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Abstract

We study the question of estimating the eigenvalues of a
matrix in the streaming model, addressing a question posed
in [Mut05]. We show that the eigenvalue “heavy hitters” of
a matrix can be computed in a single pass. In particular, we
show that the φ-heavy hitters (in the `1 or `2 norms) can be
estimated in space proportional to 1/φ2. Such a dependence
on φ is optimal.

We also show how the same techniques may give an
estimate of the residual error tail of a rank-k approximation
of the matrix (in the Frobenius norm), in space proportional
to k2.

All our algorithms are linear and hence can support

arbitrary updates to the matrix in the stream. In fact, what

we show can be seen as a form of a bi-linear dimensionality

reduction: if we multiply an input matrix with projection

matrices on both sides, the resulting matrix preserves the

top eigenvalues and the residual Frobenius norm.

1 Introduction

The past few decades have seen a surge of research
on sampling and sketching matrices for the purpose of
producing low-complexity approximations to the large
matrices. Most notably, there has been an influential
line of work on computing a low-rank approximation
of a given matrix, starting with the work of [PTRV98,
FKV04]. In the extreme case of rank k = 1, one recovers
an approximation to the eigenvector corresponding to
the largest eigenvalue (or large eigenvalues). Classically,
one can compute such low-rank approximations via
singular-value decomposition (SVD). Since the matrices
of interest and the application areas are typically in the
realm of “massive datasets”1, it is imperative to develop
algorithms that are very efficient for processing such
large matrices.

Massive data computation typically have a space
and/or communication bottleneck, and thus it is cru-
cial to consider these algorithms in the streaming frame-
work, where the data (matrix) is stored externally (or in
a distributed fashion), and the algorithm passes through
the data sequentially, potentially a few times. The main
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consideration here is the working/RAM space, which we
would like to make as small as possible. For example,
for rank approximation algorithms, the space complex-
ity is usually proportional to n ·k for a n×n matrix and
a target rank k. Besides squashing the space, at least
part of the research has been also driven by the need
to reduce the number of passes from constant (or loga-
rithmic) to one pass only, as well as to achieve relative
error guarantees (in contrast to absolute error guaran-
tees). See the surveys [KV09], [HMT10], and [Mah11]
for a thorough treatise of the large number of existing
algorithms in this area.

It is natural to ask whether one can obtain space
below n. The simple answer is no: Ω(nk) space is re-
quired to even represent the output in general. Low-
rank approximation tries to capture the highest k eigen-
vectors of a matrix, which are k large-dimensional vec-
tors. However, it is conceivable that one can achieve
less space if we want to compute the top k eigenval-
ues/singular values only, in which case the output size
O(k). This question of estimating eigenvalues has been
also asked in one of the first surveys on streaming algo-
rithms [Mut05].

In this paper, we present the first such space-
efficient algorithm that computes approximations to the
top eigenvalues and singular values. Informally stated,
we show how to approximate the top k eigenvalues,
with additive error proportional to the residual error
of the rank-k approximation. We achieve space that is
proportional to k2 (and error parameters).

We also show how to use our algorithm for comput-
ing the residual error of a rank-k approximation of a
matrix, in space proportional to k2. Such an algorithm
may be applied, for example, in the following parame-
ter selection scenario. Before applying one of the more
expensive rank-k approximation algorithms, one may
wish to know whether the target value of k will yield
a good approximation, or one has to, say, increase k
for a smaller residual error. Our algorithm would pro-
vide such an estimate at much smaller (space) cost, of
roughly k2, in contrast to roughly nk required by the
best rank-k methods.

We remark that our results may be seen as a form
of “heavy hitters” on the vector of eigenvalues/singular
values of a matrix. We note that, in constrast to the



standard heavy hitters, which achieve an equivalent
error in space proportional k, our space requirement
is proportional to k2. It turns out that in our case,
of matrices, dependence on k has to be at least Ω(k2)
[CW09]. Except for this difference in space requirement,
our error guarantees are morally equivalent to the best
guarantees for the (easier problem of) standard heavy
hitter for vectors.

1.1 Results We now present our results formally.
We state our eigenvalue/singular value reconstruction
results as solutions to `1 and `2 heavy hitters problems.
Our error bounds are in terms of the rank-k residual
error (in constrast to the total eigenvalue mass), similar
to the most desirable bounds one can obtain for a
full-blown rank-k approximation. In the space bounds
below, we do not include the random seed size, which
we comment on later on.

Theorem 1.1. (`1 heavy eigen-hitters) Fix ε > 0
and integers n, k ≥ 1. Let A be a real symmetric n× n
matrix, and let λi(A) be the ith largest eigenvalue of A
in absolute value. Then there is a linear sketch of the
matrix A, using space O((kε−2 + log n)2), from which
one can produce values λ̃i, for i ∈ [k], satisfying the
following with at least 5/9 success probability:

|λi(A)− λ̃i| ≤ ε|λi(A)|+ 1
kS

k+1
1 ,

where Sk+1
1 is the residual “`1 error”:2 Sk+1

1 =∑
i>k |λi(A)|.

We note that while the above statement applies to
square symmetric matrices, it immediately extends to
computing the approximate singular values of arbitrary
matrices.

We also solve the following `2 heavy hitter problem
for eigenvalues.

Theorem 1.2. (`2 heavy eigen-hitters) Fix ε > 0
and integers n,m, k ≥ 1. Let A be any n ×m matrix,
and let si(A) be the ith largest singular value of A. Then
there is a linear sketch of the matrix A, using space
O((kε−2 + log n)2), from which one can produce values
s̃i, for i ∈ [k], satisfying the following with at least 5/9
success probability:

|s2i (A)− s̃2i | ≤ εs2i (A) + 1
k (Sk+1

2 )2,

where Sk+1
2 is the residual “`2 error” (Frobenius norm):

Sk+1
2 =

√∑
i>k s

2
i (A) = min

A′ of rank k
‖A−A′‖F .

2We note that Sk+1
1 can also be seen as the Schatten norm 1

of the error of best rank-k approximation: Sk+1
1 = ‖A − Ak‖S1

where Ak is the best rank-k approximation of A.

We note that, in constrast to the `1 heavy eigen-
hitters result from above, our `2 heavy eigen-hitter
result does not reconstruct the sign of the eigenvalues
in the case of a square symmetric matrix.

Finally, we state our result for estimating the
residual error of a rank-k approximation.

Theorem 1.3. (Residual error estimation) Fix
ε > 0 and integers n,m, k ≥ 1. Let A be any n × m
matrix, and let si(A) be the ith largest singular value of
A. There is a linear sketch of the matrix A, using space
O((kε−3 + log n)2), from which one compute an 1 + ε
approximation to the `2 tail estimate of the singular
values of A, namely

∑n
i=k+1 s

2
i (A) (with at least 5/9

success probability).

As previously mentioned, in all these cases, the
factor of Ω(k2) in space is required to obtain the desired
guarantee, as implied by the rank lower bound [CW09].

Our algorithms are essentially of the following kind:
we sketch matrix A using random projection matrices
G,H, of size k2ε−O(1)×n, to obtain sketch S = GAHT ,
and then compute the top k singular values/eigenvalues
of the resulting matrix S. In the case of residual error
estimator, the algorithm just computes the residual
error of rank-k approximation of S. Thus, one can
view our results as a form of bi-linear dimensionality
reduction of a matrix, one that preserves some coarse
spectral structure. In particular, the classical Johnson-
Lindenstauss lemma [JL84], a linear dimensionality
reduction, can be seen as preserving the singular value
of the n×1 matrix (a vector) A. Our results show what
happens when we apply linear dimensionality reduction
to a tensor of order 2.

We note that our algorithms are linear and therefore
they work in the most general streaming setting. In
particular, the stream elements are updates of the form
(i, j, δij), interpreted as “increase (i, j) matrix entry by
δij ∈ R”. Similarly, the algorithms are also applicable
in the case when the matrix is distributed across several
machines.

Finally, we remark that our algorithms are random-
ized and use random seed of length (log n/ε)O(1) only (to
generate the projection matrices G and H). In fact, the
only necessary property of matrices G,H is that their
spectrum is well-concentrated around 1 (matrices are
very well conditioned).

1.2 Related work
Numerical linear algebra in the streaming

model. As previously noted, there has been a lot of
work on numerical linear algebra in the streaming model
to address the need of efficient algorithms on massive
datasets. Besides the best rank-k approximation, other



heavily studied problems have been approximate matrix
multiplication, `p regression, and rank approximation,
among others (see surveys [KV09], [HMT10], [Mah11]
and the references therein).

Most related to ours is the result on rank approxi-
mation that shows that, in order to distinguish whether
rank is k or more, one has to use space at least Ω(k2),
and at most O(k2 log n) [CW09].

We also note that part of our interest in estimating
eigenvalues also stems from an attack on estimating the
Schatten norms of a matrix. In particular, Schatten
norm 1 of a matrix, also called the nuclear norm, is the
sum of the absolute values of the eigenvalues/singular
values. On this front, we note that, in independent
work, Li and Woodruff obtained lower bounds that are
polynomial in n [LW12].

Heavy hitters. Our results can be seen from the
prism of computing the heavy hitters of the vector Λ
of eigenvalues/singular values. From this perspective,
our `1 and `2 heavy (eigen-)hitters results are similar
in spirit to those obtained by standard `1 and `2 heavy
hitters of vectors, such as CountSketch [CCF02] and
CountMin [CM05] (but not in terms of the algorithms).
Namely, we recover well those eigenvalues whose values
is at least a fraction ≈ 1/k of the total mass (`1 or
`2) of all the eigenvalues (or, for that matter, of the
residual spectral mass). In constrast to the standard
vector heavy hitters, our algorithms do not have to
recover which are the heavy “coordinates”. This aspect
adds an additional factor of O(log n) to the space for
standard heavy hitters, which we do not incur (ignoring
the random seed size).

We note that the standard heavy hitters of vectors
have turned out to be quite a useful primitive — see for
example the website for CountMin, an `1 heavy hitters
sketch [CM10].

1.3 Techniques We now briefly overview the techni-
cal aspects of our results.

One can try to approach the eigenvalue heavy hit-
ters question by reasoning about a potential rank-k
approximation to the input matrix A. For example,
one such algorithm for rank approximation generates
a sketch by multiplying the matrix A by a projection
matrix G, of size t × n, where t = k(ε−1 log(n))O(1)

[Sar06]. Then, for some carefully constructed trans-
formation π, [Sar06] proves the following guarantee:
‖A − π(GA)‖F ≤ (1 + ε) min

Ak of rank k
‖A − Ak‖F ,

i.e., the residual `2 norm is well approximated. Intu-
itively, since GA approximates the top-k eigenspace, it
may have some information about specifically the top k
eigenvalues of A. Besides the issue that storing GA
takes too much space (but can be dealt with apply-

ing the projection again), the question is whether one
can prove that GA preserves the top spectrum of A
specifically. Note that the above guarantee is not suf-
ficient: the kth eigenvalue of A can be much less than
‖A − Ak‖F , in which case there is no hope to guaran-
tee reconstruction of the kth eigenvalue. From a larger
perspective, the difference is that we want point-wise
guarantee for eigenvalues, whereas the above guarantee
is “overall”.

Our algorithm is nonetheless inspired by the above
approach. In particular, our algorithm corresponds to
taking two such projections G and H, of size O(k/ε2)
by n, and computing the sketch S = GAGT (for `1) or
S = GAHT (for `2). Our main technical contribution
is indeed to prove that this simple algorithm does the
job: if we take top k eigenvalues/singular values of the
resulting sketch S, we obtain good approximations of
the eigenvalues/singular values of the original matrix
A.

To prove our main theorems, we rely on several tools
from matrix analysis. First, to bound the error incurred
by the swarm of small eigenvalues, we use results on
the distribution of singular values of random matrices
(note that we essentially need to do so, even in the case
when A is a partial identity matrix). Second, to obtain
point-wise guarantee on eigenvalues/singular values,
we deduce some eigenvalue interlacing laws for well-
conditioned matrices, similar in spirit to the Cauchy
interlacing theorem (which applies to all matrices).
Third, to get a precise handle on the residual error of a
rank-k approximation, we use Lidskii and dual Lidskii
inequalities, which bound the eigenvalues of a sum of
Hermitian matrices in terms of the eigenvalues of the
component matrices.

We remark that we need to use only a small random
seed for the generation of the projection matrices G,H.
In particular we show limited independence suffices,
following the proof of the concentration of the singular
values of these random matrices [BY93].

2 Preliminaries

Consider a real matrix A of size n by n.

Definition 2.1. For a matrix A, let s1(A), . . . , sn(A)
be the singular values of A sorted by decreasing value.
Define the p-Schatten norm of A to be Sp(A) =
(
∑
i si(A)p)1/p. Define the p residual Schatten norm

Sjp(A) as Sjp(A) = (
∑
i>j si(A)p)1/p.

Definition 2.2. For a symmetric matrix A, let
λ1(A), . . . , λn(A) be the eigenvalues of A sorted in the
decreasing absolute value (but preserving the signs).

We will use the following inequalities on eigenvalues
of Hermitian matrices.



Lemma 2.1. (Weyl inequality) [Tao12, Section
1.3] Let M1,M2 be t × t Hermitian matrices. Then,
for all 1 ≤ i, j ≤ t, we have

λi+j−1(M1 +M2) ≤ λi(M1) + λj(M2).

Lemma 2.2. (Lidskii inequality) [Tao12, Section
1.3.3] Let M1,M2 be t × t Hermitian matrices. For all
k ∈ [t],

t−k∑
j=1

λk+j(M1 +M2) ≤
t−k∑
j=1

λk+j(M1) + λj(M2).

Lemma 2.3. (Dual Lidskii inequality) [Tao12,
Section 1.3.3] Let M1,M2 be t× t Hermitian matrices.
For all k ∈ [t],

t−k∑
j=1

λk+j(M1 +M2) ≥
t−k∑
j=1

λk+j(M1) + λk+j(M2).

We will also use the following results on eigenvalues
of random matrices. Since we are not aware of such
explicit statements in the case of limited independence,
we reproduce the proofs for limited independence in
Appendix A, based on the proof from [BY93].

Fact 2.1. For any n ≥ k, n× k matrices with random
entries whose moments match moments of entries of
a matrix with independent N(0, 1) entries up to the
Θ(log2 n/ε2)th moment have singular values bounded
from above by (2 + ε)

√
n with probability 1− 1/poly(n).

Fact 2.2. For k ≤ ε2n for some constant ε < 1, the
minimum singular value of a rectangular matrix of size
n × k with entries whose moments match moments of
entries of a matrix with independent N(0, 1) entries up
to the Θ(log2 n/ε2)th moment is bounded from above by
(1+2ε)

√
n and from below by (1−2ε)

√
n with probability

1− 1/ poly(n).

Lemma 2.4. Consider m ≥ n ≥ k. Let G be an n×m
matrix with Θ(log2 n/ε2)-wise independent entries and
U be an m× k matrix satisfying UTU = Ik where Ik is
the identity matrix of dimension k. Then GU satisfies
the condition of the above two facts.

Proof. Let V be an m×m unitary matrix (V V T = Im)
whose first k columns form U . First notice that if G
were fully independent, then the distribution of GV is
the same as that of an n×m matrix H with independent
N(0, 1) entries. Indeed, the density of the distribution
of H at any X ∈ Rn×m is 1

(2π)nm/2
exp(−‖X‖2F /2). The

density of the distribution of GV at any X ∈ Rn×m is
1

(2π)nm/2
exp(−‖XV T ‖2F /2) = 1

(2π)nm/2
exp(−‖X‖2F /2).

Therefore, the moments of entries of G and GV are the
same i.e. the moments of entries of GV are the same as
those of independent N(0, 1).

Now consider the case where entries of G are only
Θ(log2 n/ε2)-wise independent. Since entries of GV
are linear combinations of entries of G, by linearity of
expectation, their moments up to the Θ(log2 n/ε2)th
moment are the same as those of GV when G is fully
independent. Since GU is a submatrix of GV , the
lemma follows.

Finally, we note that, our space bounds are in
terms of words, that are Ω(log n) bits, assuming that
the entries of our input matrices also have bounded
precision. In such a case, it is sufficient to generate the
above bounded-independence matrices G with entries
that have 1/nO(1) precision.

3 Heavy hitters for eigenvalues and singular
values

In this section, we show how to compute `1 and `2 heavy
hitters of eigenvalues/singular values of real matrices,
thereby proving Theorems 1.1 and 1.2. First, we show
that we can easily reduce the problem of approximating
singular values of general matrices to the problem of ap-
proximating eigenvalues of square symmetric matrices.

Lemma 3.1. Assume that there is an algorithm for
approximating large eigenvalues of a symmetric real
matrix A, there is an algorithm for approximating large
singular values of an arbitrary real matrix B.

Proof. Consider the following block matrix.

A =

(
0 B
BT 0

)
It is a well-known fact that the eigenvalues of

this matrix are the singular values of B and their
negations. Indeed, by the singular value decomposition,
we can write B as

∑n
i=1 λiuiv

T
i where {ui} and {vi} are

orthonormal sets of vectors and λi ≥ 0. Observe that
ui ◦ vi is an eigenvector of A with eigenvalue λi and
ui ◦ −vi is an eigenvector of A with eigenvalue −λi.

From now on, we only consider symmetric matrices.
Let A =

∑n
i=1 λiuiu

T
i = UΛUT where Λ is the diagonal

matrix with diagonal entries equal to λ1, . . . , λn, U is
a matrix with orthonormal columns and ui is the ith
column of U .

Before proving our main results, we need to estab-
lish some necessary lemmas that are somewhat similar
to the Cauchy interlacing theorem.



3.1 Interlacing lemmas We prove two lemmas ad-
dressing a form of interlacing theorem. For example, the
Cauchy interlacing theorem addresses the case when we
consider a minor of a matrix, such as Ik,nAIn,k where
Ik,n is a truncated identity. Below, we address the case
when we consider a matrix of the form GDGT for a
diagonal matrix D.

Lemma 3.1. Let D be a n × n diagonal matrix. Let G
be a t× n matrix.

Then, for any i ≤ t, we have that λi(GDG
T ) ≤

λ1(GD≥iG
T ), where D≥i is D with the largest i − 1

diagonal values zeroed out.

Proof. Note that

λi(GDG
T ) = max

S⊂Rt,dim(S)=i
min
x∈S

xTGDGTx

xTx
.

Let S be the subspace maximizing the above and let
S′ = {y | y = GTx, x ∈ S} be the image of S under
the linear transformation GT . S′ is a subspace of Rn
of dimension at most i. Suppose the dimension of S′

is smaller than i. Then there is some nonzero vector
x ∈ S such that GTx = 0. Thus, λi(GDG

T ) ≤
0 ≤ λ1(GD≥iG

T ) and we obtain the desired conclusion.
Henceforth, we assume the dimension of S′ is i.

Now we consider the largest eigenvalue of GD≥iG
T :

λ1(GD≥iG
T ) = max

x∈Rt
xTGD≥iG

Tx

xTx
.

Let P be the subspace spanned by the n − i + 1
eigenvectors corresponding to the smallest n − i + 1
eigenvalues of D. Since the dimension of S′ is i, there
is some non-zero vector y ∈ S′ ∩ P . By the definition
of S′, there is some x ∈ S such that y = GTx. For this
x, we have that xTGD≥iG

Tx = yTD≥iy = yTDy =
xTGDGTx. We conclude that

λ1(GD≥iG
T ) ≥x

TGD≥iG
Tx

xTx

≥ max
S⊂Rt,dim(S)=i

min
x∈S

xTGDxGTx

xTx

=λi(GDG
T ).

Lemma 3.2. For t ≥ 1, fix D to be a diagonal matrix
of size k× k where k = O(ε2t). Let G be a t× k matrix
with the k largest singular values bounded between 1− ε
and 1 + ε for some ε ∈ (0, 1).

Then, the spectrum of GDGT is a 1 + O(ε) multi-
plicative approximation of the spectrum of D i.e. when
sorted by value, the i-th eigenvalue of GDGT is a
1 +O(ε) multiplicative approximation of the i-th eigen-
value of D, for all 1 ≤ i ≤ k.

Proof. Fix i ∈ [k]. As above, let D≥i be D with largest
i diagonal values zeroed out. Let j be the number of
non-negative eigenvalues of D (i.e., λj(D) ≥ 0 and, if
j < k, also λj+1(D) < 0).

We also define G≥i to be matrix G with rows
restricted to the non-zeroed out entries of the diagonal
matrix D≥i.

Suppose i ≤ j. Then, using Lemma 3.1, we deduce
that

λi(GDG
T ) ≤λ1(GD≥iG

T )

= max
x∈Rt

xTGD≥iG
Tx

≤max
x∈Rt

xTG≥i · λi(D) ·GT≥ix

=λi(D) · λ1(G≥iG
T
≥i).

By Fact 2.2, we conclude that λi(GDG
T ) ≤ (1 +

ε)λi(D).
We now continue with lower-bounding the ith eigen-

value. Let Di be the matrix D where we zero out all
but the biggest i values on the diagonal (i.e., we select
the i highest eigenvalues). Let Pi be the subspace of Rk
corresponding these i coordinates. By the condition on
G, we have that

max
S⊂Rt:dimS=k

min
x∈S

xTGGTx

xTx
≥ 1− ε.

Let S be the set that maximizes the above. There must
be an i-dimensional subspace S′ ⊂ S such that, for any
x ∈ S′, we have that Gx ∈ Pi. Having constructed the
linear subspace S′ of dimension i, we now conclude that

λi(GDG
T ) ≥min

x∈S′
xTGDGTx

xTx

= min
x∈S′

xTGDiG
Tx

xTx

≥min
x∈S′

λi(D) · xTGGTx
xTx

≥(1− ε)λi(D).

Hence, for any i ≤ j, we have that λi(GDG
T ) =

(1± ε)λi(D).
To prove the claim for negative eigenvalues, i.e., for

i > j, consider the matrix N = −D. Since have that
λk−i+1(N) = −λi(D), we can apply the same argument
as above to the k−j largest eigenvalues of N and obtain
that these eigenvalues are a 1± ε approximation of the
eigenvalues {−λk(D), . . .− λj+1(D)}.

This concludes the proof of Lemma 3.2.

3.2 `1 heavy hitters We are now ready to prove
Theorems 1.1 and 1.2. Our sketch will be of the



form M = GAGT where G is a t by n matrix with
Θ((log2 n)/ε2)-wise independent entries identically dis-
tributed as N(0, 1/t). We first prove the following
lemma on the trace of the sketch matrix.

Lemma 3.3. E[tr(GAGT )] =
∑
i λi = tr(A) and

Var[tr(GAGT )] =
∑
i λ

2
i /t. This is true even when the

entries of G are 4-wise independent. Hence tr(GAGT )
is a 1 + 3/

√
t approximation to tr(A) with probability

8/9.

Proof. Notice that E[tr(GAGT )] and Var[tr(GAGT )]
only involve terms of degree at most 4 so the values of
these quantities are the same when entries of G are 4-
wise independent and when they are fully independent.
When the entries are fully independent,

E[tr(GAGT )] =
∑
i,j

λiG
2
j,i =

∑
i

λi

Var[tr(GAGT )] = Var[tr(GΛGT )]

=
∑
i,j

λ2i Var[G2
j,i]

=
∑
i

λ2i /t

The final conclusion follows by Chebyshev’s in-
equality:

Pr[| tr(GAGT )− tr(A)| > 3√
t

tr(A)] ≤Var[tr(GAGT )]

(3 tr(A)/
√
t)2

≤ ‖Λ‖
2
F

9 tr2(A)

≤ 1
9 .

The following lemma proves Theorem 1.1, which
follows from applying the lemma for φ = Θ(1/k).

Lemma 3.4. (`1 heavy hitters) For n ≥ 1, let A be
a symmetric n× n matrix and λi(A) be the i-th largest
eigenvalue of A in absolute value. Fix ε, φ ∈ (0, 1). Set
t = φ−1ε−2 + 2 log n. With probability at least 9/10,
the φ−1 − 1 largest eigenvalues of GAGT in absolute

value are 1+ε multiplicative and O(ε2φS
1/φ
1 (A)+|λ1/φ|)

additive error approximations of the φ−1 − 1 largest
eigenvalues of A in absolute value.

Proof. By the spectral theorem, we can decompose A
as A = UΛUT where Λ is a diagonal matrix with
Λii = λi(A) and UTU = UUT = I. Let Vi be the set of
eigenvalues of A in the range s1/φ(A)2−i, s1/φ(A)2−i+1]
and Λi be a diagonal matrix that contains entries of
Λ whose absolute values corresponding to the singular

values in Vi and the rest replaced with 0. Let λi be
the i-th largest eigenvalue of A in absolute value. Let
Λ0 be a diagonal matrix containing entries of Λ whose
absolute values are at least |λ1/φ| i.e. λ1, . . . , λ1/φ.
Let G′ = GU and G′Vi be the same as G′ but with
the columns corresponding to singular values not in Vi
replaced with 0. Then GAGT = G′(

∑
i≥0 Λi)G

′T . We
have

∑
i≥1

‖G′ΛiG′T ‖2 ≤
2 logn∑
i=1

|λ1/φ|2−i+1‖G′ViG
′T
Vi‖2+

∑
i≥2 logn

|λ1/φ|2−i+1‖G′ViG
′T
Vi‖2

≤
logn∑
i=1

|λ1/φ|2−i+1‖G′ViG
′T
Vi‖2 +O(|λ1/φ|)

≤O(1)
∑
i≥1

|λ1/φ|2−i+1 max(|Vi|, t)
t

+

O(|λ1/φ|)

≤
O(
∑
i≥1/φ |λi|)
t

+O(|λ1/φ|)

≤O(|λ1/φ|+ ε2φS
1/φ
1 (A))

The first inequality comes from the fact that
G′(|λε2t|2−i+1I − Λi)G

′T and G′(|λε2t|2−i+1I + Λi)G
′T

are symmetric psd. The second inequality comes from
the fact that there are only n eigenvalues and for any col-
umnGj ofG, ‖Gj‖2 is bounded byO(t) with probability
1−1/ poly(n). The third inequality comes from the fact

that ‖G′ViG
′
Vi

T ‖2 is bounded by (4 + O(ε)) max(|Vi|, t)
with probability at least 1− 1/ poly(t) (by Fact 2.1 and
Lemma 2.4).

By Lemma 3.2, the eigenvalues of G′Λ0G
′T are

1 ± ε approximations of eigenvalues of Λ0 i.e. the j-
th largest eigenvalue of G′Λ0G

′T in absolute value is a
1 ± ε approximation of λj . For any arbitrary j ≤ 1/φ,
applying Weyl’s inequality to the symmetric matrices
G′ΛiG

′T and G′ΛG′T ,

λj(G
′ΛG′T ) ≤ λj(G′Λ0G

′T ) +
∑
i≥1

‖G′ΛiG′T ‖2

≤ λj + ε|λj |+O(|λ1/φ|+ ε2φS
1/φ
1 (A))

Similarly, λj(G
′ΛG′

T
) ≥ λj − ε|λj | − O(|λ1/φ| +

ε2φS
1/φ
1 (A)). This concludes the proof of the lemma.

3.3 `2 heavy hitters The following lemma proves
Theorem 1.2, which follows from applying the lemma
for φ = Θ(1/k).



Lemma 3.5. (`2 heavy hitters) Set t = O(φ−1ε−2 +
log n). Let G and H be t by n matrices with
Θ((log2 n)/ε2)-wise independent entries identically dis-
tributed as N(0, 1/t). With probability at least 5/9, the
top φ−1 singular values of GAHT approximate the top
φ−1 singular values of A with as follows for 1 ≤ i ≤ 1/φ:

|s2i (GAHT )−s2i (A)| ≤ εs2i (A)+O(s21/φ(A)+ε2φ(S
1/φ
2 (Λ))2),

where Sj2(A) =
√∑

i>j si(A)2.

Proof. We prove this lemma by essentially applying the
`1 heavy hitters results twice. By Lemma 3.4, the
top φ−1 eigenvalues of HATAHT , which are the same
as those of AHTHAT , are approximation of the top
φ−1 eigenvalues of ATA with multiplicative error 1 ± ε
and additive error O(s1/φ(ATA) + ε2φS

1/φ
1 (ATA)) =

O(s21/φ(A) + ε2φS
1/φ
2 (A)). By the singular value de-

composition, we can decompose A = UΛV T where Λ
is diagonal and UTU = V TV = In. Let Λ = Λl + Λs
where Λl and Λs are diagonal matrices containing the
1/φ entries with largest absolute values on the diag-
onal of Λ and the rest, respectively. By Lemma 3.3,
tr(UΛsV

THTHV ΛsU
T ) = tr(HV Λ2

sV
THT ) = (1 ±

ε) tr(V Λ2
sV

T ) = (1 ± ε)(S1/φ
2 (A))2 with probability at

least 8/9. Because HV Λ2
l V

THT has rank at most 1/φ,
by the Lidskii inequality (Fact 2.2) and the fact that
AHTHAT is psd, we have

S
1/φ
1 (AHTHAT ) = S

1/φ
1 (HATAHT )

= S
1/φ
1 (HV (Λl + Λs)

2V THT )

= S
1/φ
1 (HV (Λ2

l + Λ2
s)V

THT )

≤ tr(HV Λ2
sV

THT )

≤ (1 + ε)(S
1/φ
2 (A))2

By Lemma 3.4, the top φ−1 eigenvalues of
G(AHTHAT )GT are approximation of the top φ−1

eigenvalues of AHTHAT with multiplicative error

1 ± ε and additive error O(ε2φS
1/φ
1 (AHTHAT ) +

s1/φ(AHTHAT )) = O(ε2φ(S
1/φ
2 (A))2 + s21/φ(A)) as

noted above. The lemma for singular values of GAHT

follows.

4 Estimating Residual Rank-k Error

In this section we prove Theorem 1.3.

Proof. [Proof of Theorem 1.3]
The sketch is GAHT , where G,H are t by n

matrices with t = 2kε−3, distributed N(0, 1/t) with
O((log n)2/ε2) independence. The estimate of the resid-
ual error is the `2 norm of the k+ 1 to t singular values
of the sketch GAHT .

Lemma 4.1. Let A be a n × m matrix, with m ≤ n.
Let H be a t × n matrix with t = Θ(kε−3 + log n)
and entries identically distributed according to N(0, 1/t)
with Θ(log n)2/ε2)-independence. Then with probability
at least 7/8, Sk2 (HA) is a 1±ε approximation of Sk2 (A).

Proof. By the singular value decomposition, we have
A = UΛV T where UTU = V TV = In and Λ is a
diagonal matrix whose diagonal entries are the singular
values of A, in order of non-increasing absolute value.
Let Λ = Λl + Λs, where Λl is Λ restricted to the first
k + k/ε diagonal values (all others zeroed out), and Λs
contains the rest of the diagonal values.

Now set M1 = HUΛ2
lU

THT and M2 =
HUΛ2

sU
THT . Note that HAATHT = HU(Λs +

Λl)
2UTHT = M1 + M2. We will be applying Lidskii

and the inverse Lidskii inequalities to M1 and M2.
First, by Lemma 3.4 applied to UΛ2

lU
T with φ =

ε/(εk + k), HUΛ2
lU

THT , has spectrum that is a 1 + ε
multiplicative approximation to the spectrum of Λ2

l ,
namely {λ21(Λ), . . . λ2k+k/ε(Λ))} (note that HUΛ2

lU
THT

has rank at most k+ k/ε hence there are no other non-
zero eigenvalues).

In particular, we obtain that
∑t−k
j=1 λk+j(M1) is a

1 + ε approximation to
∑k+k/ε
j=k+1 λ

2
j (Λ).

Now we analyze matrix M2, starting by giving
a tight bound for the trace norm. By Lemma 3.3,
tr(HUΛ2

sU
THT ) is a 1 + ε/3 approximation to

tr(UΛ2
sU

T ) = tr(Λ2
s) = ‖Λs‖2F , with probability 8/9.

Finally we want to bound the maximum eigenvalue
of M2. By Lemma 3.4, the maximum eigenvalue of
M2 is at most (1 + ε) · λ2k+k/ε+1(Λ) + O(λ22k/ε(Λ) +

ε3/k
∑
j>k/ε λ

2
j (Λ)) ≤ O( εk

∑
j>k λ

2
j (Λ)).

We can now complete the lemma. By the Lidskii
inequality:

(Sk2 (HA))2 ≤
t−k∑
j=1

λk+j(M1) + λj(M2)

≤ (1 + ε)

k+k/ε∑
j=k+1

λ2j (Λ) + (1 +O(ε))
∑

j>k+k/ε

λ2j (Λ)

≤ (1 +O(ε))(Sk2 (A))2

By the dual Lidskii inequality:

(Sk2 (HA))2

≥
t−k∑
j=1

λk+j(M1) + λk+j(M2)

≥ (1− ε)
k+k/ε∑
j=k+1

λ2j (Λ)



+

(1−O(ε))
∑

j>k+k/ε

λ2j (Λ)− k ·O(
ε

k
(Sk2 (A))2)


≥ (1−O(ε))(Sk2 (A))2.

Hence

(1−O(ε)))Sk2 (A))2 ≤ (Sk2 (HA))2 ≤ (1+O(ε))(Sk2 (A))2,

and by rescaling ε, we obtain the desired conclusion.

Applying Lemma 4.1 twice, we have with probabil-
ity at least 3/4,

(Sk2 (GAHT ))2 ≤ (1 + ε)(Sk2 (AHT ))2

= (1 + ε)(Sk2 (HAT ))2

≤ (1 + ε)2(Sk2 (AT ))2

= (1 + ε)2(Sk2 (A))2.

Similarly, Sk2 (GAHT ) ≥ (1 + ε)(Sk2 (A)).
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A Bounds for eigenvalues of random matrices

In this section we provide proofs for Facts 2.1 and 2.2.
Such proofs have appeared before; we reproduce them
here to track explicitly the independence required for
the guarantees to hold.

Consider a random k × n matrix X where k ≤
n and the entries of X have moments up to the
Θ(log2 n/ε2)th moment matching those of independent
identically distributed random variables with E[X11] =
0 and E[X2

11] = 1. For simplicity, we also assume
that for any i = O(1/ε2), E[Xi

11] ≤ b(i) with b(i) not
depending on n (for instance, for standard Gaussian
random variables, which is the case we want, E[Xi

11] ≤
(i − 1)!!). Let S = (1/n)XXT . First we show that to
get the desired facts, one only needs to consider the case
k ≥ ε2n.

Lemma A.1. Consider a symmetric psd matrix A of
rank k and a vector v. Let B = A − vvT . Let
λi(M) denote the i-th largest eigenvalue of M . We have
λi(A) ≥ λi(B) ≥ λi+1(A) for all 1 ≤ i ≤ k − 1.

Proof. For any vector x, we have xTBx = xTAx −
(xT v)2 ≤ xTAx so λi(A) ≥ λi(B). Let S be the
subspace that is the intersection of the span of the i+ 1
largest eigenvectors of A and the subspace orthogonal
to v. The dimension of S is at least i and for any x ∈ S,
we have xTBx = xTAx so λi(B) ≥ λi+1(A).

Corollary A.1. Let X be a k × n matrix, H be the
first k − 1 rows of H and Xk be the kth row of X. If
XTX has k eigenvalues in the range [a, b] then HTH =
XTX − XT

k Xk has k − 1 singular values in the range
[a, b].

From now on, assume k ≥ ε2n. Let y = k/n. We
follow the proof described in [BY93]. Since the whole



proof is long, we only sketch the changes needed. Let
T be the same as S but with all the diagonal entries
replaced with 0. Define T (0) = I, T (1) = T , and
T (l) = Tab(l) be a k × k matrix with

Tab(l) = n−l
∑

Xav1Xu1v1Xu1v2Xu2v2 · · ·Xul−1vlXbvl

where the summation is over a 6= u1, u1 6=
u2, . . . , ul−1 6= b and v1 6= v2, . . . , vl−1 6= vl.

We use w.h.p. as a shorthand for with probability
at least 1 − 1/poly(n). W.h.p., all entries of X are
bounded by O(log n). We will use this fact through out
the section.

Lemma A.2. [BY93, Lemma 1] Assume the entries
of X are 4ml-wise independent random variables dis-
tributed as N(0, 1) with m = Θ(log2 n) and l = O(1/ε2).
W.h.p., we have ‖T (l)‖ ≤ (1+o(1))(2l+1)(l+1)y(l−1)/2.

Proof. [Sketch of proof] Since the entries of X are 4ml-
wise independent, tr(T 2m(l)) follows the same distribu-
tion as when they are fully independent. Let δ = n−0.49.
Notice that ml(2l+ 1)2 <

√
kδ, mlδ1/3 = o(y1/12 log n),

and m = ω(log n) so the rest of the original proof goes
through.

The following weakened version of their lemma is
enough to obtain a proof in our case.

Lemma A.3. [BY93, weak version of Lemma 2 (suffi-
ciency direction)] Let f = O(1/ε2), α > 0.5, β ≥ 0 and
M > 0 be constants. Let Y be a Mnβ × n matrix with
Ω(log n)-wise independent identically distributed ran-

dom entries with Yij = Zfij and Zij follows the same
distribution as X11. Let c be a constant that is equal to
E[Y11] if α ≤ 1 (otherwise it can take any value). Then
w.h.p.,

max
j≤Mnβ

∣∣∣∣∣n−α
n∑
i=1

(Yij − c)

∣∣∣∣∣ = o(1)

Proof. We use the following lemma, also from [BY93].

Lemma A.4. [BY93, Lemma A.1] Suppose X1, . . . , Xn

are g-wise independent random variables with mean 0
and finite g-moment, where g is a positive even integer.
Then for C(g) = 2g · g!,

E[|
n∑
i=1

Xi|g] ≤ C
(
nE[Xg

1 ] + ng/2(E[X2
1 ])g/2

)
Wlog assume c = 0. Applying Lemma A.4 with g >
(β + 10)/(α− 0.5) and Markov inequality, we have

Pr[|n−α
n∑
i=1

Yi1| > n(0.5−α)/2] ≤ n(−α−0.5)g/2E[|
n∑
i=1

Yi|g]

≤ C(ε)n(0.5−α)g ≤M−1n−β−10

Union bound over all j ≤ Mnβ gives us the desired
claim with probability 1− n−10.

The rest of the original proof goes through by
bounding the operator norm of (T − yI)t with t =
O(1/ε2).

Lemma A.5. [BY93, Theorem 1] Whp, the singular
values of X are bounded from above by 1 + (1 + ε)

√
y

and from below by 1− (1 + ε)
√
y.

Proof. Consider t = Θ(1/ε2). We use the following
lemma.

Lemma A.6. [BY93, Lemma 8] W.h.p. we have

(T−yI)t =

t∑
r=0

(−1)r+1T (r)

[(t−r)/2]∑
i=0

Ci(t, r)y
t−r−i+o(1)

where |Ci(t, r)| ≤ 2t.

As shown in the original proof, by Lemma A.3, ‖S−I−
T‖2 = maxi |n−1

∑n
j=1(X2

ij − 1)| = o(1) w.h.p. so we
only need to show ‖T − yI‖2 ≤ (1 + ε)2

√
y.

As also shown in the original proof, by Lemma A.2
and A.6, w.h.p., we have ‖T − yI‖t2 ≤ Ct42tyt/2 so
‖T − yI‖2 ≤ (1 + ε)2

√
y.
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