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Abstract

A new information-theoretic approach is presented for finding the pose of an object in an image.
The technique does not require information about the surface properties of the object, besides its
shape, and is robust with respect to variations of illumination. In our derivation few assumptions
are made about the nature of the imaging process. As a result the algorithms are quite general
and may foreseeably be used in a wide variety of imaging situations.

Experiments are presented that demonstrate the approach registering magnetic resonance
(MR) images, aligning a complex 3D object model to real scenes including clutter and occlu-
sion, tracking a human head in a video sequence and aligning a view-based 2D object model to
real images.

The method is based on a formulation of the mutual information between the model and
the image. As applied here the technique is intensity-based, rather than feature-based. It works
well in domains where edge or gradient-magnitude based methods have difficulty, yet it is more
robust than traditional correlation. Additionally, it has an efficient implementation that is based
on stochastic approximation.

1 Introduction

In object recognition and image registration there is a need to find and evaluate the alignment
of model and image data. It has been difficult to find a suitable metric for this comparison. In
other applications, such as medical imaging, data from one type of sensor must be aligned with
that from another. We will present an information theoretic approach that can be used to solve
such problems. Our approach makes few assumptions about the nature of the imaging process.



As a result the algorithms are quite general and may foreseeably be used with a wide variety
of sensors. We will show that this technique makes many of the difficult problems of model
comparison easier, including accommodation of the vagaries of illumination and reflectance.

The general problem of alignment entails comparing a predicted image of an object with
an actual image. Given an object model and a pose (coordinate transformation), a model for
the imaging process could be used to predict the image that will result. The predicted image
can then be compared to the actual image directly. If the object model and pose are correct the
predicted and actual images should be identical, or close to it. Of course finding the correct
alignment is still a remaining challenge.

The relationship between an object model (no matter how accurate) and the object’s image
is a complex one. The appearance of a small patch of a surface is a function of the surface
properties, the patch’s orientation, the position of the lights and the position of the observer.
Given a modelu(x) and an imagev(y) we can formulate an imaging equation,

v(T (x)) = F (u(x); q) + � (1)

or equivalently,
v(y) = F (u(T�1(y)); q) + � : (2)

The imaging equation has three distinct components. The first component is called a trans-
formation, or pose, denotedT . It relates the coordinate frame of the model to the coordinate
frame of the image. The transformation tells us which point in the model is responsible for a
particular point in the image. The second component is the imaging function,F (u(x); q). The
imaging function determines the value of image pointv(T (x)). In general a pixel’s value may
be a function both of the model and other exogenous factors. For example an image of a three
dimensional object depends not only on the object but also on the lighting. The parameterq

collects all of the exogenous influences into a single vector. Finally,� is a random variable that
models noise in the imaging process. In most cases the noise is assumed Gaussian.

Alignment can be a difficult problem for a number of reasons:

� F , the imaging function of the physical world, can be difficult to model.

� q, the exogenous parameters, are not necessarily known and can be difficult to find. For
example computing the lighting in an image is a non-trivial problem.

� T , the space of transformations, which may have many dimensions, is difficult to search.
Rigid objects often have a 6 dimensional transformation space. Non-rigid objects can in
principle have an unbounded number of pose parameters.

One reason that it is, in principle, possible to defineF is that the image does convey infor-
mation about the model. Clearly if there were no mutual information betweenu andv, there
could be no meaningfulF . We propose to finesse the problem of finding and computingF and
q by dealing with this mutual information directly. We will present an algorithm that aligns by
maximizing the mutual information between model and image. It requires no a priori model
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of the relationship between surface properties and scene intensities – it only assumes that the
model tells more about the scene when it is correctly aligned.

Though the abstract suggestion that mutual information plays a role in object recognition
may not be new, to date no concrete representations or efficient algorithms have been proposed.
This paper will present a new approach for evaluating entropy and mutual information called
EMMA 1. It is distinguished in two ways: 1) EMMA does not require a prior model for the
functional form of the distribution of the data; 2) entropy can be maximized (or minimized)
efficiently using stochastic approximation.

In its full generality, EMMA can be used whenever there is a need to align images from two
different sensors, the so-called “sensor fusion” problem. For example, in medical imaging data
from one type of sensor (such as magnetic resonance imaging—MRI) must be aligned to data
from another sensor (such as computed tomography—CT).

2 An Alignment Example

One of the alignment problems that we will address involves finding the pose of a three-
dimensional object that appears in a video image. This problem involves comparing two very
different kinds of representations: a three-dimensional model of the shape of the object and a
video image of that object. For example, Figure 1 contains a video image of an example object
on the left and a depth map of that same object on the right (the object in question is a person’s
head: RK). A depth map is an image that displays the depth from the camera to every visible
point on the object model.

From the depth map alone it might be difficult to see that the image and the model are
aligned. For a human observer, the task can be made much easier by simulating the imag-
ing process and rendering an image from the 3D model. Figure 2 contains two renderings of
the object model. These synthetic images are constructed assuming that the 3D model has a
Lambertian surface and that the model is illuminated from the right. It is almost immediately
obvious that the model on the left of the figure is more closely aligned to the video image than
the model on the right. Unfortunately, what might seem like a trivial determination is difficult
to reproduce with a computer. The task is made difficult because the intensities of the true video
image and the synthetic images are quite different. In fact, the pixels of the real image and the
correct model image are uncorrelated. Somehow, the human visual system is capable of ignor-
ing the superficial differences that arise from changes in illumination and surface properties. A
successful computational theory of object recognition must be similarly robust.

Lambert’s law is perhaps the simplest model of surface reflectivity. It is an accurate model
of the reflectance of a matte or non-shiny surface. Lambert’s law states that the visible intensity
of a surface patch is related to the dot product between the surface normal and the lighting. For

1EMMA is a random but pronounceable subset of the letters in the words “EMpirical entropy Manipulation and
Analysis”.
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Figure 1: Two different views of RK. On the left is a video image. On the right is a depth map
of a model of RK that describes the distance to each of the visible points of the model. Closer
points are rendered brighter than more distant ones.

Figure 2: At left is a rendering of a 3D model of RK. The position of the model is the same as
the position of the actual head. At right is a rendering of the head model in an incorrect pose.

a Lambertian object the imaging equation is:

v(T (x)) =
X
i

�i~li � u(x) ; (3)

where the model valueu(x) is the normal vector of a surface patch on the object,li is a vector
pointing toward light sourcei, and�i is proportional to the intensity of that light source ((Horn,
1986) contains an excellent review of imaging and its relationship to vision). As the illumination
changes the functional relationship between the model and image will change.

Since we can not know beforehand what the imaging function will be, aligning a model and
image can be quite difficult. These difficulties are only compounded if the surface properties of
the object are not well understood. For example, many objects can not be modeled as having
a Lambertian surface. Different surface finishes will have different reflectance functions. In
general reflectance is a function of lighting direction, surface normal and viewing direction.
The intensity of an observed patch is then:

v(T (x)) =
X
i

R(�i; ~li; ~o; u(x)) ; (4)
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where~o is a vector pointing toward the observer from the patch andR(�) is the reflectance
function of the surface. For an unknown material a great deal of experimentation is necessary to
completely categorize the reflectance function. Since a general vision system should work with
a variety of objects and under general illumination conditions, overly constraining assumptions
about reflectance or illumination should be avoided.

Let us examine the relationship between a real image and model. This will allow us to build
intuition both about alignment and image formation. Data from the real reflectance function
can be obtained by aligning a model to a real image. An alignment associates points from
the image with points from the model. If the alignment is correct, each pixel of the image
can be interpreted as a sample of the imaging functionR(�). The imaging function could be
displayed by plotting intensity against lighting direction, viewing direction and surface normal.
Unfortunately, because intensity is a function of so many different parameters the resulting
plot can be prohibitively complex and difficult to visualize. Significant simplification will be
necessary if we are to visualize any structure in this data.

In a wide variety of real images we can assume that the light sources are far from the
object (at least in terms of the dimensions of the object). When this is true and there are no
shadows, each patch of the object will be illuminated in the same way. Furthermore, we will
assume that the observer is far from the object, and that the viewing direction is therefore
constant throughout the image. The resulting relationship between normal and intensity is three
dimensional. The normal vector has unit length and, for visible patches, is determined by
two parameters: the x and y components. The image intensity is a third parameter. A three
dimensional scatter plot of normal versus intensity is really a slice through the high dimensional
space in whichR(�) is defined. Though this graph is much simpler than the original, three
dimensional plots are still quite difficult to interpret. We will slice the data once again so that
all of the points have a single value for the y component of the normal.

Figure 3 contains a graph of the intensities along a single scan-line of the image of RK.
Figure 4 shows similar data for the correctly aligned model of RK. Model normals from this
scan-line are displayed in two graphs: the first shows the x component of the normal while the
second shows the y component. Notice that we have chosen this portion of the model so that
the y component of the normal is almost constant. As a result the relationship between normal
and intensity can be visualized in only two dimensions. Figure 5 shows the intensities in the
image plotted against the x component of the normal in the model. Notice that this relationship
appears both consistent and functional. Points from the model with similar surface normals
have very similar intensities. The data in this graph could be well approximated by a smooth
curve. We will call an imaging function like this oneconsistent. Interestingly, we did not need
any information about the illumination or surface properties of the object to determine that there
is a consistent relationship between model normal and image intensity.

Figure 6 shows the relationship between normal and intensity when the model and image
are no longer aligned. The only difference between this graph and the first is that the intensities
come from a scan-line 3 centimeters below the correct alignment (i.e. the model is no longer
aligned with the image, it is 3 centimeters too low). The normals used are the same. The
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Figure 3: On the left is a video image of RK with the single scan-line highlighted. On the right
is a graph of the intensities observed along this scan line.

resulting graph is no longerconsistent. It does not look as though a simple smooth curve would
fit this data well.

In summary, when model and image are aligned there will be a consistent relationship be-
tween image intensity and model normal. This is predicted by our assumption that there is an
imaging function that relates models and images. While the actual form of this function depends
on lighting and surface properties, a correct alignment will generally lead to a consistent rela-
tionship. Conversely, when model and image are misaligned the relationship between intensity
and normal is inconsistent.

3 A Formal Definition of Consistency

Alignment can be performed by jointly searching over the space of possible imaging functions,
exogenous parameters and transformations. The principle of maximum likelihood can be used
to motivate this procedure. The probability of an image given a model and transformation can
be expressed as:

p(v j u; T ) =
Z Z Y

xa

p(� = v(T (xa))� F (u(xa); q)) p(F ) p(q) dF dq ; (5)

where the product is computed over points from the model,xa. This equation integrates over
all possible imaging functions and all possible sets of exogenous variables. We are not aware of
any approach that has come close to evaluating such an integral. It may not be feasible. Another
possible approach is to find the imaging function and exogenous variables that make the image
most likely,

p(v j u; T ) � max
F;q

Y
xa

p(� = v(T (xa))� F (u(xa); q)) p(F ) p(q) : (6)
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Figure 4: On the left is a depth map of RK with the single scan-line highlighted. At top right
is a graph of the x component of the surface normal. On the bottom right is the y component of
the normal.
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Figure 5: THE ALIGNED CASE: A scatter plot of the intensity of the video image versus the x
component of the surface normal from the model. The image and model are correctly aligned.
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Figure 6: THE MISALIGNED CASE: On the left is the misaligned scan-line from the video
image of RK. On the right is a scatter plot of the intensity of this part of the video image versus
the x component of the surface normal from the model.

This approximation is accurate whenever the integral in Equation 5 is approximated by the
component of the integrand that is maximal. The approximation is a good one when a particular
F andq are much more likely than any other.

Using (6) we can define an alignment procedure as a nested search: i) given an estimate for
the transformation, findF andq that make the image most likely; ii) given estimates forF andq,
find a new transformation that makes the image most likely. Terminate when the transformation
has stabilized. In other words, a transformation associates points from the model with points
in the image; for everyu(x) there is a correspondingv(T (x)). A functionF and parameter
vectorq are sought that best model the relationship betweenu(x) andv(T (x)). This can be
accomplished by “training” a function to fit the collection of pairsfv(T (xa)); u(xa)g.

The search forF is not a simple process. The range of possible imaging functions is of
course infinite. In order to condition the search it is necessary to make a set of assumptions
about the form ofF . In addition some assumptions about the smoothness ofF are necessary
to insure convergence of the nested search for the maximum of (6). These assumptions can be
enforced by formulating a strong prior probability over the space of functions,p(F ).
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In many cases the search for an imaging function and exogenous parameters can be com-
bined. For any particularF andq, another functionFq(u(x)) = F (u(x); q) can be defined. The
combined function is best thought of as areflectance map(Horn, 1986). It maps the normals of
an object directly into intensities. The three dimensional alignment procedure we will describe
manipulates a similar combined function.

How might Equation 6 be approximated efficiently? It seems reasonable to assume that for
most real imaging functions similar inputs should yield similar outputs. In other words, that
the unknown imaging function is continuous and piecewise smooth. An efficient scheme for
alignment could skip the step of approximating the imaging function and attempt to directly
evaluate theconsistencyof a transformation. A transformation is considered consistent if points
that have similar values in the model project to similar values in the image. By similar we do
not mean similar in physical location, as injxa � xbj, but similar in value,ju(xa)� u(xb)j and
jv(T (xa))� v(T (xb))j. One ad-hoc technique for estimating consistency is to pick a similarity
constant and evaluate the following sum:

Consistency(T ) = �
X
xa 6=xb

g (u(xb)� u(xa))(v(T (xb))� v(T (xa)))
2 ; (7)

whereg is a Gaussian with standard deviation , and the sum is over points from the model,
xa andxb. In order to minimize this measure, points that are close together in value must be
more consistent, and those further apart less so.

An important drawback of consistency is that it is maximized by constancy. The most con-
sistent transformation projects the points of the model onto a constant region of the image. For
example, if scale is one of the transformation parameters, one entirely consistent transformation
projects all of the points of the model down to a single point of the image.

We now have two alternatives for alignment when the imaging function is unknown: a
theoretical technique that may be intractable, and an outwardly efficient ad-hoc technique that
has a number of important difficulties. One would like to find a technique that combines the best
features from each approach. We propose that the complex search for the most likely imaging
function,Fq, be replaced with a simpler search for the most consistent imaging function.

One type of function approximator that maximizes consistency is known as kernel regres-
sion or the weighted neighbor approximator:

F �(u; a) =

P
xa R(u� u(xa))v(T (xa))P

xa R(u� u(xa))
: (8)

The weighting functionR usually has a maximum at zero, and falls off asymptotically away
from zero.F � can be used to estimate the likelihood of a transformation as we did in (6). This
formulation can be much more efficient than a naive implementation of (6) since there is no
need to search forFq. The model, image, and transformation defineF � directly.

Figure 7 shows the weighted neighbor approximation to the data from the RK alignments
(in these graphsR is the Gaussian density function with variance 0.0003). NoticeF � fits the
aligned model much better than the misaligned model. Assuming that the noise is Gaussian
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Figure 7: The joint distribution of data from the aligned and misaligned case above (left:
aligned, right: misaligned). The weighted neighbor function approximation is show as a thin
black line.

the log likelihood of the aligned model, 1079.49, is much larger than the log likelihood of the
misaligned model, 537.342.

4 From Likelihood to Entropy

The “classical” derivation of weighted neighbor likelihood provided a context in which insights
could be developed and concrete representations described. Though weighted neighbor likeli-
hood is a powerful technique, it has three significant drawbacks (see (Viola, 1995) for a more
detailed discussion).

Firstly, it will only work when the image is a function of the model. Though this was
assumed at the outset, in several important applications the image data may not be a function
of the model. This is frequently the case in medical registration applications. For example, a
CT scan is neither a function of an MR scan, nor is an MR scan a function of a CT scan. The
second drawback of weighted neighbor log likelihood is that it can be susceptible to outliers. If
one assumes, as is typical, that the image is conditionally Gaussian, occlusion and specularity
can ruin an otherwise good match between model and image3. The third drawback arises from
weighted neighbor likelihood’s affinity for constant solutions.

Rather than require that the image be a function of the model, one natural generalization
is to require that the image be predictable from the model. Predictability is closely related to
the concept of entropy. A predictable random variable has low entropy, while an unpredictable
random variable has high entropy. By moving to a formulation of alignment that is based on
entropy many of the drawbacks of weighted neighbor likelihood can be circumvented.

2Log likelihood is computed by first finding the Gaussian distribution that fits the residual error, or noise, best.
The log of (6) is then computed using the estimated distribution of the noise. For small amounts of noise, these
estimates can be much larger than 1.

3Correlation matching is one of many techniques that assumes a Gaussian conditional distribution of the image
given the model.
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The entropy of a random variable is defined as

h(y) � �
Z
p(y) lnp(y)dy : (9)

The joint entropy of two random variablesx andy is

h(z; y) � �
Z
p(z; y) lnp(z; y)dzdy : (10)

Log likelihood and entropy are closely related (see (Cover and Thomas, 1991) for an excellent
review of entropy and its relation to statistics). It can be shown that under certain conditions the
conditional log likelihood of the image given the model is a multiple of the conditional entropy
of the image given the model:

log p(v(T (x) j u(x); T ) = �N h(v(T (x)) j u(x); T ) ; (11)

whereN is the number of model points4. This is true only when the conditional distribution of
v is the same as the assumed distribution for the noise,�. So if the noise is assumed Gaussian,
equality holds when the conditional distribution ofv is Gaussian. Note that while this is a
restrictive assumption, it does not require either that the distribution ofv be Gaussian, or that
the joint distribution ofv andu be Gaussian.

Both the constraint thatv be a function ofu and the constraint on the conditional distribution
of v can be relaxed by estimating the conditional entropy directly:

h(v(T (x))ju(X)) � h(u(x))� h(u(X); v(T (x))) : (12)

In the next section we will present an efficiently optimizable measure of entropy (EMMA) that
can be used for this purpose. Nowhere in the derivation of EMMA will it be necessary to assume
thatv is a function ofu. In addition, even in situations wherev is a function ofu, EMMA will
frequently work better than weighted neighbor likelihood. While weighted neighbor likelihood
requires restrictive assumptions aboutp(�), EMMA can be used with a wide variety of densities.
This make EMMA more robust to non-Gaussian errors.

In addition, the move from likelihood to entropy presents a principled mechanism for avoid-
ing constant solutions. Conditional entropy, though it is more general than weighted neighbor
likelihood, is still closely related to the consistency measure defined in Equation 7. Like consis-
tency, conditional entropy will accept a constant solution as optimal. Conditional entropy con-
founds two distinct situations: conditional entropy will be low when the image is predictable
from the model, but it will also be low if the image by itself is predictable. Rather than condi-
tional entropy we will estimate themutual informationbetween the model and the image:

I(u(x); v(T (x))) �

h(u(x)) + h(v(T (x)))� h(u(x); v(T (x))) : (13)

4Here we speak of the empirically estimated entropy of the conditional distribution.
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The mutual information defined in Equation 13 has three components. The first term is the
entropy in the model, and is not a function ofT . The second term is the entropy of the part
of the image into which the model projects. It encourages transformations that projectu into
complex parts ofv. The third term, the (negative) joint entropy ofu andv, contributes whenu
andv are functionally related. It encourages transformations whereu explainsv well. Together
the last two terms identify transformations that find complexity and explain it well.

Why are weighted neighbor likelihood and conditional entropy related? Weighted neigh-
bor likelihood measures the quality of the weighted neighbor function approximation. In the
graph on the left of Figure 7 the points of the sample lie near the weighted neighbor function
approximation. In addition, the joint distribution of samples is tightly packed together. Points
are not distributed throughout the space, but lie instead in a small part of the joint space. This
is the hallmark of a low entropy distribution. In the graph on the right of Figure 7 the weighted
neighbor function approximation is a poor fit to the data and the data is more spread out. In
general aligned signals have low joint entropy and misaligned signals have high joint entropy.

5 EMMA Alignment

We seek an estimate of the transformationT̂ that aligns the modelu and imagev by maximizing
their mutual information over the transformationsT ,

T̂ = argmax
T

I(u(x); v(T (x))) : (14)

Here we treatx as a random variable over coordinate locations in the model. In the alignment
algorithm described below, we will draw samples fromx in order to approximateI and its
derivatives.

5.1 EMMA and its Derivatives

The entropies described above are defined in terms of integrals over the probability densities
associated with the random variablesu andv. When analyzing signals or images we will not
have direct access to the densities. In this section we describe a differentiable estimate of the
entropy of a random variable that is calculated from samples.

The entropy of a random variablez may be expressed as an expectation of the negative
logarithm of the probability density:

h(z) = �Ez(ln p(z)) :

Our first step in estimating the entropies from samples is to approximate the underlying
probability densityp(z) by a superposition of Gaussian densities centered on the elements of a
sampleA drawn fromz:

p(z) �
1

NA

X
zj2A

G (z � zj) ;
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where

G (z) � (2�)
�n
2 j j

�1

2 exp(�
1

2
zT �1z) :

This method of density estimation is widely known as theParzen Windowmethod. It is de-
scribed in the textbook by Duda and Hart(Duda and Hart, 1973). Use of the Gaussian density
in the Parzen density estimate will simplify some of our subsequent analysis, but it isnot nec-
essary. Any differentiable function could be used. Another good choice is the Cauchy density.

Next we approximate statistical expectation with the sample average over another sampleB

drawn fromz:

Ez(f(z)) �
1

NB

X
zi2B

f(zi) :

We may now write an approximation for the entropy of a random variablez as follows,

h(z) �
�1

NB

X
zi2B

ln
1

NA

X
zj2A

G (zi � zj) : (15)

The density ofz maybe a function of a set of parameters,T . In order to find maxima
of mutual information, we calculate the derivative of entropy with respect toT . After some
manipulation, this may be written compactly as follows,

d

dT
h(z(T )) �

1

NB

X
zi2B

X
zj2A

Wz(zi; zj)(zi � zj)
T �1

d

dT
(zi � zj) ; (16)

using the following definition:

Wz(zi; zj) �
G (zi � zj)P

zk2A
G (zi � zk)

:

The weighting factorWz(zi; zj) takes on values between zero and one. It will approach one
if zi is significantly closer tozj than it is to any other element ofA. It will be near zero if
some other element ofA is significantly closer tozi. Distance is interpreted with respect to the
squared Mahalanobis distance (see (Duda and Hart, 1973))

D (z) � zT �1z :

Thus,Wz(zi; zj) is an indicator of the degree of match between its arguments, in a “soft” sense.
It is equivalent to using the “softmax” function of neural networks (Bridle, 1989) on the negative
of the Mahalanobis distance to indicate correspondence betweenzi and elements ofA.

The summand in Equation 16 may also be written as:

Wz(zi; zj)
d

dT

1

2
D (zi � zj) :

In this form it is apparent that to reduce entropy, the transformationT should be adjusted such
that there is a reduction in the average squared distance between those values whichW indicates
are nearby, i.e., clusters should be tightened.
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5.2 Stochastic Maximization of Mutual Information

The entropy approximation described in Equation 15 may now be used to evaluate the mutual
information of the model and image (Equation 13). In order to seek a maximum of the mutual
information, we will calculate an approximation to its derivative,

d

dT
I(u(x); v(T (x))) =

d

dT
h(v(T (x)))�

d

dT
h(u(x); v(T (x))) :

Using Equation 16, and assuming that the covariance matrices of the component densities
used in the approximation scheme for the joint density are block diagonal: �1uv = DIAG( �1uu ;  

�1
vv ),

we can obtain an estimate for the derivative of the mutual information as follows:

ddI
dT

=
1

NB

X
xi2B

X
xj2A

(vi � vj)
T [Wv(vi; vj) 

�1
v �Wuv(wi; wj) 

�1
vv ]

d

dT
(vi � vj) : (17)

The weighting factors are defined as

Wv(vi; vj) �
G v(vi � vj)P

xk2A
G v(vi � vk)

andWuv(wi; wj) �
G uv(wi � wj)P

xk2A
G uv(wi � wk)

;

using the following notation (and similarly for indicesj andk),

ui � u(xi) ; vi � v(T (xi)) ; andwi � [ui; vi]
T :

If we are to increase the mutual information, then the first term in the brackets (of (17)) may be
interpreted as acting to increase the squared distance between pairs of samples that are nearby
in image intensity, while the second term acts to decrease the squared distance between pairs of
samples that are nearby inbothimage intensityandthe model properties. It is important to em-
phasize that distances are in the space of values (intensities, brightness, or surface properties),
rather than coordinate locations.

The term d
dT
(vi�vj) will generally involve gradients of the image intensities, and the deriva-

tive of transformed coordinates with respect to the transformation. In the simple case thatT is
a linear operator, the following outer product expression holds:

d

dT
v(T (xi)) = rv(T (xi))x

T
i :

5.2.1 Stochastic Maximization Algorithm

We seek a local maximum of mutual information by using a stochastic analog of gradient de-
scent. Steps are repeatedly taken that are proportional to the approximation of the derivative of
the mutual information with respect to the transformation:
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Repeat:

A  fsample of sizeNA drawn fromxg

B  fsample of sizeNB drawn fromxg

T  T + �
ddI
dT

The parameter� is called thelearning rate. The above procedure is repeated a fixed number
of times or until convergence is detected.

A good estimate of the derivative of the mutual information could be obtained by exhaus-
tively sampling the data. This approach has serious drawbacks because the algorithm’s cost is
quadratic in the sample size. For smaller sample sizes, less effort is expended, but additional
noise is introduced into the derivative estimates.

Stochastic approximation is a scheme that uses noisy derivative estimate instead of the true
derivative for optimizing a function (see (Widrow and Hoff, 1960), (Ljung and S¨oderström,
1983), and (Haykin, 1994)). Convergence can be proven for particular linear systems, provided
that the derivative estimates are unbiased, and the learning rate is annealed (decreased over
time). In practice, we have found that successful alignment may be obtained using relatively
small sample sizes, for exampleNA = NB = 50. We have proven that the technique will always
converge to a pose estimate that is close to locally optimal (Viola, 1995).

It has been observed that the noise introduced by the sampling can effectively penetrate
small local minima. Such local minima are often characteristic of continuous alignment schemes,
and we have found that local minima can be overcome in this manner in these applications as
well. We believe that stochastic estimates for the gradient usefully combine efficiency with
effective escape from local minima.

5.2.2 Estimating the Covariance

In addition to�, the covariance matrices of the component densities in the approximation
method of Section 5.1 are important parameters of the method. These parameters may be cho-
sen so that they are optimal in the maximum likelihood sense with respect to samples drawn
from the random variables. This approach is equivalent to minimizing the cross entropy of the
estimated distribution with the true distribution (Cover and Thomas, 1991). For simplicity, we
assume that the covariance matrices are diagonal.

The most likely covariance parameters can be estimated on-line using a scheme that is al-
most identical in form to the scheme for maximizing mutual information.

6 Experiments

In this section we demonstrate alignment by maximization of mutual information in a variety
of domains. In all of the following experiments, bi-linear interpolation was used when needed
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Figure 8: MRI Alignment (from left to right): Original Proton-Density Image, Original
T2-Weighted Image, Initial Alignment, Composite Display of Final Alignment, Intensity-
Transformed Image.

for non-integral indexing into images.

6.1 MRI Alignment

Our first and simplest experiment involves finding the correct alignment of two MR images
(see Figure 8). The two original images are components of a double-echo MR scan and were
obtained simultaneously, as a result the correct alignment should be close to the identity trans-
formation. It is clear that the two images have high mutual information, while they are not
identical.

A typical initial alignment appears in the center of Figure 8. Notice that this image is
a scaled, sheared, rotated and translated version of the original. A successful alignment is
displayed as a checkerboard. Here every other 20x20 pixel block is taken either from the model
image or target image. Notice that the boundary of the brain in the images is very closely
aligned.

We represent the transformation by a 6 element affine matrix that takes two dimensional
points from the image plane of the first image into the image plane of the second image. This
scheme can represent any combination of scaling, shearing, rotation and translation. Before
alignment the pixel values in the two MR images are pre-scaled so that they vary from 0 to 1.
The sample metric used is squared distance, the component densities have� = 0.1, and the
random samples are of size 20. We used a learning rate of 0.02 for 500 iterations and 0.005 for
500 iterations. Total run time on a Sparc 10 was 12 seconds.

Over a set of 50 randomly generated initial poses that vary in position by 32 pixels, a little
less than one third of the width of the head, rotations of 28 degrees, and scalings of up to 20%,
the “correct” alignment is obtained reliably. Final alignments were well within one pixel in
position and within 0.5% of the identity matrix for rotation/scale. We report errors in percent
here because of the use of affine transformation matrices.

The two MRI images are fairly similar. Good alignment could probably be obtained with
a normalized correlation metric. Normalized correlation assumes, at least locally, that one
signal is a scaled and offset version of the other. Our technique makes no such assumption.
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Figure 9: Skull Alignment Experiments: Initial Alignment, Final Alignment, Initial Alignment
with Occlusion, Final Alignment with Occlusion

In fact, it will work across a wide variety of non-linear transformations. All that is required is
that the intensity transformation preserve a significant amount of information. On the right in
Figure 8 we show the model image after a non-monotonic (quadratic) intensity transformation.
Alignment performance is not significantly affected by this transformation.

This last experiment is an example that would defeat traditional correlation, since the signals
(the second and last in Figure 8) are more similar in value when they are badly mis-aligned
(non-overlapping) than they are when properly aligned.

6.2 Alignment of 3D Objects

6.2.1 Skull Alignment Experiments

This section describes the alignment of a real three dimensional object to its video image. The
signals that are compared are quite different in nature: one is the video brightness, while the
other consists of two components of the normal vector at a point on the surface of the model.

We obtained an accurate 3D model, including normals, of a skull that was derived from
a computed tomography (CT) scan. Cluttered video images of the skull were obtained (see
Figure 9). In these images the pose of the model is displayed by projecting 3D points from
the model’s surface into the image plane and highlighting them in white. In the upper left
of Figure 9 the model is displayed in a typical initial pose. The final alignment of the skull
model is in the upper right. Notice that the boundaries of the skull model and skull image are
in close agreement. We would like to emphasize that in none of these experiments have we
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pre-segmented the image. The initial poses often project the model into regions of the image
that contain a significant amount of clutter. EMMA reliably settles on a pose where few if any
of the model points project onto the background.

One difference between the method used to perform 3D alignment and that used for 2D
alignment is a Z-buffering step that is used to prune hidden points from the calculations. Since
Z-buffer pruning is costly, and the pose does not change much between iterations, it proved
sufficient to prune every 200 iterations. Another difference is that the model surface sampling
was adjusted so that the sampling density in the image was corrected for foreshortening.

In this experiment, the camera has a viewing angle of 18 degrees. We representT , the
transformation from model to image coordinates, as a double quaternion followed by a perspec-
tive projection (Horn, 1986). We used a vector difference metric for the normals. Assuming
diagonal covariance matrices four different variances are necessary, three for the joint entropy
estimate and one for the image entropy estimate. The variance for the x component of the nor-
mal was 0.3, for the y component of the normal was 0.3, for the image intensity was 0.2 and for
the image entropy was 0.15. The size of the random sample used is 50 points.

Since the units of rotation and translation are very different, two separate learning rates are
necessary. For an object with a 100 millimeter radius, a rotation of 0.01 radians about its center
can translate a model point up to a 1 millimeter. On the other hand, a translation of 0.01 can
at most translate a model point 0.01 millimeters. As a result, a small step in the direction of
the derivative will move some model points up to 100 times further by rotation than translation.
If there is only a single learning rate a compromise must be made between the rapid changes
that arise from the rotation and the slow changes that arise from translation. Since the models
used have a radius that is on the order of 100 millimeters, we have chosen rotation learning
rates that are 100 times smaller than translation rates. In our experiments alignment proceeds in
two stages. For the first 2000 iterations the rotation learning rate is 0.0005 and the translation
learning rate is 0.05. The learning rates are then reduced to 0.0001 and 0.01 respectively for an
additional 2000 iterations. Running time is about 30 seconds on a Sparc 10.

A number of randomized experiments were performed to determine the reliability, accuracy
and repeatability of alignment. This data is reported in Table 1. An initial alignment to an image
was performed to establish a base pose. From this base pose, a random uniformly distributed
offset is added to each translational axis (labeled�T ) and then the model is rotated about a
randomly selected axis by a random uniformly selected angle (��). Table 1 describes four ex-
periments each including 50 random initial poses. The distribution of the final and initial poses
can be compared by examining the variance of the location of the centroid, computed separately
in X, Y and Z. In addition, the average angular rotation from the true pose is reported (labeled
j 4 �j). Finally, the number of poses that successfully converged near the correct solution is
reported. The final variance statistics are only computed over the “good” poses.

The third and fourth images in Figure 9 show the initial and final alignment from an ex-
periment that includes an artificial occlusion that covers the chin area. The pose found is very
close to the correct one despite the occlusion. In a number of experiments, we have found that
alignment to occluded images can require more time for convergence. Our system works in the
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4T 4� INITIAL FINAL SUCCESS

X Y Z �X �Y �Z j 4 �j �X �Y �Z j 4 �j

�mm � mm � mm � %

10 10 5.94 5.56 6.11 5.11 .61 .53 5.49 3.22 100
30 10 16.53 18.00 16.82 5.88 1.80 .81 14.56 2.77 96
20 20 10.12 12.04 10.77 11.56 1.11 .41 9.18 3.31 96

10 <4 < 20 20 < 4 < 40 14.83 15.46 14.466 28.70 1.87 2.22 14.19 3.05 78

Table 1: Skull Alignments Results Table

presence of occlusion because the measure of mutual information used is “robust” to outliers
and noise (see (Viola, 1995) for further discussion).

These experiments demonstrate that the alignment procedure is reliable when the initial pose
is close to the “correct” pose. Outside of this range gradient descent, by itself, is not capable
of converging to the correct solution. The capture range is not unreasonably small however.
Translations as large as half the diameter of the skull can be accommodated, as can rotations in
the plane of up to 45 degrees. Empirically it seems that alignment is most sensitive to rotation
in depth. This is not surprising since only the visible points play a role in the calculation of the
derivative. As a result, when the chin is hidden the derivative gives you no information about
how move the chin out from behind the rest of the skull.

6.2.2 Head Tracking Experiment

This section summarizes recent results obtained using the methodology described above to
track a moving human head in a video sequence. The results are shown in Figure 10. The
images on the left of each square have been digitized from video tape at 3 frames per second.
A 3D model of the subject’s head, along with surface normals, was derived from a Cyberware
scan of the subject. It is rendered on the right to illustrate the poses determined by the alignment
method. (Recall that alignment proceeds using video brightness and model surface normals.)

An initial alignment of the model to the first frame of the sequence was obtained using a
manually-generated starting pose (this frame is not shown). In subsequent frames, the previous
final pose was used as the initial pose for the next alignment. Each pose refinement took about
10 seconds on a Sparc 10.

How are the face experiments different from the skull experiments? Firstly, the face model is
much smoother than the skull model. There really aren’t any creases or points of high curvature.
As a result it is much less likely that an edge-based system could construct a representation
either of the image or the model that would be stable under changes in illumination. Secondly,
the albedo of the actual object is not exactly constant. The face contains eyebrows, lips and
other regions where the albedo is not the same. As a result this is a test of EMMA’s ability
to handle objects where the assumption of constant albedo is violated. Thirdly, not all of the
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occluding contours of the object are present in the model. The model is truncated both at the
chin and the forehead. As a result experiments with this model demonstrate that EMMA can
work even when the occluding contours of the image and model are not in agreement.

6.3 View Based Recognition Experiments

In the previous vision experiments we used knowledge of the physics of imaging to show that
the surface normal of an object should be predictive of the intensity observed in an image.
Unfortunately, in many experimental situations no three dimensional model is available. In
these situations it is frequently the case that the only available information about an object is a
collection of images taken under a variety conditions. One approach for solving problems like
this is to use a collection of images as the model. This is often called a “view based” approach
since the model is made up of a number of views of the model object. Given a novel image of
some object, each model image is compared to it in turn. If some model image is “close enough”
to the novel image, the model and novel image are considered aligned (or recognized). One can
significantly reduce the number of model images required by adding an affine transformation to
the comparison process. The novel image is then compared to each model image under a set of
affine transformations. The most commonly used comparison metric is correlation. Correlation
makes the assumption that the model and the image are identical (or possibly related by a linear
function).

In general the set of images that can arise from a single object under varying illumination is
very broad. Figure 11 shows two images of the same object in the same pose. These images are
very different and are in fact anti-correlated: bright pixels in the left image correspond to dark
pixels in the right image; dark pixels in the left image correspond to bright pixels in the right
image. No variant of correlation could match these images together.

We have presented techniques based on entropy that can match both correlated and anti-
correlated signals. These techniques require only that there is some consistent relationship
between model and image. Discouragingly, it is not difficult to find two images of the same
object for which there is no consistent relationship. Figure 12 shows a novel image which is
aligned with the two model images. Figure 13 contains two scatter plots of the pixel values
in the novel image versus the pixel values in the model images. Clearly, there is no simple
consistent relationship displayed in either of these graphs. Neither correlation or EMMA could
not be used to match this novel image to either model image.

6.3.1 Photometric Stereo

By itself each model image does not contain enough information to constrain the match between
image and model. However, it is well known that taken together a collection of images can be
used to determine the 3D shape of an object. As we’ve seen the 3D shape is sufficient to
constrain the match between image and model.

When multiple images of an object are available a technique calledphotometric stereocan
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be used to estimate 3D shape (Horn, 1986). Photometric stereo works with images which
are taken from the same location but under different illumination conditions. It is assumed
that detailed information both about illumination and surface properties are available for each
image. As a result a reflectance map can be computed for each image.

The reflectance map together with the intensity of a pixel acts as a constraint on the normal
vector visible from that pixel. The allowable normals usually lie along a closed curve on the
unit circle. From a second image, and its associated reflectance map, another set of allowable
normals can be computed. By intersecting these constraints, two images are sufficient to de-
termine the surface normal at each pixel. From the normals the shape can be obtained through
integration.

Once the shape of the object is determined, the correct alignment could be found using the
three dimensional version of EMMA alignment. The imaging function of this new two stage
process is:

v(T (xi)) = F (G(u1(xi); r1; u2(xi); r2); q)

whereG() is the photometric stereo function that takes two images and two reflectance maps
and returns the shape, andF () is our original imaging function which predicts image intensities
from object normals.

In practice, however, performing photometric stereo requires the kind of detailed metric
information about illumination that is only available under very controlled circumstances. One
cannot use natural images where the lighting is unknown or difficult to determine. Luckily, we
need not actually knowG(), r1, r2, F (), or q. As long as they exist there will be high mutual
information between any novel image and apair of model images. This is the essence of view
based EMMA alignment. We don’t actually perform photometric stereo, we simply assume that
it is possible. As a result a pair of images should give information about any third image.

To demonstrate this approach we have built a model using the two images in Figure 11.
Figure 14 shows the target image, the initial pose of the model, and the final pose obtained after
alignment.

Technically this experiment is very similar to the MRI alignment experiment. The main
difference is that the model is constructed from a pair of model images. A sample of the model
u(x) = [u1(x); u2(x)]

T is a two dimensional vector containing the intensity of the two images
at locationx. This is similar to the two component representation of normal used in the three
dimensional alignment experiments. For this experiment� is 0:1. The parameters were updated
for 1000 iterations at a rate of 0.002. From a set of randomized experiments we have determined
that the capture range of the alignment procedure is about 40% of the length and width of the
car, and 35 degrees of rotation.

7 Discussion and Related Work

We have presented a metric for comparing objects and images that uses shading information,
yet is explicitly insensitive to changes in illumination. This metric is unique in that it compares
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3D object models directly to raw images. No pre-processing or edge detection is required. The
metric has been rigorously derived from information theory.

In a typical vision application EMMA alignment is intensity-based, rather than feature
based. While intensity based, it is more robust than traditional correlation – since it is in-
sensitive to negating the image data, as well as a variety of non-linear transformations (e.g.,
Section 6.1), which would defeat conventional intensity-based correlation.

The sensitivity of intensity correlation may be corrected, to some extent, by performing
correlations on the magnitude of the intensity gradient. This, as well as edge-based matching
techniques, can perform well on objects having discontinuous surface properties, or useful sil-
houettes. These approaches work because the image counterparts of these discontinuities are
reasonably stable with respect to illumination, however they typically make two very strong
assumptions: the edges that arise are stable under changes in lighting, and the models are well
described as a collection of edges.

There are many schemes that represent models and images by collections of edges and define
a distance metric between them, Huttenlocher’s use of the Hausdorff distance (Huttenlocher
et al., 1991) is an example. Some methods use a metric that is proportional to the number of
edges that coincide (see the excellent survey articles: (Besl and Jain, 1985; Chin and Dyer,
1986)). A smooth, optimizable version of such a metric can be defined by introducing a penalty
both for unmatched edges and for the distance between those that are matched (Lowe, 1985;
Wells III, 1992). This metric can then be used both for image/model comparison and for pose
refinement. Additional technical details on the relationship between mutual information and
other measures of alignment may be found in (Viola, 1995).

Alignment by extremizing properties of the joint signal has been used by Hill and Hawkes
(Hill, Studholme and Hawkes, 1994) to align MRI, CT, and other medical image modalities.
They use third order moments of the joint histogram to characterize the clustering of the joint
data. We believe that mutual information is perhaps a more direct measure of the salient prop-
erty of the joint data at alignment, and demonstrate an efficient means of estimating and extrem-
izing it. Recently, Collignon et al. (Collignon et al., 1995) described the use of joint entropy
as a criterion for registration of CT and MRI data. They demonstrated a good minimum by
probing the criterion, but no search techniques were described.

Image-based approaches to modeling have been previously explored by several authors.
Objects need not have edges to be well represented in this way, but care must be taken to
deal with changes in lighting and pose. Turk and Pentland have used a large collection of
face images to train a system to construct representations that are invariant to some changes in
lighting and pose (Turk and Pentland, 1991). These representations are a projection onto the
largest eigenvectors of the distribution of images within the collection. Their system addresses
the problem of recognition rather than alignment, and as a result much of the emphasis and
many of the results are different. For instance, it is not clear how much variation in pose can be
handled by their system. We do not see a straightforward extension of this or similar eigenspace
work to the problem of pose refinement. In other related work, Shashua has shown that all of
the images, under different lighting, of a Lambertian surface are a linear combination of any
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three of the images (Shashua, 1992). A procedure for image alignment could be derived from
this theory. In contrast, our image alignment method does not assume that the object has a
Lambertian surface.

Entropy is playing an ever increasing role within the field of neural networks. We know of
no work on the alignment of models and images, but there has been work using entropy and
information in vision problems. None of these technique uses a non-parametric scheme for
density/entropy estimation as we do. In most cases the distributions are assumed to be either
binomial or Gaussian. Entropy and mutual information plays a role in the work of (Linsker,
1986), (Becker and Hinton, 1992) and (Bell and Sejnowski, 1995).
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Figure 10: Video Head Tracking Experiment
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Figure 11: Car Model Images

Figure 12: A novel image of the car model.
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Figure 13: The relationship between pixels in the novel image and each of the model images.
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Figure 14: Top Left: A novel image of the car. Top Right: The initial pose of the car model.
Though the model is made up of multiple images, only one is shown here. Bottom Left: The
aligned pose of the car model.
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