Solving Recurrences via Iteration

Consider the recurrence $T(n)=4 T(n / 2)+n^{2} / \lg n$. In order to solve the recurrence, I would first suggest rewriting the recurrence with the recursive component last and using a generic parameter not to be confused with n. We may think of the following equation as our general pattern, which holds for any value of \square.

$$
\begin{equation*}
T(\square)=\frac{\square^{2}}{\lg \square}+4 T(\square / 2) \tag{1}
\end{equation*}
$$

Since our pattern (Equation 1) is valid for any value of \square, we may use it to "iterate" the recurrence as follows.

$$
\begin{align*}
T(n) & =\frac{n^{2}}{\lg n}+4 T(n / 2) \\
& =\frac{n^{2}}{\lg n}+4\left(\frac{(n / 2)^{2}}{\lg (n / 2)}+4 T\left(n / 2^{2}\right)\right) \\
& =\frac{n^{2}}{\lg n}+\frac{n^{2}}{\lg (n / 2)}+4^{2} T\left(n / 2^{2}\right) \tag{2}
\end{align*}
$$

Always simplify the expression, eliminating parentheses as in Equation 2, before expanding further. Continuing...

$$
\begin{aligned}
T(n) & =\frac{n^{2}}{\lg n}+\frac{n^{2}}{\lg (n / 2)}+4^{2}\left(\frac{\left(n / 2^{2}\right)^{2}}{\lg \left(n / 2^{2}\right)}+4 T\left(n / 2^{3}\right)\right) \\
& =\frac{n^{2}}{\lg n}+\frac{n^{2}}{\lg (n / 2)}+\frac{n^{2}}{\log \left(n / 2^{2}\right)}+4^{3} T\left(n / 2^{3}\right) \\
& \vdots \\
& =\frac{n^{2}}{\lg n}+\frac{n^{2}}{\lg (n / 2)}+\frac{n^{2}}{\lg \left(n / 2^{2}\right)}+\ldots+\frac{n^{2}}{\lg \left(n / 2^{k-1}\right)}+4^{k} T\left(n / 2^{k}\right) \\
& =\sum_{j=0}^{k-1} \frac{n^{2}}{\lg \left(n / 2^{j}\right)}+4^{k} T\left(n / 2^{k}\right)
\end{aligned}
$$

We will next show that the pattern we have established is correct, by induction.
Claim 1 For all $k \geq 1, T(n)=\sum_{j=0}^{k-1} \frac{n^{2}}{\lg \left(n / 2^{j}\right)}+4^{k} T\left(n / 2^{k}\right)$.
Proof: The proof is by induction on k. The base case, $k=1$, is trivially true since the resulting equation matches the original recurrence. For the inductive step, assume that the statement is true for $k=i-1$; i.e.,

$$
T(n)=\sum_{j=0}^{i-2} \frac{n^{2}}{\lg \left(n / 2^{j}\right)}+4^{i-1} T\left(n / 2^{i-1}\right)
$$

Our task is then to show that the statement is true for $k=i$; i.e.,

$$
T(n)=\sum_{j=0}^{i-1} \frac{n^{2}}{\lg \left(n / 2^{j}\right)}+4^{i} T\left(n / 2^{i}\right)
$$

This may be accomplished by starting with the inductive hypothesis and applying the definition of the recurrence, as follows.

$$
\begin{aligned}
T(n) & =\sum_{j=0}^{i-2} \frac{n^{2}}{\lg \left(n / 2^{j}\right)}+4^{i-1} T\left(n / 2^{i-1}\right) \\
& =\sum_{j=0}^{i-2} \frac{n^{2}}{\lg \left(n / 2^{j}\right)}+4^{i-1}\left[\frac{\left(n / 2^{i-1}\right)^{2}}{\lg \left(n / 2^{i-1}\right)}+4 T\left(n / 2^{i}\right)\right] \\
& =\sum_{j=0}^{i-2} \frac{n^{2}}{\lg \left(n / 2^{j}\right)}+4^{i-1} \frac{n^{2} / 4^{i-1}}{\lg \left(n / 2^{i-1}\right)}+4^{i} T\left(n / 2^{i}\right) \\
& =\sum_{j=0}^{i-2} \frac{n^{2}}{\lg \left(n / 2^{j}\right)}+\frac{n^{2}}{\lg \left(n / 2^{i-1}\right)}+4^{i} T\left(n / 2^{i}\right) \\
& =\sum_{j=0}^{i-1} \frac{n^{2}}{\lg \left(n / 2^{j}\right)}+4^{i} T\left(n / 2^{i}\right)
\end{aligned}
$$

We thus have that $T(n)=\sum_{j=0}^{k-1} \frac{n^{2}}{\lg \left(n / 2^{j}\right)}+4^{k} T\left(n / 2^{k}\right)$ for all $k \geq 1$. We next choose a value of k which causes our recurrence to reach a known base case. Since $n / 2^{k}=1$ when $k=\lg n$, and $T(1)=\Theta(1)$, we have

$$
\begin{aligned}
T(n) & =\sum_{j=0}^{\lg n-1} \frac{n^{2}}{\lg \left(n / 2^{j}\right)}+4^{\lg n} T(1) \\
& =n^{2} \sum_{j=0}^{\lg n-1} \frac{1}{\lg n-j}+n^{\lg 4} \Theta(1) \\
& =n^{2} \sum_{\ell=1}^{\lg n} \frac{1}{\ell}+\Theta\left(n^{2}\right) \\
& =n^{2} \Theta(\ln \lg n)+\Theta\left(n^{2}\right) \\
& =\Theta\left(n^{2} \log \log n\right) .
\end{aligned}
$$

