Models for Metasearch

Javed Aslam

The Metasearch Problem

Search Engines

- Provide a ranked list of documents.
- May provide relevance scores.
- May have performance information.

Search Engine: Alta Vista

Search Engine: Ultraseek

Search Engine: inq102 TREC3

Queryid (Num): 50
Total number of documents over all queries
Retrieved: 50000
Relevant: 9805
Rel ret: 7305
Interpolated Recall - Precision Averages:
at 0.00 0.8992
at 0.10 0.7514
at 0.20 0.6584
at 0.30 0.5724
at 0.40 0.4982
at 0.50 0.4272
at 0.60 0.3521
at 0.70 0.2915
at 0.80 0.2173
at 0.90 0.1336
at 1.00 0.0115
Average precision (non-interpolated)
for all rel docs (averaged over queries)
0.4226
Precision:
At 5 docs: 0.7440
At 10 docs: 0.7220
At 15 docs: 0.6867
At 20 docs: 0.6740
At 30 docs: 0.6267
At 100 docs: 0.4902
At 200 docs: 0.3848
At 500 docs: 0.2401
At 1000 docs: 0.1461
R-Precision (precision after R
(= num rel for a query) docs retrieved):

External Metasearch

Internal Metasearch

Outline

- Introduce problem
- Characterize problem
- Survey current techniques
- Describe new approaches
 - decision theory, social choice theory
 - experiments with TREC data
- Upper bounds for metasearch
- Future work

Classes of Metasearch Problems

	no training data	training data	
ranks only	Borda, <mark>Condorcet,</mark> rCombMNZ	Bayes	
relevance scores	CombMNZ	LC model	

Outline

- Introduce problem
- Characterize problem
- Survey current techniques
- Describe new approaches
 - decision theory, social choice theory
 - experiments with TREC data
- Upper bounds for metasearch
- Future work

Classes of Metasearch Problems

	no training data	training data	
ranks only	Borda, <mark>Condorcet,</mark> rCombMNZ	Bayes	
relevance scores	CombMNZ	LC model	

CombSUM [Fox, Shaw, Lee, et al.]

- Normalize scores: [0,1].
- For each doc:
 - sum relevance scores given to it by each system (use 0 if unretrieved).
- Rank documents by score.
- Variants: MIN, MAX, MED, ANZ, MNZ

CombMNZ [Fox, Shaw, Lee, et al.]

- Normalize scores: [0,1].
- For each doc:
 - sum relevance scores given to it by each system (use 0 if unretrieved), and
 - multiply by number of systems that retrieved it (MNZ).
- Rank documents by score.

How well do they perform?

Need *performance metric*.
Need *benchmark data*.

Metric: Average Precision

Benchmark Data: TREC

- Annual Text Retrieval Conference.
- Millions of documents (AP, NYT, etc.)
- **50** queries.
- Dozens of retrieval engines.
- Output lists available.
- Relevance judgments available.

Data Sets

Data set	Number systems	Number queries	Number of docs
TREC3	40	50	1000
TREC5	61	50	1000
Vogt	10	10	1000
TREC9	105	50	1000

CombX on TREC5 Data

Input retrieval systems sorted best to worst

Experiments

- Randomly choose *n* input systems.
- For each query:
 - combine, trim, calculate avg precision.
- Calculate mean avg precision.
- Note best input system.
- Repeat (statistical significance).

CombMNZ on TREC5

TREC 5: avg precision over 200 random sets of systems.

Outline

- Introduce problem
- Characterize problem
- Survey current techniques
- Describe new approaches
 - decision theory, social choice theory
 - experiments with TREC data
- Upper bounds for metasearch
- Future work

New Approaches [Aslam, Montague]

- Analog to *decision theory*.
 - Requires only rank information.
 - Training required.
- Analog to *election strategies*.
 - Requires only rank information.
 - No training required.

Classes of Metasearch Problems

	no training data	training data	
ranks only	Borda, <mark>Condorcet,</mark> rCombMNZ	Bayes	
relevance scores	CombMNZ	LC model	

Decision Theory

- Consider two alternative explanations for some observed data.
 - Medical example:
 - Perform a set of blood tests.
 - Does patient have disease or not?
- Optimal method for choosing among the explanations: *likelihood ratio test*. [Neyman-Pearson Lemma]

Metasearch via Decision Theory

Metasearch analogy:

- Observed data document rank info over all systems.
- Hypotheses document is relevant or not.

• Ratio test:
$$O_{rel} = \frac{\Pr[rel | r_1, r_2, ..., r_n]}{\Pr[irr | r_1, r_2, ..., r_n]}$$

Bayesian Analysis

$$P_{rel} = \Pr[rel \mid r_1, r_2, \dots, r_n]$$

$$P_{rel} = \frac{\Pr[r_1, r_2, \dots, r_n \mid rel] \cdot \Pr[rel]}{\Pr[r_1, r_2, \dots, r_n]}$$

 $O_{rel} = \frac{\Pr[r_1, r_2, \dots, r_n \mid rel] \cdot \Pr[rel]}{\Pr[r_1, r_2, \dots, r_n \mid irr] \cdot \Pr[irr]}$

$$O_{rel} \cong \frac{\Pr[rel] \cdot \prod_{i} \Pr[r_i | rel]}{\Pr[irr] \cdot \prod_{i} \Pr[r_i | irr]}$$

$$LO_{rel} \sim \sum_{i} \log \frac{\Pr[r_i \mid rel]}{\Pr[r_i \mid irr]}$$

Bayes on TREC3

TREC 3: avg precision over 200 random sets of systems. 0.42 The best input system 0.4 0.38 Avg precision 0.36 0.34 0.32 2 10 4 6 8 12

Number of randomly chosen input systems

Bayes on TREC5

TREC 5: avg precision over 200 random sets of systems.

Bayes on TREC9

TREC 9: avg precision over 200 random sets of systems. 0.26 The best input system ------0.25 0.24 0.23 Avg precision 0.22 0.21 0.2 0.19 0.18 0.17 6 8 10 2 4 12

Beautiful theory, but...

In theory, there is no difference between theory and practice; in practice, there is.

-variously: Chuck Reid, Yogi Berra

Issue: independence assumption...

Naïve-Bayes Assumption

$$O_{rel} = \frac{\Pr[r_1, r_2, \dots, r_n \mid rel] \cdot \Pr[rel]}{\Pr[r_1, r_2, \dots, r_n \mid irr] \cdot \Pr[irr]}$$

$$O_{rel} \cong \frac{\Pr[rel] \cdot \prod_{i} \Pr[r_i \mid rel]}{\Pr[irr] \cdot \prod_{i} \Pr[r_i \mid irr]}$$

Bayes on Vogt Data

TREC 5 subset: avg precision over between 1 and 200 random sets of systems.

New Approaches [Aslam, Montague]

- Analog to *decision theory*.
 - Requires only rank information.
 - Training required.
- Analog to *election strategies*.
 - Requires only rank information.
 - No training required.

Classes of Metasearch Problems

	no training data	training data	
ranks only	Borda, <mark>Condorcet,</mark> rCombMNZ	Bayes	
relevance scores	CombMNZ	LC model	

Election Strategies

- Plurality vote.
- Approval vote.
- Run-off.
- Preferential rankings:
 - instant run-off,
 - Borda count (positional),
 - Condorcet method (head-to-head).
Metasearch Analogy

- Documents are *candidates*.
- Systems are *voters* expressing preferential rankings among candidates.

Condorcet Voting

- Each ballot ranks all candidates.
- Simulate head-to-head run-off between each pair of candidates.
- Condorcet winner: candidate that beats all other candidates, head-to-head.

Condorcet Paradox

- Voter 1: A, B, C
- Voter 2: B, C, A
- Voter 3: C, A, B

- Cyclic preferences: cycle in Condorcet graph.
- Condorcet consistent path: Hamiltonian.
- For metasearch: any CC path will do.

Condorcet Consistent Path

Hamiltonian Path Proof

Base Case:

 \bigcirc

Inductive Step:

Condorcet-fuse: Sorting

- Insertion-sort suggested by proof.
- Quicksort too; O(n log n) comparisons.
 - n documents.
- Each comparison: O(m).
 - *m* input systems.
- Total: *O*(*m n* log *n*).
- Need not compute entire graph.

Condorcet-fuse on TREC3

TREC 3: avg precision over 200 random sets of systems.

Condorcet-fuse on TREC5

TREC 5: avg precision over 200 random sets of systems.

Condorcet-fuse on Vogt

TREC 5 subset: avg precision over between 1 and 200 random sets of systems.

Condorcet-fuse on TREC9

TREC 9: avg precision over 200 random sets of systems.

Number of randomly chosen input systems

Breaking Cycles

SCCs are properly ordered.

How are ties within an SCC broken? (Quicksort)

Outline

- Introduce problem
- Characterize problem
- Survey current techniques
- Describe new approaches
 - decision theory, social choice theory
 - experiments with TREC data
- Upper bounds for metasearch
- Future work

Upper Bounds on Metasearch

- How good can metasearch be?
- Are there fundamental limits that methods are approaching?
- Need an analog to running time lower bounds...

Upper Bounds on Metasearch

- Constrained oracle model:
 - omniscient metasearch oracle,
 - constraints placed on oracle that any reasonable metasearch technique must obey.
- What are "reasonable" constraints?

Naïve Constraint

Naïve constraint:

- Oracle may only return docs from underlying lists.
- Oracle may return these docs in any order.
- Omniscient oracle will return relevants docs above irrelevant docs.

TREC5: Naïve Bound

52

Pareto Constraint

Pareto constraint:

- Oracle may only return docs from underlying lists.
- Oracle must respect *unanimous* will of underlying systems.
- Omniscient oracle will return relevants docs above irrelevant docs, subject to the above constraint.

TREC5: Pareto Bound

Majoritarian Constraint

Majoritarian constraint:

- Oracle may only return docs from underlying lists.
- Oracle must respect *majority* will of underlying systems.
- Omniscient oracle will return relevant docs above irrelevant docs and break cycles optimally, subject to the above constraint.

TREC5: Majoritarian Bound

TREC 5: avg precision over 200 random sets of systems.

Upper Bounds: TREC3

Upper Bounds: Vogt

58

Upper Bounds: TREC9

59

TREC8: Avg Prec vs Feedback

TREC8: System Assessments vs TREC

61

Metasearch Engines

- Query multiple search engines.
- May or may not combine results.

Metasearch: Dogpile

Metasearch: Metacrawler

64

Metasearch: Profusion

Characterizing Metasearch

- Three axes:
 - common vs. disjoint database,
 - relevance scores vs. ranks,
 - training data vs. no training data.

Axis 1: DB Overlap

- High overlap
 - data fusion.
- Low overlap
 - collection fusion (distributed retrieval).
- Very different techniques for each...
- This work: data fusion.

CombMNZ on TREC3

TREC 3: avg precision over 200 random sets of systems.

CombMNZ on Vogt

TREC 5 subset: avg precision over between 1 and 200 random sets of systems.

Number of randomly chosen input systems

CombMNZ on TREC9

TREC 9: avg precision over 200 random sets of systems.

Number of randomly chosen input systems

Borda Count

- Consider an n candidate election.
- For each ballot:
 - assign n points to top candidate,
 - assign *n*-1 points to next candidate,

...

Rank candidates by point sum.

Borda Count: Election 2000

- Ideological order: Nader, Gore, Bush.
- Ideological voting:
 - Bush voter: Bush, Gore, Nader.
 - Nader voter: Nader, Gore, Bush.
 - Gore voter:
 - Gore, Bush, Nader.
 Gore, Nader, Bush.
 - 50/50, 100/0
Election 2000: Ideological Florida Voting

	Gore	Bush	Nader
50/50	14,734,379	13,185,542	7,560,864
100/0	14,734,379	14,639,267	6,107,138

Gore Wins

Borda Count: Election 2000

- Ideological order: Nader, Gore, Bush.
- Manipulative voting:
 - Bush voter: Bush, Nader, Gore.
 - Gore voter: Gore, Nader, Bush.
 - Nader voter: Nader, Gore, Bush.

Election 2000: Manipulative Florida Voting

Gore	Bush	Nader
11,825,203	11,731,816	11,923,765

Nader Wins

Future Work

- Bayes
 - approximate dependence.
- Condorcet
 - weighting, dependence.
- Upper bounds
 - other constraints.
- Meta-retrieval
 - Metasearch is approaching fundamental limits.
 - Need to incorporate user feedback: learning...