The Pumping Lemma for Context-free Languages: An Example

Claim 1 The language

$$
\left\{w w^{R} w \mid w \in\{0,1\}^{*}\right\}
$$

is not context-free.
Proof: For the sake of contradiction, assume that the language $L=\left\{w w^{R} w \mid w \in\{0,1\}^{*}\right\}$ is context-free. The Pumping Lemma must then apply; let k be the pumping length. Consider the string

$$
s=\overbrace{0^{k} 1^{k}}^{w} \overbrace{1^{k} 0^{k}}^{w^{k}} \overbrace{0^{k} 1^{k}}^{w}=0^{k} 1^{2 k} 0^{2 k} 1^{k} \in L .
$$

Since $|s| \geq k$, it must be possible to split s into five pieces uvxyz satisfying the conditions of the Pumping Lemma. The substrings v and y must collectively contain some symbols since $|v y|>0$. We consider the following exhaustive cases.

1. The substrings v and/or y contain some symbols from the first block of $k 0$ s. Since $|v x y| \leq k$, v and y cannot contain any 0 s from the second block of $2 k 0 \mathrm{~s}$. Consider the string $u v^{0} x y^{0} z=$ $u x z$. The string $u x z$ must be of the form $0^{i_{1}} 1^{i_{2}} 0^{2 k} 1^{k}$ where $i_{1}<k$ and $i_{2} \leq 2 k$. If $u x z \in L$, it must be of the form $\alpha \alpha^{R} \alpha$. Since $u x z$ is of the form $0^{i_{1}} 1^{i_{2}} 0^{2 k} 1^{k}$ and of length at least $5 k$, the first α must begin with the block of $i_{1}<k 0 \mathrm{~s}$ followed by some number of 1 s . Thus, $\alpha^{R} \alpha$ must contain a block of at most $2 i_{1}<2 k 0 \mathrm{~s}$. But $u x z$ contains a block of $2 k 0 \mathrm{~s}$, a contradiction.
2. The substrings v and/or y contain some symbols from the first block of $2 k 1 s$. Since $|v x y| \leq k$, v and y cannot contain any 1 s from the second block of $k 1 \mathrm{~s}$. Consider the string $u v^{0} x y^{0} z=$ $u x z$. The string $u x z$ must be of the form $0^{i_{1}} 1^{i_{2}} 0^{i_{3}} 1^{k}$ where $i_{1} \leq k, i_{2}<2 k$, and $i_{3} \leq 2 k$. If $u x z \in L$, it must be of the form $\alpha \alpha^{R} \alpha$. Since $u x z$ is of the form $0^{i_{1}} 1^{i_{2}} 0^{i_{3}} 1^{k}$ and of length at least $5 k$, the last α must end with the block of $k 1 \mathrm{~s}$ preceded by some number of 0 s . Thus, $\alpha \alpha^{R}$ must contain a block of $2 k 1 \mathrm{~s}$. But $u x z$ contains a block of $i_{2}<2 k 1 \mathrm{~s}$, a contradiction.
3. The substrings v and/or y contain some symbols from the second block of $2 k 0 s$. Since $|v x y| \leq k, v$ and y cannot contain any 0 s from the first block of $k 0 \mathrm{~s}$. Consider the string $u v^{0} x y^{0} z=u x z$. The string $u x z$ must be of the form $0^{k} 1^{i_{1}} 0^{i_{2}} 1^{i_{3}}$ where $i_{1} \leq 2 k, i_{2}<2 k$, and $i_{3} \leq k$. If $u x z \in L$, it must be of the form $\alpha \alpha^{R} \alpha$. Since $u x z$ is of the form $0^{k} 1^{i_{1}} 0^{i_{2}} 1^{i_{3}}$ and of length at least $5 k$, the first α must begin with the block of $k 0 \mathrm{~s}$ followed by some number of 1 s . Thus, $\alpha^{R} \alpha$ must contain a block of $2 k 0 \mathrm{~s}$. But uxz contains a block of $i_{2}<2 k 0 \mathrm{~s}$, a contradiction.
4. The substrings v and/or y contain some symbols from the second block of $k 1 s$. Since $|v x y| \leq k$, v and y cannot contain any 1 s from the first block of $2 k 1 \mathrm{~s}$. Consider the string $u v^{0} x y^{0} z=u x z$. The string uxz must be of the form $0^{k} 1^{2 k} 0^{i_{1}} 1^{i_{2}}$ where $i_{1} \leq 2 k$ and $i_{2}<k$. If $u x z \in L$, it must be of the form $\alpha \alpha^{R} \alpha$. Since $u x z$ is of the form $0^{k} 1^{2 k} 0^{i_{1}} 1^{i_{2}}$ and of length at least $5 k$, the second α must end with the block of $i_{2}<k 1$ s preceded by some number of 0 s. Thus, $\alpha \alpha^{R}$ must contain a block of at most $2 i_{2}<2 k 1 \mathrm{~s}$. But uxz contains a block of $2 k 1 \mathrm{~s}$, a contradiction.

Thus, the Pumping Lemma is violated under all circumstances, and the language in question cannot be context-free.

Note that the choice of a particular string s is critical to the proof. One might think that any string of the form $w w^{R} w$ would suffice. This is not correct, however. Consider the trivial string $0^{k} 0^{k} 0^{k}=0^{3 k}$ which is of the form $w w^{R} w$. Letting $v=0, x=\varepsilon$, and $y=00$, we have $u v^{i} x y^{i} z=0^{3(k+i-1)}$ which is an element of L since it is a string consisting of a multiple of three 0 s. The above argument can be generalized for any string of the form $p^{3 k}$ where p is a palindrome. Furthermore, seemingly "good" strings such as

$$
s=\overbrace{0^{k} 1}^{w} \overbrace{10^{k}}^{w^{R}} \overbrace{0^{k} 1}^{w}=0^{k} 110^{2 k} 1
$$

can also be pumped: let $v=0, x=11$, and $y=00$ (i.e., v consists of the 0 immediately preceding the $11, x$ is the 11 , and y consists of the two 0 s immediately following the 11). We then have $u v^{i} x y^{i} z=0^{k+i-1} 110^{2(k+i-1)} 1$ which is an element of L for all i since $u v^{i} x y^{i} z=\alpha \alpha^{R} \alpha$ where $\alpha=0^{k+i-1} 1$. Again, the choice of the string to be pumped is critical.

