vector space retrieval

what is a retrieval model?

- Model is an idealization or abstraction of an actual process
- Mathematical models are used to study the properties of the process, draw conclusions, make predictions
- Conclusions derived from a model depend on whether the model is a good approximation of the actual situation
- Statistical models represent repetitive processes, make predictions about frequencies of interesting events
- Retrieval models can describe the computational process
- e.g. how documents are ranked
- Note that how documents or indexes are stored is implementation
- Retrieval models can attempt to describe the human process
- e.g. the information need, interaction
- Few do so meaningfully
- Retrieval models have an explicit or implicit definition of relevance

retrieval models

- boolean
today
- vector space
- latent semnatic indexing
- statistical language
- inference network

outline

- review: geometry, linear algebra
- vector space model
- vector selection
- simmilarity
- weighting schemes
- latent semnatic indexing

linear algebra

vectors

Fig. 1.3. The column picture: linear combination of columns equals b.

subspaces

linear independence, base,

dimmension, rank

- vector \bar{x} is linear dependent of vectors $\overline{y_{1}}, \overline{y_{2}}, \ldots, \overline{y_{t}}$ if there exists real numbers $c_{1}, c_{2}, \ldots, c_{t}$ such that
$\bar{x}=c_{1} \overline{y_{1}}+c_{2} \overline{y_{2}}+\ldots c_{t} \overline{y_{t}}$
- base of a vectorial space $=$ maximal set of linear independent vectors. All bases of a given space have the same dimmension (dimmension of the space)
- $\operatorname{rank}(A)=$ maximum number of raws/columns linear independent
- $\operatorname{rank}(A)=$ dimenion of the subspacespanned by A

matrix multiplication

$$
(A B)_{32}=a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32}+a_{34} b_{42} .
$$

3 by 4 matrix $\quad 4$ by 2 matrix 3 by 2 matrix

dot product, norm

- dot product of 2 same dimension arrays is simply the matrix product with result a real number
- $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) ; y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ then $<x \cdot y>=x * y^{T}=\sum_{i=1}^{n} x_{i} y_{i}$
- L_{2} norm : $\|x\|=\sqrt{\langle x \cdot x>}$
- normalization: $\bar{x}=\frac{x}{\|x\|} ;\|\bar{x}\|=1$

cosine computation

$\cos (\theta)=\cos (\beta-\alpha)=\cos (\beta) \cos (\alpha)+\sin (\beta) \sin (\alpha)$

orthogonality

projections

outline

- review: geometry, linear algebra
- vector space model
- vector selection
- simmilarity
- weighting schemes
- latent semnatic indexing

vector space

- represent documents and queries as vectors in the term space
- issue: find the right coefficients (many variants)
- use a geometric similarity measure, often angle-related
- issue: normalization

mapping to vectors

-terms: an axis for every term
-vectors coresponding to terms are canonical vectors
-documents: sum of the vectors corresponding to terms in the doc
-queries: treated the same as documents

coefficients

- The coefficients (vector lengths, term weights) represent term presence, importance, or "aboutness"
- Magnitude along each dimension
- Model gives no guidance on how to set term weights
- Some common choices:
- Binary: $1=$ term is present, $0=$ term not present in document
- tf. The frequency of the term in the document
- tf • idf. idf indicates the discriminatory power of the term
- Tf•idf is far and away the most common
- Numerous variations...

example: raw tf weights

tf $=$ term frequency

- raw tf (called tf) $=$ count of 'term' in document
- robinsontf (okapi_tf): okapi_tf $=\frac{t f}{t f+.5+1.5 \frac{\text { doden }}{\text { avgdocon }}}$
- Based on a set of simple criteria loosely connected to the 2-Poisson model
- Basic formula is $t f /(k+t f)$ where k is a constant (approx. 1-2)
- Document length introduced as a verbosity factor
- many variants

Robertson tf

IDF weights

- Inverse Document Frequency
- used to weight terms based on frequency in the corpus (or language)
- fixed, it can be precomputed for every term
- (basic) $I D F(t)=\log \left(\frac{N}{N_{t}}\right)$ where $N=\#$ of docs
$N_{t}=\#$ of docs containing term t

TFIDF

- in fact tf*idf
- the weight on every term is $\mathrm{tf}(\mathrm{t}, \mathrm{d}) * \mathrm{idf}(\mathrm{t})$

Often: $\operatorname{IDF}=\log (N / d f)+1$ where N is the number of documents in the collection, $d f$ is the number of documents the term occurs in
IDF $=\log _{\bar{p}}^{\frac{1}{p}}$, wher p is the term probability sometimes normalized when in TF.IDF combination e.g. for INQUERY: $\frac{\log \left(\frac{n+0.5}{t 5}\right)}{\log (N+10)}$

- TF and IDF combined using multiplication
- No satisfactory model behind these combinations

outline

- review: geometry, linear algebra
- vector space model
- vector selection
- simmilarity
- weighting schemes
- latent semnatic indexing

similarity, normalized

but different fraction of sets

similarity $=\frac{\mid \text { intersection }}{\left|\mathbf{s e t}_{1}\right| \cdot\left|\mathbf{S e t}_{2}\right|}$

- the size of intersection alone is meaningless
- often divided by sizes of sets
- same for vectors, using norm
- by normalizing vectors, cosine does not change

common similarity measures

$\underline{\text { Sim }}(X, Y) \quad$ Binary Term Vectors Weighted Term Vectors

Inner product

$$
|X \cap Y|
$$

$\sum x_{i} \cdot y_{i}$
Dice
coefficient $\quad \frac{2|X \cap Y|}{|X|+|Y|}$
$\frac{2 \sum x_{i} \cdot y_{i}}{\sum x_{i}^{2}+\sum y_{i}^{2}}$
Cosine
coefficient
$\frac{|X \cap Y|}{\sqrt{|X|} \sqrt{|Y|}}$
$\frac{\sum x_{i} \cdot y_{i}}{\sqrt{\sum x_{i}^{2} \cdot \sum y_{i}^{2}}}$

Jaccard
coefficient

$$
\frac{|X \cap Y|}{|X|+|Y|-|X \cap Y|}
$$

$\frac{\sum x_{i} \cdot y_{i}}{\sum x_{i}^{2}+\sum y_{i}^{2}-\sum x_{i} \cdot y_{i}}$

similarity: weighted features

$$
\begin{aligned}
& \begin{array}{l}
D_{1}=3 \text { cat }+1 \text { dog }+4 \text { lion } \\
D_{2}=8 c a t+2 \\
\text { dog }+6 \text { lion } \\
D_{1}=\left(3 \mathrm{~T}_{1}+1 \mathrm{~T}_{2}+4 \mathrm{~T}_{3}\right) \\
D_{2}=\left(8 \mathrm{~T}_{2}+2 \mathrm{~T}_{2}+6 \mathrm{~T}_{3}\right)
\end{array} \\
& \quad \text { Correlated Terms }
\end{aligned}
$$

vector similarity: cosine

cosine, normalization

cosine similarity: example

$$
D_{1}=\left(0.5 \mathrm{~T}_{1}+0.8 \mathrm{~T}_{2}+0.3 \mathrm{~T}_{3}\right) \quad \mathrm{Q}=\left(1.5 \mathrm{~T}_{1}+1 \mathrm{~T}_{2}+0 \mathrm{~T}_{3}\right)
$$

$$
\begin{aligned}
\operatorname{Sim}\left(D_{1}, Q\right) & =\frac{(0.5 \times 1.5)+(0.8 \times 1)}{\sqrt{\left(0.5^{2}+0.8^{2}+0.3^{2}\right)\left(1.5^{2}+1^{2}\right)}} \\
& =\frac{1.55}{\sqrt{.98 \times 3.25}} \\
& =\quad .868
\end{aligned}
$$

cosine example normalized

$$
\overline{D_{1}}=\left(0.5 T_{1}+0.8 T_{2}+0.3 T_{3}\right)
$$

$$
\bar{Q}=\left(1.5 T_{1}+1 T_{2}+0 T_{3}\right)
$$

$$
\begin{array}{rlrl}
D_{1}^{\prime} & =\left(0.5 T_{1}+0.8 T_{2}+0.3 T_{3}\right) / \sqrt{0.98} & & Q^{\prime} \\
& \left.\approx 0.51 T_{1}+0.5 T_{1}+1 T_{2}+0 T_{3}\right) / \sqrt{3.25} \\
\end{array}
$$

$$
\begin{aligned}
\overrightarrow{\operatorname{sim}\left(D_{1}, Q\right)} & =\operatorname{sim}\left(D_{1}^{\prime}, Q^{\prime}\right) \\
& =\frac{(0.51 \times 0.83)+(0.82 \times 0.555)}{\sqrt{\left(0.51^{2}+0.82^{2}+0.31^{2}\right)\left(0.83^{2}+0.555^{2}\right)}} \\
& =(0.51 \times 0.83)+(0.82 \times 0.555) \\
& =0.878 \\
\begin{array}{l}
\text { round-off error, } \longrightarrow \\
\text { should be the same }
\end{array} & \approx 0.868 \text { (from earlier slide) }
\end{aligned}
$$

tf-idf base similarity formula

- many options for $T F_{\text {query }}$ and $T F_{\text {doc }}$ - raw tf, Robertson tf, Lucene etc - try to come up with yours
- some options for IDF $_{\text {doc }}$
- $I D F_{\text {query }}$ sometimes not considered
- normalization is critical

Lucene comparison

Term normalization is square root of number of tokens in d that are in the same field as t

other term weighting schemes

- Lucene

$$
w_{t, d}=\frac{\mathrm{tf}_{d, t} \cdot \log \left(N / \mathrm{df}_{t}+1\right)}{\sqrt{\text { number of tokens in } d \text { in the same field as } t}}
$$

- augmented tf-idf cosine

$$
\frac{\left(\frac{1}{2}+\frac{1}{2} \frac{\mathrm{tf}_{t, d}}{\max \left(\mathrm{tf}_{*, d}\right)}\right) \cdot \log \frac{N}{n_{t}}}{\left[\sum_{t}\left(\left(\frac{1}{2}+\frac{1}{2} \frac{\mathrm{tf}_{t, d}}{\max \left(\mathrm{tf}_{*, d}\right)}\right) \cdot \log \frac{N}{n_{t}}\right)^{2}\right]^{0.5}}
$$

outline

- review: geometry, linear algebra
- vector space model
- vector selection
- simmilarity
- weighting schemes
- latent semnatic indexing
more linear algebra

$A=L D U$ factorization

- For any $m \times n$ matrix A, there exists a permutation matrix P, a lower triangular matrix L with unit diagonal and an $m \times n$ echelon matrix U such that $P A=L U$

$$
U=\left[\begin{array}{ccccccccc}
\circledast & * & * & * & * & * & * & * & * \\
\hline 0 & \circledast & * & * & * & * & * & * & * \\
0 & 0 & 0 & * & * & * & * & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \circledast \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- For any $n \times n$ matrix A, there exists L, U lower and upper triunghiula with unit diagonals, D a diagonal matrix of pivots and P a permutation matrix such that $P A=L D U$
- If A is symmetric $\left(A=A^{T}\right)$ then there is no need for P and $U=L^{T}: A=L D L^{T}$

eigenvalues and eigenvectors

- λ is an eigenvalue for matrix A iff
$\operatorname{det}(A-\lambda I)=0$
- every eigenvalue has a correspondent nonzero eigenvector x that satisfies
$(A-\lambda I) x=0$ or $A x=\lambda x$
in other words $A x$ and x have same direction
- sum of eigenvalues $=\operatorname{trace}(A)=$ sum of diagonal
- product of eigenvalues $=\operatorname{det}(A)$
- eigenvalues of a upper/lower triangular matrix are the diagonal entries

matrix diagonal form

- if A has lineary independent eigenvectors $y_{1}, y_{2}, \ldots, y_{n}$ and S is the matrix having those as columns, $S=\left[y_{1} y_{2} \ldots y_{n}\right]$, then S is invertible and
$S^{-1} A S=\wedge=\left[\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ldots & \\ & & & \lambda_{n}\end{array}\right]$, the diagonal matrix of eigenvalues of A.
- $A=S \wedge S^{-1}$
- no repeated eigenval \Rightarrow indep. eigenvect
- A symetric $A^{T}=A \Rightarrow S$ orthogonal: $S^{T} S=1$
- S is not unique
- $A S=S \wedge$ holdsiff S has eigenvect as columns
- not all matrices are diagonalizable

singular value decomposition

- if A is $m \times n, m>n$ real matrix then it can be decomposed as $A=U D V^{T}$ where
- U is $m \times n ; D, V$ are $n \times n$
- U, V are orthogonal : $U^{T} U=V^{T} V=1_{n \times n}$
- D is diagonal, its entries are the squre roots of eigenvalues of $A^{T} A$

latent semantic indexing

- Variant of the vector space model
- Uses Singular Value Decomposition (a dimensionality reduction technique) to identify uncorrelated, significant basis vectors or factors
- Rather than non-independent terms
- Replace original words with a subset of the new factors (say 100) in both documents and queries
- Compute similarities in this new space
- Computationally expensive, uncertain effectiveness

dimensionality reduction

-when the representation space is rich
-but the data is lying in a small-dimension subspace
-that's when some eigenvalues are zero
-non-exact: ignore smallest eigenvalues, even if they are not zero

latent semantic indexing

documents

$=\quad T_{0}$

S_{0}

$m \times d$
D_{0}

- T_{0}, D_{0} orthogonal matrices with unit length columns ($T_{0} * T_{0}^{T}=1$)
- S_{0} diagonal matrix of eigen values
- m is the rank of X

LSI: example

c1: Human machine interface for Lab ABC computer applications
c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system
c4: System and human system engineering testing of EPS
c5: Relation of user-perceived response time to error measurement
ml : The generation of random, binary, unordered trees
m 2 : \quad The intersection graph of paths in trees
m3: Graph minors IV: Widths of trees and well-quasi-ordering
m4: Graph minors: A survey

LSI: example

```
T
```

0.22	-0.11	0.29	-0.41	-0.11	-0.34	0.52	-0.06	-0.41
0.20	-0.07	0.14	-0.55	0.28	0.50	-0.07	-0.01	-0.11
0.24	0.04	-0.16	-0.59	-0.11	-0.25	-0.30	0.06	0.49
0.40	0.06	-0.34	0.10	0.33	0.38	0.00	0.00	0.01
0.64	-0.17	0.36	0.33	-0.16	-0.21	-0.17	0.03	0.27
0.27	0.11	-0.43	0.07	0.08	-0.17	0.28	-0.02	-0.05
0.27	0.11	-0.43	0.07	0.08	-0.17	0.28	-0.02	-0.05
0.30	-0.14	0.33	0.19	0.11	0.27	0.03	-0.02	-0.17
0.21	0.27	-0.18	-0.03	-0.54	0.08	-0.47	-0.04	-0.58
0.01	0.49	0.23	0.03	0.59	-0.39	-0.29	0.25	-0.23
0.04	0.62	0.22	0.00	-0.07	0.11	0.16	-0.68	0.23
0.03	0.45	0.14	-0.01	-0.30	0.28	0.34	0.68	0.18

1.64
1.50
1.31
0.85

$$
D_{0}=\begin{array}{rrrrrrrrr}
& & & & & & & \\
& 0.20 & -0.06 & 0.11 & -0.95 & 0.05 & -0.08 & 0.18 & -0.01 \\
0.61 & 0.17 & -0.50 & -0.03 & -0.21 & -0.26 & -0.43 & 0.05 & 0.24 \\
0.46 & -0.03 & 0.21 & 0.04 & 0.38 & 0.72 & -0.24 & 0.01 & 0.02 \\
0.54 & -0.23 & 0.57 & 0.27 & -0.21 & -0.37 & 0.26 & -0.02 & -0.08 \\
0.28 & 0.11 & -0.51 & 0.15 & 0.33 & 0.03 & 0.67 & -0.06 & -0.26 \\
0.00 & 0.19 & 0.10 & 0.02 & 0.39 & -0.30 & -0.34 & 0.45 & -0.62 \\
0.01 & 0.44 & 0.19 & 0.02 & 0.35 & -0.21 & -0.15 & -0.76 & 0.02 \\
0.02 & 0.62 & 0.25 & 0.01 & 0.15 & 0.00 & 0.25 & 0.45 & 0.52 \\
0.08 & 0.53 & 0.08 & -0.03 & -0.60 & 0.36 & -0.04 & -0.07 & -0.45
\end{array}
$$

LSI

documents

- T has orthogonal unit-length col $\left(T * T^{T}=1\right)$
- D has orthogonal unit-length $\operatorname{col}\left(D * D^{T}=1\right)$
- S diagonal matrix of eigen values
- m is the rank of X
- $t=\#$ of rows in X
- $d=\#$ of columns in X
- $k=$ chosen number of dimensions of reduced model

$$
\begin{aligned}
& X \approx \\
& T \quad S \quad D^{\prime} \\
& \begin{array}{rlrrrrrrrrrrr}
0.22 & -0.11 & 3.34 & & 0.20 & 0.61 & 0.46 & 0.54 & 0.28 & 0.00 & 0.02 & 0.02 & 0.08 \\
0.20 & -0.07 & & 2.54 & -0.06 & 0.17 & -0.13 & -0.23 & 0.11 & 0.19 & 0.44 & 0.62 & 0.53
\end{array} \\
& 0.24 \quad 0.04 \\
& 0.40 \quad 0.06 \\
& 0.64-0.17 \\
& 0.27 \quad 0.11 \\
& 0.27 \quad 0.11 \\
& 0.30-0.14 \\
& 0.21 \quad 0.27 \\
& 0.01 \quad 0.49 \\
& 0.04 \quad 0.62 \\
& 0.03 \quad 0.45
\end{aligned}
$$

LSI: example

$\hat{X}=$| | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | | | | | 0.46 | 0.38 | 0.47 |
| 0.18 | -0.05 | -0.12 | -0.16 | -0.09 | | | | |
| 0.14 | 0.37 | 0.33 | 0.40 | 0.16 | -0.03 | -0.07 | -0.10 | -0.04 |
| 0.15 | 0.51 | 0.36 | 0.41 | 0.24 | 0.02 | 0.06 | 0.09 | 0.12 |
| 0.26 | 0.84 | 0.61 | 0.70 | 0.39 | 0.03 | 0.08 | 0.12 | 0.19 |
| 0.45 | 1.23 | 1.05 | 1.27 | 0.56 | -0.07 | -0.15 | -0.21 | -0.05 |
| 0.16 | 0.58 | 0.38 | 0.42 | 0.28 | 0.06 | 0.13 | 0.19 | 0.22 |
| 0.16 | 0.58 | 0.38 | 0.42 | 0.28 | 0.06 | 0.13 | 0.19 | 0.22 |
| 0.22 | 0.55 | 0.51 | 0.63 | 0.24 | -0.07 | -0.14 | -0.20 | -0.11 |
| 0.10 | 0.53 | 0.23 | 0.21 | 0.27 | 0.14 | 0.31 | 0.44 | 0.42 |
| -0.06 | 0.23 | -0.14 | -0.27 | 0.14 | 0.24 | 0.55 | 0.77 | 0.66 |
| -0.06 | 0.34 | -0.15 | -0.30 | 0.20 | 0.31 | 0.69 | 0.98 | 0.85 |
| -0.04 | 0.25 | -0.10 | -0.21 | 0.15 | 0.22 | 0.50 | 0.71 | 0.62 |

original vs LSI

using LSI

$$
X \approx
$$

	T		S					D^{\prime}				
0.22	-0.11	3.34		0.20	0.61	0.46	0.54	0.28		0.02	0.02	0.08
0.20	-0.07		2.54	-0.06	0.17	-0.13	-0.23	0.11	0.19	0.44	0.62	0.53
0.24 0.40	0.04 0.06	- D is new doc vectors (k dimensions)										
0.64 0.27	-0.17 0.11	- T provides term vectors										
0.27 0.30	- 0.11	- Given $Q=\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{t}}$ want to compare to docs										
0.21	0.27 0.49	- Convert Q from t dimensions to k										
	$\begin{array}{ll} 4 & 0.62 \\ 3 & 0.45 \end{array}$	$Q^{\prime}=Q_{1 \times t}^{T} * T_{t \times k} * S_{k \times k}^{-1}$										
		- Same basic approach can be used to add new docs to the database										

LSI: does it work?

- Decomposes language into "basis vectors"
- In a sense, is looking for core concepts
- In theory, this means that system will retrieve documents using synonyms of your query words
- The "magic" that appeals to people
- From a demo at Isi.research.telcordia.com
- They hold the patent on LSI

vector space retrieval: summary

- Standard vector space
- Each dimension corresponds to a term in the vocabulary
- Vector elements are real-valued, reflecting term importance
- Any vector (document,query, ...) can be compared to any other
- Cosine correlation is the similarity metric used most often
- Latent Semantic Indexing (LSI)
- Each dimension corresponds to a "basic concept"
- Documents and queries mapped into basic concepts
- Same as standard vector space after that
- Whether it's good depends on what you want

vector space model: disadvantages

- Assumed independence relationship among terms
- Though this is a very common retrieval model assumption
- Lack of justification for some vector operations
- e.g. choice of similarity function
- e.g., choice of term weights
- Barely a retrieval model
- Doesn't explicitly model relevance, a person's information need, language models, etc.
- Assumes a query and a document can be treated the same (symmetric)

vector space model: advantages

- Simplicity
- Ability to incorporate term weights
- Any type of term weights can be added
- No model that has to justify the use of a weight
- Ability to handle "distributed" term representations
- e.g., LSI
- Can measure similarities between almost anything:
- documents and queries
- documents and documents
- queries and queries
- sentences and sentences
- etc.

