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Solving Recurrences via Iteration

Consider the recurrence T'(n) = 4T(n/2) + n?/lgn. In order to solve the recurrence, I would first suggest
rewriting the recurrence with the recursive component last and using a generic parameter not to be confused
with n. We may think of the following equation as our general pattern, which holds for any value of O.
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Since our pattern (Equation 1) is valid for any value of O, we may use it to “iterate” the recurrence as
follows.
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Always simplify the expression, eliminating parentheses as in Equation 2, before expanding further. Contin-
uing. . .
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We will next show that the pattern we have established is correct, by induction.
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Proof: The proof is by induction on k. The base case, k = 1, is trivially true since the resulting equation
matches the original recurrence. For the inductive step, assume that the statement is true for k =i —1; i.e.,
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Our task is then to show that the statement is true for k = i; i.e.,

T(n) = ;0 hg,(ZW + 41T (n)2Y).

This may be accomplished by starting with the inductive hypothesis and applying the definition of the
recurrence, as follows.
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We thus have that T'(n) = Z;:é % +4*T(n/2F) for all k > 1. We next choose a value of k which

causes our recurrence to reach a known base case. Since n/2¥ = 1 when k = lgn, and T(1) = ©(1), we have
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