to test this idea on other mea-
sures like b-pref [?] or F-measure
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TREC MNZ COND AP RP c5 c10 c15 c20 c30 c50 c100 c200 c500 c1000
5 .294 .307 .300 .308 .254 .265 .275 .280 .284 .288 .294 .285 .258 .237
6 .341 .315 .344 .357 .271 .292 .305 .315 .322 .335 .341 .334 .319 .312
7 .320 .308 .333 .334 .283 .295 .304 .311 .319 .327 .331 .321 .305 .301
8 .350 .343 .370 .366 .254 .286 .304 .313 .330 .351 .357 .343 .323 .305
9 .351 .348 .345 .353 .266 .309 .314 .303 .316 .320 .323 .310 .294 .259

Table 1: comparison of metasearch performances (average precision)


