Solving Recurrences via Iteration

Consider the recurrence $T(n) = 4T(n/2) + n^2/\lg n$. In order to solve the recurrence, I would first suggest rewriting the recurrence with the recursive component *last* and using a generic parameter not to be confused with n. We may think of the following equation as our general pattern, which holds for any value of \Box .

$$T(\Box) = \frac{\Box^2}{\lg \Box} + 4T(\Box/2) \tag{1}$$

Since our pattern (Equation 1) is valid for any value of \Box , we may use it to "iterate" the recurrence as follows.

$$T(n) = \frac{n^2}{\lg n} + 4T(n/2)$$

= $\frac{n^2}{\lg n} + 4\left(\frac{(n/2)^2}{\lg(n/2)} + 4T(n/2^2)\right)$
= $\frac{n^2}{\lg n} + \frac{n^2}{\lg(n/2)} + 4^2T(n/2^2)$ (2)

Always simplify the expression, eliminating parentheses as in Equation 2, before expanding further. Continuing...

$$T(n) = \frac{n^2}{\lg n} + \frac{n^2}{\lg(n/2)} + 4^2 \left(\frac{(n/2^2)^2}{\lg(n/2^2)} + 4T(n/2^3)\right)$$

$$= \frac{n^2}{\lg n} + \frac{n^2}{\lg(n/2)} + \frac{n^2}{\log(n/2^2)} + 4^3T(n/2^3)$$

$$\vdots$$

$$= \frac{n^2}{\lg n} + \frac{n^2}{\lg(n/2)} + \frac{n^2}{\lg(n/2^2)} + \dots + \frac{n^2}{\lg(n/2^{k-1})} + 4^kT(n/2^k)$$

$$= \sum_{j=0}^{k-1} \frac{n^2}{\lg(n/2^j)} + 4^kT(n/2^k)$$

We will next show that the pattern we have established is correct, by induction.

Claim 1 For all
$$k \ge 1$$
, $T(n) = \sum_{j=0}^{k-1} \frac{n^2}{\lg(n/2^j)} + 4^k T(n/2^k).$

Proof: The proof is by induction on k. The base case, k = 1, is trivially true since the resulting equation matches the original recurrence. For the inductive step, assume that the statement is true for k = i - 1; i.e.,

$$T(n) = \sum_{j=0}^{i-2} \frac{n^2}{\lg(n/2^j)} + 4^{i-1}T(n/2^{i-1}).$$

Our task is then to show that the statement is true for k = i; i.e.,

$$T(n) = \sum_{j=0}^{i-1} \frac{n^2}{\lg(n/2^j)} + 4^i T(n/2^i).$$

This may be accomplished by starting with the inductive hypothesis and applying the definition of the recurrence, as follows.

$$T(n) = \sum_{j=0}^{i-2} \frac{n^2}{\lg(n/2^j)} + 4^{i-1}T(n/2^{i-1})$$

$$= \sum_{j=0}^{i-2} \frac{n^2}{\lg(n/2^j)} + 4^{i-1} \left[\frac{(n/2^{i-1})^2}{\lg(n/2^{i-1})} + 4T(n/2^i) \right]$$

$$= \sum_{j=0}^{i-2} \frac{n^2}{\lg(n/2^j)} + 4^{i-1} \frac{n^2/4^{i-1}}{\lg(n/2^{i-1})} + 4^i T(n/2^i)$$

$$= \sum_{j=0}^{i-2} \frac{n^2}{\lg(n/2^j)} + \frac{n^2}{\lg(n/2^{i-1})} + 4^i T(n/2^i)$$

$$= \sum_{j=0}^{i-1} \frac{n^2}{\lg(n/2^j)} + 4^i T(n/2^i)$$

We thus have that $T(n) = \sum_{j=0}^{k-1} \frac{n^2}{\lg(n/2^j)} + 4^k T(n/2^k)$ for all $k \ge 1$. We next choose a value of k which causes our recurrence to reach a known base case. Since $n/2^k = 1$ when $k = \lg n$, and $T(1) = \Theta(1)$, we have

$$T(n) = \sum_{j=0}^{\lg n-1} \frac{n^2}{\lg(n/2^j)} + 4^{\lg n} T(1)$$

= $n^2 \sum_{j=0}^{\lg n-1} \frac{1}{\lg n-j} + n^{\lg 4} \Theta(1)$
= $n^2 \sum_{\ell=1}^{\lg n} \frac{1}{\ell} + \Theta(n^2)$
= $n^2 \Theta(\ln \lg n) + \Theta(n^2)$
= $\Theta(n^2 \log \log n).$