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The Metasearch Problem
Search for:  chili peppers
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Search Engines

Provide a ranked list of documents.
May provide relevance scores.
May have performance information.



4

Search Engine: Alta Vista
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Search Engine: Ultraseek
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Search Engine: inq102 TREC3
Queryid (Num):          50
Total number of documents over all queries

Retrieved:       50000
Relevant:         9805
Rel_ret:          7305

Interpolated Recall - Precision Averages: 
at 0.00         0.8992
at 0.10         0.7514
at 0.20         0.6584
at 0.30         0.5724
at 0.40         0.4982
at 0.50         0.4272
at 0.60         0.3521
at 0.70         0.2915
at 0.80         0.2173
at 0.90         0.1336
at 1.00         0.0115

Average precision (non-interpolated)
for all rel docs (averaged over queries)

0.4226
Precision:
At     5 docs:    0.7440
At    10 docs:    0.7220
At    15 docs:    0.6867
At    20 docs:    0.6740
At    30 docs:    0.6267
At   100 docs:    0.4902
At   200 docs:    0.3848
At   500 docs:    0.2401
At  1000 docs:    0.1461

R-Precision (precision after R
(= num_rel for a query) docs retrieved):

Exact:          0.4524
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Outline
Introduce problem
Characterize problem
Survey current techniques
Describe new approaches

decision theory, social choice theory
experiments with TREC data

Upper bounds for metasearch
Future work
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CombSUM [Fox, Shaw, Lee, et al.]

Normalize scores: [0,1].
For each doc:

sum relevance scores given to it by each 
system (use 0 if unretrieved).

Rank documents by score.
Variants: MIN, MAX, MED, ANZ, MNZ
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CombMNZ [Fox, Shaw, Lee, et al.]

Normalize scores: [0,1].
For each doc:

sum relevance scores given to it by each 
system (use 0 if unretrieved), and
multiply by number of systems that 
retrieved it (MNZ).

Rank documents by score.
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How well do they perform?

Need performance metric.
Need benchmark data.
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Metric: Average Precision
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Benchmark Data: TREC

Annual Text Retrieval Conference.
Millions of documents (AP, NYT, etc.)
50 queries.
Dozens of retrieval engines.
Output lists available.
Relevance judgments available.
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Data Sets

100050105TREC9

10001010Vogt

10005061TREC5

10005040TREC3

Number of 
docs

Number 
queries

Number 
systemsData set
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CombX on TREC5 Data
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Experiments

Randomly choose n input systems.
For each query:

combine, trim, calculate avg precision.

Calculate mean avg precision.
Note best input system.
Repeat (statistical significance).
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CombMNZ on TREC5
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New Approaches [Aslam, Montague]

Analog to decision theory.
Requires only rank information.
Training required.

Analog to election strategies.
Requires only rank information.
No training required.
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Decision Theory

Consider two alternative explanations 
for some observed data.

Medical example:
Perform a set of blood tests.
Does patient have disease or not?

Optimal method for choosing among 
the explanations:  likelihood ratio test. 
[Neyman-Pearson Lemma]
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Metasearch via
Decision Theory

Metasearch analogy:
Observed data – document rank info over 
all systems.
Hypotheses – document is relevant or not.

Ratio test: 
],...,,|Pr[
],...,,|Pr[

21

21

n

n
rel rrrirr

rrrrelO =



27

Bayesian Analysis

Prel = Pr[rel | r1,r2,...,rn ]

Prel =
Pr[r1,r2,...,rn | rel] ⋅Pr[rel]

Pr[r1,r2,...,rn ]

Orel =
Pr[r1,r2,...,rn | rel] ⋅Pr[rel]
Pr[r1,r2,...,rn | irr] ⋅Pr[irr]
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Bayes on TREC3
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Bayes on TREC5
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Bayes on TREC9
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Beautiful theory, but…

In theory, there is no difference between theory and practice;
in practice, there is.

–variously: Chuck Reid, Yogi Berra

Issue: independence assumption…
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Naïve-Bayes Assumption

Orel =
Pr[r1,r2,...,rn | rel] ⋅Pr[rel]
Pr[r1,r2,...,rn | irr] ⋅Pr[irr]

Orel ≅
Pr[rel] ⋅ Pr[ri | rel]

i∏
Pr[irr] ⋅ Pr[ri | irr]

i∏



33

Bayes on Vogt Data
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New Approaches [Aslam, Montague]

Analog to decision theory.
Requires only rank information.
Training required.

Analog to election strategies.
Requires only rank information.
No training required.
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Election Strategies

Plurality vote.
Approval vote.
Run-off.
Preferential rankings:

instant run-off,
Borda count (positional),
Condorcet method (head-to-head).
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Metasearch Analogy

Documents are candidates.
Systems are voters expressing 
preferential rankings among candidates.
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Condorcet Voting

Each ballot ranks all candidates.
Simulate head-to-head run-off between 
each pair of candidates.
Condorcet winner: candidate that beats 
all other candidates, head-to-head.
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Condorcet Paradox

Voter 1: A, B, C
Voter 2:     B, C, A
Voter 3:         C, A, B
Cyclic preferences: cycle in Condorcet
graph.
Condorcet consistent path: Hamiltonian.
For metasearch: any CC path will do.
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Condorcet Consistent Path
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Hamiltonian Path Proof
Inductive Step:

Base Case:
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Condorcet-fuse: Sorting

Insertion-sort suggested by proof.
Quicksort too; O(n log n) comparisons.

n documents.

Each comparison: O(m).
m input systems.

Total: O(m n log n).

Need not compute entire graph.



43

Condorcet-fuse on TREC3
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Condorcet-fuse on TREC5
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Condorcet-fuse on Vogt
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Condorcet-fuse on TREC9
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Breaking Cycles

SCCs are properly ordered.

How are ties within an SCC
broken?  (Quicksort)
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Upper Bounds on Metasearch

How good can metasearch be?
Are there fundamental limits that 
methods are approaching?
Need an analog to running time lower 
bounds…
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Upper Bounds on Metasearch

Constrained oracle model:
omniscient metasearch oracle,
constraints placed on oracle that any 
reasonable metasearch technique must 
obey.

What are “reasonable” constraints?
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Naïve Constraint

Naïve constraint: 
Oracle may only return docs from 
underlying lists.
Oracle may return these docs in any order.
Omniscient oracle will return relevants docs 
above irrelevant docs.
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TREC5: Naïve Bound
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Pareto Constraint

Pareto constraint: 
Oracle may only return docs from 
underlying lists.
Oracle must respect unanimous will of 
underlying systems.
Omniscient oracle will return relevants docs 
above irrelevant docs, subject to the above 
constraint.
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TREC5: Pareto Bound
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Majoritarian Constraint

Majoritarian constraint: 
Oracle may only return docs from 
underlying lists.
Oracle must respect majority will of 
underlying systems.
Omniscient oracle will return relevant docs 
above irrelevant docs and break cycles 
optimally, subject to the above constraint.
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TREC5: Majoritarian Bound
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Upper Bounds: TREC3
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Upper Bounds: Vogt



59

Upper Bounds: TREC9
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TREC8:
Avg Prec vs Feedback
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TREC8:
System Assessments vs TREC
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Metasearch Engines

Query multiple search engines.
May or may not combine results.
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Metasearch: Dogpile
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Metasearch: Metacrawler
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Metasearch: Profusion
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Characterizing Metasearch

Three axes:
common vs. disjoint database,
relevance scores vs. ranks,
training data vs. no training data.
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Axis 1: DB Overlap

High overlap
data fusion.

Low overlap
collection fusion (distributed retrieval).

Very different techniques for each…
This work: data fusion.
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CombMNZ on TREC3
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CombMNZ on Vogt
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CombMNZ on TREC9



71

Borda Count

Consider an n candidate election.
For each ballot:

assign n points to top candidate,

assign n-1 points to next candidate,
…

Rank candidates by point sum.
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Borda Count: Election 2000

Ideological order: Nader, Gore, Bush.
Ideological voting:

Bush voter: Bush, Gore, Nader.
Nader voter: Nader, Gore, Bush.
Gore voter: 

Gore, Bush, Nader.
Gore, Nader, Bush.

50/50, 100/0



73

Election 2000: 
Ideological Florida Voting

6,107,13814,639,26714,734,379100/0

7,560,86413,185,54214,734,37950/50

NaderBushGore

Gore Wins
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Borda Count: Election 2000

Ideological order: Nader, Gore, Bush.
Manipulative voting:

Bush voter: Bush, Nader, Gore.
Gore voter: Gore, Nader, Bush.
Nader voter: Nader, Gore, Bush.
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Election 2000: 
Manipulative Florida Voting

11,923,76511,731,81611,825,203

NaderBushGore

Nader Wins
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Future Work
Bayes

approximate dependence.
Condorcet

weighting, dependence.
Upper bounds

other constraints.
Meta-retrieval

Metasearch is approaching fundamental limits.
Need to incorporate user feedback: learning…
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