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Abstract

We present a new locality sensitive hashing (LSH) algorithm for c-approximate nearest neigh-
bor search in `p with 1 < p < 2. For a database of n points in `p, we achieve O(dnρ) query
time and O(dn + n1+ρ) space, where ρ ≤ O((ln c)2/cp). This improves upon the previous best
upper bound ρ ≤ 1/c by Datar et al. (SOCG 2004), and is close to the lower bound ρ ≥ 1/cp by
O’Donnell, Wu and Zhou (ITCS 2011). The proof is a simple generalization of the LSH scheme
for `2 by Andoni and Indyk (FOCS 2006).

1 Introduction
Approximate nearest neighbor search has been studied extensively in the last few decades. In
this problem, a database of n points in Rd is preprocessed so that given a query point q, if the
point closest to q in the database is at distance r from q, then the algorithm will return a point
p in the database within distance cr from q. The parameter c > 1 is the approximation factor
of the algorithm. At the moment, the best approach giving good guarantees both in time and
space in high dimensions is locality sensitive hashing (LSH) [HPIM12]. The running time and
space of LSH-based algorithms depend on a parameter ρ, which is determined by the metric space,
the approximation factor c, and the hash functions: the query time is dnρ+o(1) and the space is
nd + n1+ρ+o(1). For the norm `p with 1 ≤ p ≤ 2, it is known that there exists a distribution over
hash functions such that ρ ≤ 1/c [DIIM04]. For only the special case of `2, it is known that we can
also get ρ = 1/c2 + o(1) [AI06]. In [OWZ11], it was shown that ρ ≥ c−p for all p ∈ [1, 2]. In this
paper we give a new LSH for 1 < p < 2 achieving ρ = O((ln c)2c−p). Independently, there is an
algorithm [IK13] close to matching the lower bound from [OWZ11] but we believe it is worthwhile
to present the argument here as it is simple and might be applicable elsewhere.

2 Preliminaries
Fist we need the formal definition of LSH.

Definition 1 ([HPIM12]). A family of hash functions h is (r, cr, p1, p2)-sensitive if

• If ‖x− y‖p ≤ r then Pr[h(x) = h(y)] ≥ p1.

• If ‖x− y‖p ≥ cr then Pr[h(x) = h(y)] ≤ p2.

Define ρ = ln 1/p1
ln 1/p2

.
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Given such a hash family for every r, one immediately gets an algorithm for approximate nearest
neighbor search.

Theorem 2 ([HPIM12]). If for every r, there exists an (r, cr, p1, p2)-sensitive hash family with the
parameter ρ uniformly bounded from above by ρ0, evaluation time dno(1), and 1/p1 = no(1), then
there is an algorithm for finding c-approximate nearest neighbor with query time dnρ0+o(1) and space
O(dn) + n1+ρ0+o(1).

The rest of the paper focuses on analyzing ρ for a fixed r. Because we can always scale all
distances, assume wlog that r = 1.

Let Bp(x, r) denote the `p ball of radius r centered at x. Let Vt be the volume of Bp(~0, w) in
Rt. Let Lt denote the lattice {

∑t
i=1 ∆aiwei | ai ∈ Z}, where ei is the ith standard basis vector,

∆ = 4, and w = O(c ln c).

3 The Hash Function
The hash function works in a similar way to [AI06], with some modifications to the parameters.
First it uses the p-stable distribution to reduce the dimension to t = Θ((c ln c)p). Then, it partitions
the t-dimensional space using lattices of balls of radius w = O(c ln c). See Figure 1 for details.

Choosing a hash function h ∈ H

1. For each u ∈ {1, 2, . . . , Ut}, pick a random shift su ∈ [0,∆w]t to specify the shifted lattice
su + Lt.

2. Pick a random matrix A ∈ Rt×d whose entries are i.i.d. p-stable random variables with
the scale parameter 1. Let A′ = T−1/pA (T is the threshold defined in Lemma 5).

Applying the hash function h to a point x ∈ Rd

1. Let x′ = A′x.

2. Find the smallest u ∈ {1, 2, . . . , Ut} such that there exists a point y ∈ Lt satisfying
x ∈ Bp(y + su, w). If u exists then the hash value of x is the pair (u, y). Otherwise, the
hash value of x is the pair (0,~0).

Figure 1: The algorithm for computing the hash value of a given point x ∈ Rd.

4 Analysis
First, we bound the number of lattices of balls needed to cover the entire space Rt. This number
determines the running time of the hash function as finding the closest ball in a lattice to a given
point is simple: one just needs to find the closest lattice point in each coordinate separately. While
this operation uses the floor function, we believe the usage is justified as the coordinates do not
encode special information and it is also widely used in the LSH literature. The following lemma
is a generalization of [And09, Lemma 3.2.2] with an analogous proof.
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Lemma 3 ([And09]). Consider the t-dimensional space Rt and let δ be a positive constant. Let
Bu be the collection of `p balls centered at lattice points of su +Lt, where su is a uniformly random
vector in [0,∆w]t. If Ut = ∆ttt/p+1 ln(∆t/δ) then the collections B1, . . . , BUt cover all of Rt with
probability at least 1− δ.

Proof. The proof is a standard covering argument. We present it here for completeness. By the
regularity of the lattices, the whole space is covered iff the cube [0,∆w]t is covered. Divide the
cube into subcubes of side length w/t1/p. If some su lies in a subcube then the whole subcube is
covered. The probability that some su lies in a particular cube is 1/N , where N is the number of
subcubes. We have N = (∆t1/p)t. If Ut ≥ N ln(N/δ) then by the union bound, the probability
that some subcube is not covered is bounded by

N(1− 1/N)Ut ≤ exp(lnN − Ut/N) = exp(− ln 1/δ) = δ

Corollary 4. For δ = exp(−Θ(t)), the time to evaluate the hash function is dcO((c ln c)p).

To analyze the first step of the hash function, we need a concentration bound for p-stable
distribution. The proof is similar to that of a similar bound for p = 1 by [Ind06].

Lemma 5. Let p be a constant in (1, 2). Let x ∈ Rd and a random matrix A ∈ Rt×d whose entries
are i.i.d. p-stable random variables with the scale parameter 1. For t→∞, there exists a threshold
T = T (t, ε) such that

• Pr[‖Ax‖pp < T‖x‖pp] ≤ exp(−Θ(t1−εp(ε ln t)2))

• Pr[‖Ax‖pp > 2(4+p)/2ε−1T‖x‖pp] ≤ 1/2

Proof. First, we need an approximation of the probability density function of the p-stable distri-
bution. We use the following theorem from [Nel11, Theorem 42].

Theorem 6 ([Nel11]). Define φ+
p and φ−p as follows:

φ−p (x) = a

xp+1 −
b

x3

and
φ+
p (x) = 2(p+1)/2a

xp+1 + b

x3

for certain constants a, b. Then for any x ≥ 1, φ−p (x) ≤ φp(x) ≤ φ+
p (x).

Since x→ Ax is a linear map, we can assume wlog that ‖x‖p = 1. Each coordinate of Ax is an
i.i.d. p-stable random variable with the scale parameter 1. Let Yi denote the absolute value of the
ith coordinate of Ax. Define Zi,M := min(Yi,M). We first prove some properties of Zi,M .

Lemma 7. For M →∞, we have

E[Zpi,M ] = Θ(lnM)

E[Z2p
i,M ] = Θ(Mp)

and in particular, E[Zp
i,M1/ε ] ≤ (2(1+p)/2 + o(1))E[Zpi,M ]/ε.
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Proof. Let pM be the probability that a standard p-stable random variable exceeds M . We can
bound pM by

pM ≤
∫ ∞
M

φ+
p (x)dx = 2(p+1)/2a

pMp
+ b

2M2

and
pM ≥

∫ ∞
M

φ−p (x)dx = a

pMp
− b

2M2

First we bound E[Zpi,M ].

E[Zpi,M ] ≤
∫ 1

0
dx+

∫ M

1
xpφ+

p (x)dx+ pMM
p

≤ O(1) + 2(p+1)/2a lnM

Similarly

E[Zpi,M ] ≥
∫ M

1
xpφ−p (x)dx

≥ a lnM −O(1)

Next we bound E[Z2p
i,M ].

E[Z2p
i,M ] ≤

∫ 1

0
dx+

∫ M

1
x2pφ+

p (x)dx+ pMM
2p

≤ (2(p+3)/2a/p+ o(1))Mp

Similarly

E[Z2p
i,M ] ≥

∫ M

1
x2pφ−p (x)dx

≥ (a/p− o(1))Mp

Set M = tε and T = tE[Zpi,M ]/2 = Θ(εt ln t). We have Pr[‖Ax‖pp < T ] ≤ Pr[
∑
i Z

p
i,M < T ]. By

an inequality by Maurer [Mau03].

Pr[
∑
i

Zpi,M < T ] ≤ exp

− T 2

2
∑
i E[Z2p

i,M ]

 = exp(−Θ(t1−εp(ε ln t)2))

On the other hand,

Pr[
∑
i

Y p
i > 2(4+p)/2ε−1T ] ≤ Pr[∃i : Yi ≥M1/ε] + Pr[

∑
i

Y p
i > 2(4+p)/2ε−1T |∀i : Yi < M1/ε]

≤ t(2(p+1)/2a/(pMp/ε) + b/(2M2/ε)) + E[
∑
i Y

p
i |∀i : Yi < M1/ε]

2(4+p)/2ε−1T

≤ O(t1−p) +
E[
∑
i Z

p

i,M1/ε ]
2(4+p)/2ε−1T

≤ O(t1−p) + (2(1+p)/2 + o(1))ε−1T

2(4+p)/2ε−1T
< 1/2
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To analyze the second step of the hash function, we use the uniform convexity and smoothness
properties of `p, see e.g. [BCL94].

Fact 8. For any 1 < p ≤ 2,

• `p is p-uniformly smooth:

∀x, y ∈ `p,
‖x‖pp + ‖y‖pp

2 ≤
∥∥∥∥x+ y

2

∥∥∥∥p
p

+
∥∥∥∥x− y2

∥∥∥∥p
p

(1)

• `p is 2-uniformly convex:

∀x, y ∈ `p,
‖x‖2p + ‖y‖2p

2 ≥
∥∥∥∥x+ y

2

∥∥∥∥2

p
+ (p− 1)

∥∥∥∥x− y2

∥∥∥∥2

p
(2)

Finally we are ready to prove the main technical lemma determining the parameter ρ. It can
be viewed as a generalization of [And09, Lemma 3.2.3]. Before proceeding to the lemma, we want
to note that conditioned on the fact that the whole space Rt is covered by the lattices (which
happens with high probability by Lemma 3), for any two point x, y ∈ Rt, the probability that they
are contained in the same ball in the partition of Rt defined by the shifted lattices of h is exactly
Vol(Bp(x,w)∩Bp(y,w))
Vol(Bp(x,w)∪Bp(y,w)) . Removing the conditioning only changes the collision probabilities by at most
δ = exp(−Θ(t)), which is negligible. In a nutshell, the proof combines two observations. First, by
Lemma 5, the mapping x → Ax does not distort distances by a large amount. Second, for points
in Rt, the volumes involved in collision probabilities can be approximated by volumes of balls of
different radii. Because the ratio of volumes of balls of different radii can easily be computed from
the ratio of the radii, we can approximate the collision probabilities.

Lemma 9. Let p be a constant in (1, 2). Let x, y be two points in Rd. Let p1 be the collision
probability when ‖x − y‖p ≤ 1 and p2 be the collision probability when ‖x − y‖p ≥ c. Then, for
w = Θ(c ln c), t = Θ(wp), we have ρ = ln p1

ln p2
= O((ln c)2c−p) as c→∞.

Proof. Let x′ = A′x, y′ = A′y. We first analyze the volume of A1 = Bp(x′, w) ∩ Bp(y′, w) when
‖x′ − y′‖p ≤ r. We will show

Bp((x′ + y′)/2, w(1− (2 + γ)rp/(2w)p)1/p) ⊂ A3 = A1 ∪Bp(x′, w(1− (2 + 2γ)rp/(2w)p)1/p)
∪Bp(y′, w(1− (2 + 2γ)rp/(2w)p)1/p) (3)

for arbitrary γ > 0. Setting γ close to 0 results in a better constant in the final bound of ρ but
for ease of understanding, we can set γ = 1. Consider a point z ∈ Bp((x′ + y′)/2, w(1 − (2 +
γ)rp/(2w)p)1/p) \A3. Wlog, we assume ‖x′ − z‖p ≥ ‖y′ − z‖p. By the assumptions, we have

‖(x′ + y′)/2− z‖p ≤ w
(

1− (2 + γ)rp

(2w)p
)1/p

‖x′ − z‖p > w

‖y′ − z‖p > w

(
1− (2 + 2γ)rp

(2w)p
)1/p
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Applying 1 to x′ − z and y′ − z, we have:∥∥∥∥x′ − y′2

∥∥∥∥p
p
≥
‖x′ − z‖pp + ‖y′ − z‖pp

2 −
∥∥∥∥x′ + y′

2 − z
∥∥∥∥p
p

>
wp + wp(1− (2 + 2γ)rp/(2w)p)

2 − wp(1− (2 + γ)rp/(2w)p)

≥ (r/2)p

This contradicts the assumption that ‖x′ − y′‖p ≤ r. In other words, there is no such point z and
Bp((x + y)/2, w(1 − (2 + γ)rp/(2w)p)1/p) ⊂ A3. Note that for any α ∈ R and u ∈ Rt, we have
Vol(Bp(u, αw)) = αtVt. Applying this fact to (3), we have

Vol(A1) ≥ Vt

((
1− (2 + γ)rp

(2w)p
)t/p
− 2

(
1− (2 + 2γ)rp

(2w)p
)t/p)

≥ Vt
(

1− (2 + γ)rp

(2w)p
)t/p(

1− 2
(

1− γrp/2
(2w)p

)t/p)

≥ Vt
(

1− (2 + γ)rp

(2w)p
)t/p

(1− exp(−Ω(γtrpw−p)))

By Lemma 5, when ‖x − y‖p ≤ 1, with probability at least 1/2, we have ‖x′ − y′‖p = O(ε−1).
Therefore we get an upper bound for ln(1/p1),

ln(1/p1) ≤ ln
(

2 · 2Vt −Vol(A1)
Vol(A1)

)
≤ ln 4− ln(Vol(A1))

≤ ln 4 + O(2 + γ) · t/(p(2εw)p)
1−O(2 + γ) · 1/(2εw)p + exp(−Ω(γtε−pw−p))

≤ O(2 + γ) · t/(p(2εw)p)
The second to last inequality follows from the inequality ln(1− x) ≥ −x/(1− x) ∀x ∈ [0, 1).

Next, we analyze the volume of A2 = Bp(x′, w) ∩ Bp(y′, w) when ‖x′ − y′‖p ≥ c. We will show
A2 ⊂ Bp((x′ + y′)/2, w

√
1− (p− 1)(c/w)2/4). Let z be an arbitrary point in A2. Applying 2 to

x′ − z and y′ − z, we have:∥∥∥∥x′ + y′

2 − z
∥∥∥∥2

p
≤
‖x′ − z‖2p + ‖y′ − z‖2p

2 − (p− 1)
∥∥∥∥x′ − y′2

∥∥∥∥2

p
≤ w2 − (p− 1)(c/2)2

Thus,
Vol(A2) ≤ Vt(1− (p− 1)(c/w)2/4)t/2

By Lemma 5, when ‖x− y‖p ≥ c, with probability at least 1− P = 1− exp(−Θ(t1−εp(ε ln t)2)), we
have ‖x′ − y′‖p ≥ c. Therefore, we get a lower bound for ln(1/p2),

ln(1/p2) ≥ ln 2Vt −Vol(A2)
Vol(A2) + (2Vt −Vol(A2))P

≥ ln 1−Vol(A2)/(2Vt)
max(Vol(A2)/Vt, 2P )

≥ ln(1/2) + min((p− 1)tc2/(8w2),− ln 2P )
≥(1− o(1))(p− 1)tc2/(8w2)
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when (p − 1)tc2/(8w2) < − ln 2P = Θ(t1−εp(ε ln t)2) − ln 2. In other words, we need w/c =
Ω(tεp/2/(ε ln t)). Combining the bounds for p1 and p2, we have

ρ = ln(1/p1)
ln(1/p2) ≤

O(2 + γ) · (w/c)2−p

εp2pp(p− 1)cp

We get the stated bound by choosing w = Θ(c ln c), t = Θ(wp), ε = Θ(ln ln t/ ln t).

Remark 10. It is possible to slightly tighten the bound by setting w = Θ(c), t = Θ(wp), ε =
Θ(1/ ln t). The constant 2(4+p)/2 in Lemma 5 becomes a larger constant depending on the constants
in Theorem 6, but the rest of the proof remains the same. This setting gives ρ = O((ln c/c)p), where
the O hides a constant depending on the constants in Theorem 6.

5 Discussion
The second half of the argument uses only the uniform smoothness and convexity properties of the
norm while the first half is tailored to `p. This leads to the question of whether one can generalize
the argument here to get an algorithm for approximate nearest neighbor search for a more general
class of norms.

6 Acknowledgments
We thank Jelani Nelson and Ilya Razenshteyn for helpful comments.

References
[AI06] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate

nearest neighbor in high dimensions. In FOCS, pages 459–468, 2006.

[And09] Alexandr Andoni. Nearest Neighbor Search: the Old, the New, and the Impossible. PhD
thesis, MIT, 2009.

[BCL94] Keith Ball, Eric A. Carlen, and Elliott H. Lieb. Sharp uniform convexity and smoothness
inequalities for trace norms. Inventiones mathematicae, 115(1):463–482, 1994.

[DIIM04] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Symposium on Computational Ge-
ometry, pages 253–262, 2004.

[HPIM12] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor:
Towards removing the curse of dimensionality. Theory Of Computing, 8:321–350, 2012.

[IK13] Piotr Indyk and Michael Kapralov. Personal communication. May 2013.

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. J. ACM, 53(3):307–323, 2006.

7



[Mau03] Andreas Maurer. A bound on the deviation probability for sums of non-negative random
variables. J. Inequalities in Pure and Applied Mathematics, 4(1):15, 2003.

[Nel11] Jelani Nelson. Sketching and Streaming High-Dimensional Vectors. PhD thesis, MIT,
2011.

[OWZ11] Ryan O’Donnell, Yi Wu, and Yuan Zhou. Optimal lower bounds for locality sensitive
hashing (except when q is tiny). In ICS, pages 275–283, 2011.

8


	Introduction
	Preliminaries
	The Hash Function
	Analysis
	Discussion
	Acknowledgments

