vector space retrieval

what is a retrieval model?

Model is an idealization or abstraction of an actual process
Mathematical models are used to study the properties of the process, draw conclusions, make predictions

- Conclusions derived from a model depend on whether the model is a good approximation of the actual situation
- Statistical models represent repetitive processes, make predictions about frequencies of interesting events
- Retrieval models can describe the computational process
 - e.g. how documents are ranked
 - Note that how documents or indexes are *stored* is implementation
- Retrieval models can attempt to describe the human process
 - e.g. the information need, interaction
 - Few do so meaningfully
- Retrieval models have an explicit or implicit definition of relevance

retrieval models

boolean

today

- vector space
- latent semnatic indexing
- statistical language
- inference network

outline

• review: geometry, linear algebra

- vector space model
- vector selection
- simmilarity
- weighting schemes
- latent semnatic indexing

linear algebra

Fig. 1.3. The column picture: linear combination of columns equals b.

subspaces

linear independence, base,

dimmension, rank

- vector \overline{x} is linear dependent of vectors $\overline{y_1},\overline{y_2},...,\overline{y_t}$ if there exists real numbers $c_1,c_2,...,c_t$ such that
- $\overline{x} = c_1 \overline{y_1} + c_2 \overline{y_2} + \dots c_t \overline{y_t}$
- base of a vectorial space = maximal set of linear independent vectors. All bases of a given space have the same dimmension (dimmension of the space)
- rank(A) = maximum number of raws/columnslinear independent
- $\operatorname{rank}(A) = \operatorname{dimension} \operatorname{of} \operatorname{the} \operatorname{subspacespanned}$ by A

matrix multiplication

 $(AB)_{32} = a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42}.$

dot product, norm

• dot product of 2 same dimension arrays is simply the matrix product with result a real number

•
$$x = (x_1, x_2, ..., x_n); y = (y_1, y_2, ..., y_n)$$
 then
 $\langle x \cdot y \rangle = x * y^T = \sum_{i=1}^n x_i y_i$

•
$$L_2$$
 norm : $||x|| = \sqrt{\langle x \cdot x \rangle}$

• normalization: $\overline{x} = \frac{x}{||x||}; ||\overline{x}|| = 1$

cosine computation

11

orthogonality

outline

- review: geometry, linear algebra
- vector space model
- vector selection
- simmilarity
- weighting schemes
- latent semnatic indexing

vector space

- represent documents and queries as vectors in the term space
- issue: find the right coefficients (many variants)
- use a geometric similarity measure, often angle-related
- issue: normalization

mapping to vectors

•terms: an axis for every term -vectors coresponding to terms are canonical vectors

•documents: sum of the vectors corresponding to terms in the doc

•queries: treated the same as documents

coefficients

- The coefficients (vector lengths, term weights) represent term presence, importance, or "aboutness"
 - Magnitude along each dimension
- Model gives no guidance on how to set term weights
- Some common choices:
 - Binary: 1 = term is present, 0 = term not present in document
 - *tf*. The frequency of the term in the document
 - *tf idf*. *idf* indicates the discriminatory power of the term
- Tf-idf is far and away the most common
 - Numerous variations...

example: raw tf weights

tf = term frequency

 raw tf (called tf) = count of 'term' in document

- robinsontf (okapi_tf): okapi_tf = $\frac{tf}{tf+.5+1.5\frac{doclen}{avadoclen}}$
- Based on a set of simple criteria loosely connected to
- the 2-Poisson model
- Basic formula is tf/(k+tf) where k is a constant (approx. 1-2)
- Document length introduced as a verbosity factor

many variants

Robertson tf

IDF weights

- Inverse Document Frequency
- used to weight terms based on frequency in the corpus (or language)
- fixed, it can be precomputed for every term
- (basic) $IDF(t) = \log(\frac{N}{N_t})$ where

N = # of docs

 $N_t = \#$ of docs containing term t

TFIDF

- in fact tf*idf
- the weight on every term is tf(t,d)*idf(t)
- Often : IDF = $\log(N/df) + 1$ where N is the number of documents in the collection, df is the number of documents the term occurs in

IDF = log_{p}^{1} , wher p is the term probability sometimes normalized when in TF.IDF combination e.g. for INQUERY: $\frac{log(\frac{N+0.5}{df})}{log(N+10)}$

- TF and IDF combined using multiplication
- No satisfactory model behind these combinations

outline

- review: geometry, linear algebra
- vector space model
- vector selection

• simmilarity

- weighting schemes
- latent semnatic indexing

similarity, normalized

$similarity = \frac{|intersection|}{|set_1| \cdot |set_2|}$

- the size of intersection alone is meaningless
- often divided by sizes of sets
- same for vectors, using norm

- by normalizing vectors, cosine does not change

similarity: weighted features

$$T_{1} \quad T_{2} \quad T_{3}$$

$$D_{1} = 3 \ cat + 1 \ dog + 4 \ lion$$

$$D_{2} = 8 \ cat + 2 \ dog + 6 \ lion$$

$$D_{1} = (3T_{1} + 1T_{2} + 4T_{3})$$

$$D_{2} = (8T_{2} + 2T_{2} + 6T_{3})$$

$$Q = 2 \ dog$$

 $Q = (0T_1 + 2T_2 + 0T_3)$

Correlated Terms

Orthogonal Terms

	Term	cat	dog	lion
T_1	cat	1.00	-0.20	0.50
T_2	dog	-0.20	1.00	-0.40
T ₃	lion	0.50	-0.40	1.00

Term	cat	dog	lion
cat	1.00	0.00	0.00
dog	0.00	1.00	0.00
lion	0.00	0.00	1.00

$$Sim(D_1,Q) = (3T_1 + 1T_2 + 4T_3) \cdot (2T_2)$$

= 6T_1 \cdot T_2 + 2T_2 \cdot T_2 + 8T_3 \cdot T_2
= -6 \cdot 0.2 + 2 \cdot 1 - 8 \cdot 0.4
= -1.2 + 2 - 3.2
= -2.4

 $Sim(D_1,Q) = 3 \cdot 0 + 1 \cdot 2 + 4 \cdot 0$ = 2

vector similarity: cosine

cosine, normalization

cosine similarity: example

$D_1 = (0.5T_1 + 0.8T_2 + 0.3T_3)$ $Q = (1.5T_1 + 1T_2 + 0T_3)$

Sim(D₁,Q) =
$$\frac{(0.5 \times 1.5) + (0.8 \times 1)}{\sqrt{(0.5^2 + 0.8^2 + 0.3^2)(1.5^2 + 1^2)}}$$
$$= \frac{1.55}{\sqrt{.98 \times 3.25}}$$

.868

 $D'_{1} = (0.5T_{1} + 0.8T_{2} + 0.3T_{3})/\sqrt{0.98} \qquad Q' = (1.5T_{1} + 1T_{2} + 0T_{3})/\sqrt{3.25}$ $\approx 0.51T_{1} + 0.82T_{2} + 0.31T_{3} \qquad \approx 0.83T_{1} + 0.555T_{2}$

$$Sim(D_1,Q) = Sim(D'_1,Q')$$

$$= \frac{(0.51 \times 0.83) + (0.82 \times 0.555)}{\sqrt{(0.51^2 + 0.82^2 + 0.31^2)(0.83^2 + 0.555^2)}}$$

$$= (0.51 \times 0.83) + (0.82 \times 0.555)$$

$$= 0.878$$
round-off error, $\longrightarrow \approx 0.868$ (from earlier slide)

tf-idf base similarity formula

 $\sum_{I} (\mathsf{TF}_{query}(t)) \cdot \mathsf{IDF}_{query}(t)) \cdot (\mathsf{TF}_{doc}(t)) \cdot \mathsf{IDF}_{doc}(t))$

$||doc|| \cdot ||query||$

- many options for $\mathsf{TF}_{\mathsf{query}}$ and $\mathsf{TF}_{\mathsf{doc}}$
 - raw tf, Robertson tf, Lucene etc
 - -try to come up with yours
- some options for $\mathsf{IDF}_{\mathsf{doc}}$
- $\mathsf{IDF}_\mathsf{query}$ sometimes not considered
- normalization is critical

• augmented tf-idf cosine

$$\frac{\left(\frac{1}{2} + \frac{1}{2}\frac{\mathsf{tf}_{t,d}}{\max(\mathsf{tf}_{*,d})}\right) \cdot \log \frac{N}{n_t}}{\left[\sum_t \left(\left(\frac{1}{2} + \frac{1}{2}\frac{\mathsf{tf}_{t,d}}{\max(\mathsf{tf}_{*,d})}\right) \cdot \log \frac{N}{n_t}\right)^2\right]^{0.5}}$$

outline

- review: geometry, linear algebra
- vector space model
- vector selection
- simmilarity
- weighting schemes

• latent semnatic indexing

more linear algebra

A = LDU factorization

• For any $m \ge n$ matrix A, there exists a permutation matrix P, a lower triangular matrix L with unit diagonal and an $m \ge n$ echelon matrix U such that PA = LU [* * * * * * * *

• For any $n \times n$ matrix A, there exists L,U lower and upper triunghiular with unit diagonals, D a diagonal matrix of pivots and P a permutation matrix such that PA = LDU

• If A is symmetric $(A = A^T)$ then there is no need for P and $U = L^T$: $A = LDL^T$

eigenvalues and eigenvectors

• λ is an eigenvalue for matrix A iff $det(A - \lambda I) = 0$

 \bullet every eigenvalue has a correspondent non-zero eigenvector x that satisfies

$$(A - \lambda I)x = 0 \text{ or } Ax = \lambda x$$

in other words Ax and x have same direction

- sum of eigenvalues = trace(A) = sum of di-agonal
- product of eigenvalues = det(A)
- eigenvalues of a upper/lower triangular matrix are the diagonal entries

matrix diagonal form

• if A has lineary independent eigenvectors $y_1, y_2, ..., y_n$ and S is the matrix having those as columns, $S = [y_1y_2...y_n]$, then S is invertible and $S^{-1}AS = \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & & \\ & & & \lambda_n \end{bmatrix}$, the diagonal

matrix of eigenvalues of A.

- $A = S \wedge S^{-1}$
- no repeated eigenval \Rightarrow indep. eigenvect
- A symetric $A^T = A \Rightarrow S$ orthogonal: $S^T S = 1$
- $\bullet~S$ is not unique
- $AS = S \wedge \text{holdsiff } S$ has eigenvect as columns
- not all matrices are diagonalizable

singular value decomposition

• if A is $m \times n, m > n$ real matrix then it can be decomposed as $A = UDV^T \text{ where }$

- U is $m \times n$; D, V are $n \times n$
- U, V are orthogonal : $U^T U = V^T V = \mathbf{1}_{n \times n}$
- $\bullet~D$ is diagonal, its entries are the squre roots of eigenvalues of A^TA

latent semantic indexing

- Variant of the vector space model
- Uses Singular Value Decomposition (a dimensionality reduction technique) to identify uncorrelated, significant basis vectors or factors
 - Rather than non-independent terms
- Replace original words with a subset of the new factors (say 100) in both documents and queries
- Compute similarities in this new space
- Computationally expensive, uncertain effectiveness

dimensionality reduction

•when the representation space is rich

- •but the data is lying in a small-dimension subspace
- •that's when some eigenvalues are zero
- •non-exact: ignore smallest eigenvalues, even if they are not zero

latent semantic indexing

documents

- T_0, D_0 orthogonal matrices with unit length columns $(T_0 * T_0^T = 1)$
- S_0 diagonal matrix of eigen values
- $\bullet\ m$ is the rank of X

LSI: example

- c1: Human machine interface for Lab ABC computer applications
- c2: A survey of user opinion of computer system response time
- c3: The EPS user interface management system
- c4: System and human system engineering testing of EPS
- c5: Relation of user-perceived response time to error measurement
- ml: The generation of random, binary, unordered trees
- m2: The intersection graph of paths in trees
- m3: Graph minors IV: Widths of trees and well-quasi-ordering
- m4: Graph minors: A survey

LSI: example

0.29 - 0.41 - 0.11 - 0.34 - 0.52 - 0.06 - 0.410.22 - 0.110.14 -0.55 0.28 0.50 -0.07 -0.01 -0.11 0.20 - 0.070.04 - 0.16 - 0.59 - 0.11 - 0.25 - 0.300.06 0.49 0.24 0.000.01 0.33 0.38 0.00 0.10 0.40 0.06 - 0.340.33 -0.16 -0.21 -0.17 0.03 0.27 0.64 -0.17 0.36 0.28 - 0.02 - 0.050.11 - 0.430.07 0.08 - 0.170.27 0.28 -0.02 -0.05 0.08 - 0.170.11 - 0.430.07 0.27 0.27 0.03 - 0.02 - 0.170.11 0.30 - 0.140.33 0.19 0.27 - 0.18 - 0.03 - 0.54 - 0.08 - 0.47 - 0.04 - 0.580.21 0.03 0.59 -0.39 -0.29 0.25 -0.23 0.01 0.49 0.23 0.00 -0.07 0.11 0.16 -0.68 0.23 0.62 0.22 0.04 0.34 0.680.180.45 0.14 - 0.01 - 0.300.280.03

 $T_0 =$

 $S_0 =$

3.34 2.54

2.35

1.64

1.50

0.85

0.56

0.36

 $D_0 =$

0.20	-0.06	0.11	-0.95	0.05	-0.08	0.18	-0.01	-0.06
0.61	0.17	-0.50	-0.03	-0.21	-0.26	-0.43	0.05	0.24
0.46	-0.03	0.21	0.04	0.38	0.72	-0.24	0.01	0.02
0.54	-0.23	0.57	0.27	-0.21	-0.37	0.26	-0.02	-0.08
0.28	0.11	-0.51	0.15	0.33	0.03	0.67	-0.06	-0.26
0.00	0.19	0.10	0.02	0.39	-0.30	-0.34	0.45	-0.62
0.01	0.44	0.19	0.02	0.35	-0.21	-0.15	-0.76	0.02
0.02	0.62	0.25	0.01	0.15	0.00	0.25	0.45	0.52
0.08	0.53	0.08	-0.03	-0.60	0.36	-0.04	-0.07	-0.45

- T has orthogonal unit-length col $(T * T^T = 1)$
- D has orthogonal unit-length col $(D*D^T = 1)$
- $\bullet~S$ diagonal matrix of eigen values
- $\bullet\ m$ is the rank of X
- t = # of rows in X
- d = # of columns in X
- k = chosen number of dimensions of reduced

model

$X \approx$											
	Т	S					D'				
0.2	2 -0.11	3.34	0.20	0.61	0.46	0.54	0.28	0.00	0.02	0.02	0.08
0.20	0 -0.07	2.54	-0.06	0.17	-0.13	-0.23	0.11	0.19	0.44	0.62	0.53
0.2	4 0.04										
0.4	0.06										
0.6	4 -0.17										
0.2	7 0.11										
0.2	7 0.11										
0.3	0 -0.14										
0.2	1 0.27										
0.0	1 0.49										
0.0	4 0.62										
0.0	3 0.45										

LSI: example

 $\hat{X} =$

0.16	0.40	0.38	0.47	0.18	-0.05	-0.12	-0.16	-0.09
0.14	0.37	0.33	0.40	0.16	-0.03	-0.07	-0.10	-0.04
0.15	0.51	0.36	0.41	0.24	0.02	0.06	0.09	0.12
0.26	0.84	0.61	0.70	0.39	0.03	0.08	0.12	0.19
0.45	1.23	1.05	1.27	0.56	-0.07	-0.15	-0.21	-0.05
0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
0.22	0.55	0.51	0.63	0.24	-0.07	-0.14	-0.20	-0.11
0.10	0.53	0.23	0.21	0.27	0.14	0.31	0.44	0.42
-0.06	0.23	-0.14	-0.27	0.14	0.24	0.55	0.77	0.66
-0.06	0.34	-0.15	-0.30	0.20	0.31	0.69	0.98	0.85
-0.04	0.25	-0.10	-0.21	0.15	0.22	0.50	0.71	0.62

original vs LSI

	-1	c2	c3	c4	-5	ml	m2	m3	m4									
human	1	0	0	ì	0	0	0	0	0									
interfac	l	0	1	0	0	0	0	0	0									
computer	1	1	0	0	0	0	0	0	0									
user	0	ļ	1	0	1	0	0	0	0									
system	0	1	I	2	0	0	0	0	0									
response	0	1	0	0	1	0	0	0	0									
time	0	I	0	0	1	0	0	0	0									
EPS	9	0	l	1	0	0	0	0	0									
survey	0	0	0	0	0	0	0	0	0									
trees	0	0 0	0	0 0	G	0	1	1	0									
graph minors	0 0	0	0 0	0		0	0	1										
manor 5	U	v	v	v	U	V	Ū				10	0.00	0.47	0.10	0.05	-0.12	-0.16	0.00
								hum	an	0.16		0.38						
								inter	face	0 14	0.37	0.33	0.40	0.16	-0.03	-0.07		
								com	puter	0.15	0.51	0.36	0.41	0.24	0.02	0.06	0.09	0.12
								user		0.26	0.84	0.61	0.70	0.39	0.03	0.08	0.12	0.19
								syste	em	0.45	1.23	1.05	1.27	0.56	-0.07	-0.15	-0.21	-0.05
								resp		0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
								time		0 16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
								EPS		0.22		0.51	0.63	0.24	-0.07	-0.14	-0.20	-0.11
								surv		0.10	0.52				9.14	0.31	0.44	0.42
								trees	•	-0.06			-0.27	8.14	0.24	0.55	0.77	0.66
													-0.30	0.20	0.31	0.69	0. 98	0.85
								grap mine		-0.00		-0.10			0.22	0.50	0.71	0.62
								mm	11.2	-0.04	0.23	0.10	0.21	0.15		0100		

using LSI

<i>X</i> ≈													
Т	S		D '										
0.22 -0.11	3.34 0.20	0.61 0.46	0.54 0.28	0.00 0.02	0.02 0.08	3							
0.20 -0.07	2.54 -0.06	0.17 -0.13	-0.23 0.11	0.19 0.44	0.62 0.53	3							
0.24 0.04		w doc vo	ctore (k	dimonci	onc)								
0.40 0.06	• D is ne	w uoc ve	CLOIS (K	umensi	OIIS)								
0.64 -0.17		T provides term vectors											
0.27 0.11	• T provides term vectors												
0.27 0.11	• Givon C	Civon Oma a grant to compare to doce											
0.30 -0.14		ven $Q = q_1 q_2 \dots q_t$ want to compare to docs											
0.21 0.27	Convert	· O from	t dimon	sions to	k								
0.01 0.49	Conven	. Q IIUIII	<i>t</i> uniter	510115 10	r.								
0.04 0.62	Q' :	$=Q_{1\times t}^T$	$*T_{t \sim l_{a}} *$	S_{1}^{-1}									
0.03 0.45		𝗘 I×t	$-\iota \times \kappa$	$\sim k \times k$									
	• Can nov	w compa	re to do	c vector	S								
		acia ann	raach ca		d to od	d							

• Same basic approach can be used to add new docs to the database

LSI: does it work?

- Decomposes language into "basis vectors"
 In a sense, is looking for core concepts
- In theory, this means that system will retrieve documents using synonyms of your query words

 The "magic" that appeals to people
- From a demo at lsi.research.telcordia.com
 They hold the patent on LSI

vector space retrieval: summary

• Standard vector space

- Each dimension corresponds to a term in the vocabulary
- Vector elements are real-valued, reflecting term importance
- Any vector (document,query, ...) can be compared to any other
- Cosine correlation is the similarity metric used most often
- Latent Semantic Indexing (LSI)
 - Each dimension corresponds to a "basic concept"
 - Documents and queries mapped into basic concepts
 - Same as standard vector space after that
 - Whether it's good depends on what you want

vector space model: disadvantages

- Assumed independence relationship among terms – Though this is a *very* common retrieval model assumption
- Lack of justification for some vector operations
 - e.g. choice of similarity function
 - e.g., choice of term weights
- Barely a retrieval model
 - Doesn't explicitly model relevance, a person's information need, language models, etc.
- Assumes a query and a document can be treated the same (symmetric)

vector space model: advantages

- Simplicity
- Ability to incorporate term weights
 - Any type of term weights can be added
 - No model that has to justify the use of a weight
- Ability to handle "distributed" term representations – e.g., LSI
- Can measure similarities between almost anything:
 - documents and queries
 - documents and documents
 - queries and queries
 - sentences and sentences
 - etc.