
From Graph to Hypergraph Multiway Partition:
Is the Single Threshold the Only Route?

Alina Ene∗ Huy L. Nguyễn†

August 1, 2014

Abstract
We consider the Hypergraph Multiway Partition problem (Hyper-MP). The input consists of

an edge-weighted hypergraph G = (V, E) and k vertices s1, . . . , sk called terminals. A mul-
tiway partition of the hypergraph is a partition (or labeling) of the vertices of G into k sets
A1, . . . , Ak such that si ∈ Ai for each i ∈ [k]. The cost of a multiway partition (A1, . . . , Ak) is∑k

i=1 w(δ(Ai)), where w(δ(· )) is the hypergraph cut function. The Hyper-MP problem asks for
a multiway partition of minimum cost.

Our main result is a 4/3 approximation for the Hyper-MP problem on 3-uniform hypergraphs,
which is the first improvement over the (1.5−1/k) approximation of [5]. The algorithm combines
the single-threshold rounding strategy of Calinescu et al. [3] with the rounding strategy of
Kleinberg and Tardos [8], and it parallels the recent algorithm of Buchbinder et al. [2] for the
Graph Multiway Cut problem, which is a special case.

On the negative side, we show that the KT rounding scheme [8] and the exponential clocks
rounding scheme [2] cannot break the (1.5 − 1/k) barrier for arbitrary hypergraphs. We give
a family of instances for which both rounding schemes have an approximation ratio bounded
from below by Ω(

√
k), and thus the Graph Multiway Cut rounding schemes may not be sufficient

for the Hyper-MP problem when the maximum hyperedge size is large. We remark that these
instances have k = Θ(logn).

1 Introduction
In this paper, we consider the Hypergraph Multiway Partition problem (Hyper-MP). The input con-
sists of an edge-weighted hypergraph G = (V, E) and k vertices s1, . . . , sk called terminals. A
multiway partition of the hypergraph is a partition (or labeling) of the vertices of G into k sets
A1, . . . , Ak such that si ∈ Ai for each i ∈ [k]. The cost of a multiway partition (A1, . . . , Ak) is∑k
i=1w(δ(Ai)), where w(δ(· )) is the hypergraph cut function1. The Hyper-MP problem asks for a

multiway partition of minimum cost. We also parameterize the problem by the maximum cardinal-
ity of a hyperedge, denoted by c; the well-studied Graph Multiway Cut problem is the special case
for which c = 2.
∗Center for Computational Intractability, Princeton University; Department of Computer Science and DIMAP,

University of Warwick. aene@cs.princeton.edu
†Department of Computer Science, Princeton University. hlnguyen@princeton.edu
1For each set A ⊆ V of vertices, we use δ(A) to denote the set of all hyperedges leaving A, i.e., hyperedges e ∈ E

such that A∩ e and (V −A)∩ e are both non-empty. We use w(δ(A)) to denote the total weight of the edges leaving
A, i.e., w(δ(A)) =

∑
e∈δ(A) w(e).

1



The Hyper-MP problem was introduced by Lawler [9] and it has applications in information
storage and retrieval, numerical taxonomy, packaging of electric circuits, and VLSI designs [9, 1].
Alpert et al. [1] emphasize that, in the context of VLSI design, the Hyper-MP objective function
better reflects the true cost than simply counting the number of hyperedges being cut because a
net (represented by a hyperedge) spanning more clusters consumes more I/O and timing resources.

Multiway cut and partition problems are well-studied from a theoretical point of view as well,
with the Graph Multiway Cut problem receiving the most attention. Dahlhaus et al. [6] initiated the
study of the Graph Multiway Cut problem; they showed that the problem is MAX SNP-hard even
for k = 3 and they gave a combinatorial algorithm that achieves a (2 − 2/k) approximation. In a
breakthrough result, Calinescu, Karloff, and Rabani [3] obtained an (1.5− 1/k) approximation via
a novel geometric relaxation. Since the work of [3], the approximation factor has been improved
in a series of papers [7, 2, 10], culminating with the 1.30217 approximation of [10]. All of these
improvements use the CKR relaxation as a starting point and they combine the single-threshold
rounding strategy of [3] with other rounding schemes.

The progress on the Hyper-MP problem has been much slower, however. It was only recently
that Chekuri and Ene [5] gave a (1.5− 1/k) approximation for the Hyper-MP problem, improving
on a previous (2− 2/k) approximation [11]. The algorithm of [5] uses a single-threshold scheme to
round a fractional solution to the CKR relaxation and it achieves the best approximation known
for the problem. An interesting open question, which is the main motivation behind this work, is
whether one can improve the (1.5− 1/k) factor by using other rounding schemes, and in particular
the strategies underpinning the Graph Multiway Cut algorithms. Calinescu et al. [3] observed that,
in the graph setting, one can assume without loss of generality that the fractional solution has
certain properties, namely that each edge is mapped to a segment on the simplex that is arbitrarily
small and it is aligned with the simplex. These properties are crucially exploited by the analyses
of all of the rounding schemes for the graph problem. Unfortunately, it is unclear how to extend
these simplifying assumptions to the hypergraph setting (in the graph setting, they can be easily
achieved by subdividing the edges). The work of [5] provides an analysis of the single-threshold
rounding scheme without any assumptions on the fractional solution, but this seems challenging
for the other rounding schemes even for 3-uniform2 hypergraphs.

Our contributions. Given the obstacles mentioned above, in this paper we focus on bridging the
gap between the graph setting (c = 2) and the 3-uniform hypergraph setting (c = 3). Our main
result is a 4/3 approximation for the Hyper-MP problem on 3-uniform hypergraphs, which is the
first improvement over the (1.5−1/k) approximation of [5]. We remark that the result immediately
extends to the setting in which each hyperedge has at most 3 vertices (instead of exactly 3 vertices).

Theorem 1. There is a 4/3 approximation algorithm for the Hyper-MP problem on 3-uniform
hypergraphs.

The algorithm of Theorem 1 combines the single-threshold rounding strategy of Calinescu et al.
[3] with the rounding strategy of Kleinberg and Tardos [8], and it parallels the recent algorithm
of Buchbinder et al. [2] for the Graph Multiway Cut problem. As we mentioned above, it seems to
be very challenging to analyze these rounding strategies in the absence of simplifying assumptions
(such as edge alignment in the graph case). A key ingredient in our approach is a replacement for
the alignment property that allows us to simplify the instance and the fractional solution when the

2A hypergraph is `-uniform if every hyperedge has size `.

2



(Hyper-MP LP)

min
∑
e∈E

k∑
i=1

(
max
u∈e

x(u, i)−min
v∈e

x(v, i)
)

k∑
i=1

x(v, i) = 1 ∀v ∈ V

x(si, i) = 1 ∀i ∈ [k]
x(v, i) ≥ 0 ∀v ∈ V, i ∈ [k]

Figure 1: LP relaxation for Hyper-MP.

hypergraph is 3-uniform. This ingredient together with some additional insights made the analysis
tractable, although it remains quite technical and it is more involved than the analysis for graphs.

On the negative side, we show that the KT rounding scheme [8] and the exponential clocks
rounding scheme [2] cannot break the (1.5−1/k) barrier for arbitrary hypergraphs. More precisely,
we give a family of instances with c� k for which both rounding schemes have an approximation
ratio bounded from below by Ω(

√
k), and thus the Graph Multiway Cut rounding schemes may

not be sufficient for the Hyper-MP problem when c is large. We remark that these instances have
k = Θ(logn). These results can be found in Appendix B.

Other related work. As we have already mentioned, the Graph Multiway Cut problem and its
generalizations to hypergraphs and submodular functions have been studied extensively over the
past two decades. We omit a detailed discussion of these results and we refer the reader to [10, 5, 4]
for additional pointers and references.

2 LP Relaxation
We use a standard LP relaxation for the problem (see Figure 1). For each vertex v ∈ V and each
label i ∈ [k], we have a variable x(v, i) with the interpretation that x(v, i) = 1 if vertex v receives
label i. It is convenient to write the LP in the form described in Fig. 1; although the objective
function is not linear, we can easily rewrite it so that it becomes linear. We remark that the LP
relaxation is equivalent to the relaxation of [5].

In the remainder of this section, we show that it suffices to round fractional solutions to the
above LP that have some additional properties. We start by introducing some notation and a
definition. For a vector v ∈ Rk and a set S ⊂ [k], we denote by v|S the |S|-dimensional vector equal
to the restriction of v to the coordinates in S.

Definition 2. Consider an instance of the Hyper-MP problem on a 3-uniform hypergraph G =
(V, E). Let x be a feasible LP solution for the instance. We classify the hyperedges of E as follows:

(A) A hyperedge e is of type (A) if there is a permutation a, b, c of the vertices of e such that:

• xb = xc

• xa and xb differ in only 2 coordinates

3



(B) A hyperedge e is of type (B) if there is a permutation a, b, c of the vertices of e and a partition
(L1, L2, L3, L4) of [k] such that:

• xa|L1 > xb|L1 = xc|L1

• xb|L2 > xc|L2 = xa|L2

• xc|L3 > xa|L3 = xb|L3

• xa|L4 = xb|L4 = xc|L4

(C) A hyperedge e is of type (C) if there is a permutation a, b, c of the vertices of e and a partition
(L1, L2, L3, L4) of [k] such that:

• xa|L1 < xb|L1 = xc|L1

• xb|L2 < xc|L2 = xa|L2

• xc|L3 < xa|L3 = xb|L3

• xa|L4 = xb|L4 = xc|L4

(D) A hyperedge e is of type (D) if it does not fall into any of the types above.

As shown in the following lemma, it suffices to consider instances of the problem where all the
hyperedges fall into one of the first three types (that is, there is no hyperedge of type (D)). It is
convenient to have the following definition.

Definition 3. A randomized rounding scheme for the Hyper-MP LP relaxation is c-preserving if
it constructs an integral solution such that, for each hyperedge e, the expected number of parts in
which e is split is at most c times the fractional cost for e.

Lemma 4. Suppose that there is a rounding scheme for the Hyper-MP LP relaxation that is c-
preserving for instances of the problem in which all of the hyperedges are of type (A), (B), or (C).
Then there is an c-preserving rounding scheme for arbitrary instances of the problem on 3-uniform
hypergraphs. Moreover, if the former rounding scheme runs in polynomial time then the latter
rounding scheme also runs in polynomial time.

Proof: Consider an instance of Hyper-MP on a 3-uniform hypergraph G = (V, E), and let x be
a fractional solution for the instance. In the following, we modify the instance and the fractional
solution in order to ensure that there are no hyperedges of type (D).

Let e be a hyperedge of type (D). Suppose that there exists a permutation a, b, c of the vertices of
e and two labels i, j ∈ [k] such that x(a, i) > max {x(b, i), x(c, i)} and x(a, j) < min {x(b, j), x(c, j)}.
We modify the instance and the fractional solution as follows. We add a new vertex a′ and we
replace the hyperedge {a, b, c} by two hyperedges, {a, a′} and {a′, b, c}. We define a fractional
assignment for a′ as follows. Let

ε = min {x(a, i)−max {x(b, i), x(c, i)} ,min {x(b, j), x(c, j)} − x(a, j)} > 0

We set x(a′, i) = x(a, i)− ε, x(a′, j) = x(a, j) + ε, and x(a′, `) = x(a, `) for all labels ` 6= i, j. Note
that the fractional cost of the hyperedges {a, a′} and {a′, b, c} is equal to the fractional cost of
the hyperedge {a, b, c}. Additionally, we can map a multiway partition of V ∪ {a′} to a multiway
partition of V by simply removing a′ from the part that contains it; a straightforward case analysis

4



shows that this mapping does not increase the integral cost, since the total contribution of {a′, b, c}
and {a, a′} to the integral cost of the former partition is at most the contribution of {a, b, c} to the
integral cost of the latter partition.

By repeatedly applying the transformation above we may assume that, for any permutation
a, b, c of the vertices of e, there do not exist two labels i, j ∈ [k] such that x(a, i) > max{x(b, i), x(c, i)}
and x(a, j) < min{x(b, j), x(c, j)}. We now show that, for every permutation a, b, c of the vertices
of e, there is a partition (L1, L2, L3, L4) of [k] such that:

• xa|L1 6= xb|L1 = xc|L1

• xb|L2 6= xc|L2 = xa|L2

• xc|L3 6= xa|L3 = xb|L3

• xa|L4 = xb|L4 = xc|L4

Consider a permutation a, b, c of the vertices of e. We define four sets L1, . . . , L4 as follows:

• L1 = {i ∈ [k] : x(a, i) 6= x(b, i) = x(c, i)}

• L2 = {i ∈ [k] : x(b, i) 6= x(c, i) = x(a, i)}

• L3 = {i ∈ [k] : x(c, i) 6= x(a, i) = x(b, i)}

• L4 = {i ∈ [k] : x(a, i) = x(b, i) = x(c, i)}

We can verify that the sets L1, . . . , L4 above partition the labels as follows. The sets are disjoint
and thus it suffices to check that their union is [k]. Suppose for contradiction that there is a label
i such that i /∈ L1 ∪L2 ∪L3 ∪L4; thus x(a, i) 6= x(b, i) 6= x(c, i). Let a′, b′, c′ be the permutation of
{a, b, c} such that x(a′, i) < x(b′, i) < x(c′, i). For any label j 6= i, one of the following must hold:

• x(a′, j) ≤ min {x(b′, j), x(c′, j)}, or

• x(a′, j) > min {x(b′, j), x(c′, j)}

Suppose that x(a′, j) > min {x(b′, j), x(c′, j)}. It follows from our assumption that x(c′, j) ≥
min {x(a′, j), x(b′, j)} and x(a′, j) = max {x(b′, j), x(c′, j)}, and therefore x(a′, j) = x(c′, j) ≥
x(b′, j). Thus, for any label j 6= i, we have x(a′, j) ≤ x(c′, j). Since x(a′, i) < x(c′, i), we have∑k
`=1 x(a′, `) <

∑k
`=1 x(c′, `). But this is impossible, since

∑k
`=1 x(a′, `) =

∑k
`=1 x(c′, `) = 1.

Therefore the sets L1, . . . , L4 partition the label set [k], as claimed. Since xa|L1 6= xb|L1 = xc|L1 ,
we have two cases: xa|L1 > xb|L1 = xc|L1 and xa|L1 < xb|L1 = xc|L1 . We consider each of these
cases in turn.

Suppose that xa|L1 < xb|L1 = xc|L1 . In the following, we show that xb|L2 < xc|L2 and xc|L3 <
xa|L3 . Suppose for contradiction that xb|L2 > xc|L2 . Then x(a, j) ≤ x(b, j) for each j ∈ [k]
and x(a, `) < x(b, `) for at least one label `. Therefore

∑k
j=1 x(a, j) <

∑k
j=1 x(b, j), which is a

contradiction. A similar argument shows that we have xc|L3 < xa|L3 . Thus the hyperedge is of
type (B).

Suppose that xa|L1 > xb|L1 = xc|L1 . In the following, we show that xb|L2 > xc|L2 and xc|L3 >
xa|L3 . Suppose for contradiction that xb|L2 < xc|L2 . Then x(a, j) ≥ x(b, j) for each j ∈ [k]
and x(a, `) > x(b, `) for at least one label `. Therefore

∑k
j=1 x(a, j) >

∑k
j=1 x(b, j), which is a

contradiction. A similar argument shows that xc|L3 > xa|L3 . Thus the hyperedge is of type (C). �

5



Algorithm 1: Single threshold rounding
Pick θ ∈ (0, 1] with prob. density φ(θ)
Let Ai ← ∅ for each i ∈ [k]
Let U ← V 〈〈Unlabeled vertices〉〉
For i = 1 to k − 1

Ai ← U ∩ {v ∈ V : x(v, i) ≥ θ}
U ← U −Ai

Ak ← U
Return (A1, . . . , Ak)

Algorithm 2: Kleinberg-Tardos rounding
Let Ai ← ∅ for each i ∈ [k]
Let U ← V 〈〈Unlabeled vertices〉〉
While U is non-empty

Pick θ ∈ (0, 1] uniformly at random
Pick i ∈ [k] uniformly at random
Ai ← Ai ∪

(
U ∩ {v ∈ V : x(v, i) ≥ θ}

)
U ← U −Ai

Return (A1, . . . , Ak)

Algorithm 3: Combined rounding scheme
With probability 1/3, run Algorithm 1 with φ(t) = 2t for all t ∈ [0, 1]
With probability 2/3, run Algorithm 2

Figure 2: The rounding algorithms.

3 Rounding Algorithms
In this section, we give a rounding scheme that achieves a 4/3 approximation for the Hyper-MP
problem on 3-uniform hypergraphs. In the following, we let x be a fractional solution to the LP
relaxation given in Section 2. The rounding strategies that we use have been studied in previous
work for the Graph Multiway Cut and Uniform Metric Labeling problems [2, 10, 8], and they are given
in Figure 2.

We devote the rest of this section to the analysis of Algorithm 3. As shown in Lemma 4, we
may assume that we have a fractional solution x such that each hyperedge is of type (A), (B), or
(C) (see Definition 2).

For any multiway partition (A1, . . . , Ak), the contribution to the integral cost of a hyperedge
e is the number of parts in which e is split, i.e., the number of labels i such that e ∈ δ(Ai). We
consider each hyperedge in turn and we upper bound its expected contribution to the integral cost.
Theorem 5. Let e be a hyperedge and let p(e) be a random variable equal to the number of parts
in which e is split by Algorithm 3. We have

E[p(e)] ≤ 4
3

k∑
i=1

(
max
v∈e

x(v, i)−min
v∈e

x(v, i)
)
.

We consider the hyperedges of each type in turn. It follows from the work of Buchbinder et al. [2]
that the theorem holds of hyperedges of type (A).
Lemma 6 (Buchbinder et al. [2]). Let e be a hyperedge and let p(e) be a random variable equal to
the number of parts in which e is split by Algorithm 3. If e is of type (A), we have

E[p(e)] ≤ 4
3

k∑
i=1

(
max
v∈e

x(v, i)−min
v∈e

x(v, i)
)
.

6



Now we consider hyperedges of type (B). Let e be a hyperedge of type (B). Let a, b, c be a permu-
tation of the vertices of e and let L1, . . . , L4 be a partition of the labels that satisfy the conditions
stated in Definition 2. Let α = ‖xa|L1 − xb|L1‖1 = ‖xb|L2 − xa|L2‖1 and β = ‖xa|L4‖1. Note that
the fractional cost of e is 3α. In the following, we analyze the expected contribution of e to the
integral cost of the solutions constructed by Algorithms 1 and 2.

Lemma 7. Let p1(e) be a random variable equal to the number of parts in which e is split in the
partition constructed by Algorithm 1. We have

E[p1(e)] ≤ 2
( ∑
i∈L1

(
x(a, i)2 − x(b, i)2

)
+
∑
i∈L2

(
x(b, i)2 − x(c, i)2

)
+
∑
i∈L3

(
x(c, i)2 − x(a, i)2)

)
.

Proof: Let (A1, . . . , Ak) be the multiway partition constructed by Algorithm 1. We say that e is
split by L`, where ` ∈ {1, 2, 3}, if there exists a label i ∈ L` such that e ∈ δ(Ai). (Note that none
of the labels in L4 can split e.)

Let X` be an indicator random variable equal to 1 iff e is split by L`. We claim that

p1(e) ≤ 2(X1 +X2 +X3).

If none of the sets L1, L2, L3 split e, we have p1(e) = 0. Therefore we may assume that at least
one of the sets splits e. The edge e is split into 3 parts only if it is split by at least 2 of the sets
L1, L2, L3, and it is split into 2 parts only if it is split by at least 1 of the sets L1, L2, L3. Thus

p1(e) ≤ X1 +X2 +X3 + 1 ≤ 2(X1 +X2 +X3),

where the second inequality follows from the assumption that X1 + X2 + X3 ≥ 1. Therefore we
have

1
2 E[p1(e)] ≤

3∑
`=1

Pr[X` = 1]

≤
3∑
`=1

∑
i∈L`

Pr[e ∈ δ(Ai)]

=
∑
i∈L1

∫ x(a,i)

x(b,i)
φ(t)dt+

∑
i∈L2

∫ x(b,i)

x(c,i)
φ(t)dt+

∑
i∈L3

∫ x(c,i)

x(a,i)
φ(t)dt

=
∑
i∈L1

(
x(a, i)2 − x(b, i)2

)
+
∑
i∈L2

(
x(b, i)2 − x(c, i)2

)
+
∑
i∈L3

(
x(c, i)2 − x(a, i)2)

�

Now we analyze the expected number of parts in which e is split by Algorithm 2. Recall that
α = ‖xa|L1 − xb|L1‖1 = ‖xb|L2 − xa|L2‖1.

Lemma 8. Let p2(e) be a random variable equal to the number of parts in which e is split in the
partition constructed by Algorithm 2. We have

E[p2(e)] = 2
1 + 2α

(
3α+ 3α3

1 + α
−
∑
i∈L1

x(b, i)(x(a, i)− x(b, i))
1 + α

−
∑
i∈L2

x(c, i)(x(b, i)− x(c, i))
1 + α

−
∑
i∈L3

x(a, i)(x(c, i)− x(a, i))
1 + α

)

7



Proof: We have

E[p2(e)] = 2 Pr[p2(e) = 2] + 3 Pr[p2(e) = 3] = 2 Pr[p2(e) ≥ 2] + Pr[p2(e) = 3].

We analyze the two probabilities separately. We start with Pr[p2(e) ≥ 2].
Let B be the event that none of the vertices a, b, c of e are assigned at the end of an iteration of

Algorithm 2, conditioned on the event that none of the vertices of e are assigned at the beginning
of the iteration. The probability that the vertices remain unassigned, given that the label selected
in the current iteration is i, is equal to (1−max {x(a, i), x(b, i), x(c, i)}). Thus we have

Pr[B] = 1
k

k∑
i=1

(
1−max {x(a, i), x(b, i), x(c, i)}

)

= 1− 1
k

k∑
i=1

max {x(a, i), x(b, i), x(c, i)}

= 1− 1
k

( ∑
i∈L1

x(a, i) +
∑
i∈L2

x(b, i) +
∑
i∈L3

x(c, i) +
∑
i∈L4

x(c, i)
)

= 1− 1
k

( ∑
i∈L1

x(a, i) +
∑
i∈L2

x(b, i) + 1−
∑
i∈L1

x(b, i)−
∑
i∈L2

x(a, i)
)

= 1− 1 + 2α
k

Let (A1, . . . , Ak) be the multiway partition constructed by Algorithm 2. For each label i, let Pi
denote the probability that e ⊆ Ai. We have

Pr[p2(e) ≥ 2] = 1−
k∑
i=1

Pi

Thus, it suffices to analyze each probability Pi. If i ∈ L1, the probability Pi satisfies the following
recurrence:

Pi = x(b, i)
k

+ x(a, i)− x(b, i)
k

· x(b, i)
1 + α

+ Pr[B]·Pi

Indeed, consider an iteration and suppose that none of the vertices of e are assigned at the beginning
of the iteration. Recall that, since i ∈ L1, we have x(b, i) = x(c, i) < x(a, i). Thus, in the
current iteration, one of the following holds: all vertices get a label; a gets a label and b and c
remain unassigned; all vertices remain unassigned. The first term of the recurrence above, x(b, i)/k,
corresponds to the event that all the vertices of e are assigned label i in the current iteration. The
third term, Pr[B]·Pi, corresponds to the event that all the vertices are assigned label i in a future
iteration. The second term, ((x(a, i) − x(b, i))/k)· (x(b, i)/(1 + α)), corresponds to the event that
a is assigned label i and b and c are assigned label i in future iterations: (x(a, i)− x(b, i))/k is the
probability that a is assigned label i in the current iteration and b and c remain unassigned at the
end of the iteration; x(b, i)/(1 + α) is the probability that b and c are assigned label i in future
iterations (see below for a proof).

We can show that the probability that b and c are assigned label i is equal to x(b, i)/(1 +α) as
follows. Let Qi denote the probability that b and c are assigned label i ∈ L1. The probability Qi

8



satisfies the following recurrence:

Qi = x(b, i)
k

+ 1
k

k∑
j=1

(
1−max {x(b, j), x(c, j)}

)
·Qi

By rearranging, we get
Qi = x(b, i)∑k

j=1 max {x(b, j), x(c, j)}

Finally, we have

k∑
j=1

max {x(b, j), x(c, j)} =
∑
j∈L2

x(b, j) +
∑

j∈L1∪L3∪L4

x(c, j)

=
∑
j∈L2

x(b, j) + 1−
∑
j∈L2

x(a, j) = 1 + α

Therefore Qi = x(b, i)/(1 + α), as claimed. By rearranging the recurrence for Pi, we get

For all i ∈ L1: Pi = x(b, i)
1 + 2α

(
1 + x(a, i)− x(b, i)

1 + α

)

A similar argument shows that:

For all i ∈ L2: Pi = x(c, i)
1 + 2α

(
1 + x(b, i)− x(c, i)

1 + α

)

and

For all i ∈ L3: Pi = x(a, i)
1 + 2α

(
1 + x(c, i)− x(a, i)

1 + α

)

Now consider a label i ∈ L4; recall that x(a, i) = x(b, i) = x(c, i). The probability Pi satisfies the
following recurrence:

Pi = x(a, i)
k

+ Pr[B]·Pi

By rearranging, we get
For all i ∈ L4: Pi = x(a, i)

1 + 2α
Therefore

1− Pr[p2(e) ≥ 2] =
k∑
i=1

Pi = 1− α
1 + 2α +

∑
i∈L1

x(b, i)(x(a, i)− x(b, i))
(1 + 2α)(1 + α)

+
∑
i∈L2

x(c, i)(x(b, i)− x(c, i))
(1 + 2α)(1 + α) +

∑
i∈L3

x(a, i)(x(c, i)− x(a, i))
(1 + 2α)(1 + α)

Finally, we analyze Pr[p2(e) = 3]. The hyperedge e is split into 3 parts iff a receives a label in L1,
b receives a label in L2, and c receives a label in L3. For each triple (i, j, `), where i ∈ L1, j ∈ L2,

9



and ` ∈ L3, the probability that first a receives label i then b receives j and finally c receives label
` is equal to

(x(a, i)− x(b, i))· (x(b, j)− x(c, j))· (x(c, `)− x(a, `))
(1 + 2α)(1 + α)

We prove the identity above as follows. Let Rc be the probability that c is assigned label `, given
that a and b are assigned at the beginning of the current iteration and c is unassigned. The
probability Rc satisfies the recurrence

Rc = x(c, `)− x(a, `)
k

+ 1
k

k∑
t=1

(
1− x(c, t)

)
·Rc.

The first term is the probability that c receives label ` in the current iteration and the second term
is the probability that c receives label ` in a future iteration. By rearranging, we get

Rc = x(c, `)− x(a, `)∑k
t=1 x(c, t)

= x(c, `)− x(a, `)

Let Rb,c be the probability that b is assigned label j and then c is assigned label `, given that a is
assigned at the beginning of the current iteration and b and c are unassigned. The probability Rb,c
satisfies the following recurrence:

Rb,c = x(b, j)− x(c, j)
k

·Rc + 1
k

k∑
t=1

(
1−max {x(b, t), x(c, t)}

)
·Rb,c

The first term is the probability that b receives label j in the current iteration and c receives label
` in a future iteration. The second term is the probability that, in future iterations, first b receives
label j and then c receives label `. By rearranging, we get

Rb,c = x(b, j)− x(c, j)∑k
t=1 max {x(b, t), x(c, t)}

·Rc = x(b, j)− x(c, j)
1 + α

·Rc

Finally, let Ra,b,c be the probability that first a receives label i, then b receives j, and then c receives
label `, given that a, b, c are unassigned at the beginning of the current iteration. The probability
Ra,b,c satisfies the following recurrence:

Ra,b,c = x(a, i)− x(b, i)
k

·Rb,c + 1
k

k∑
t=1

(
1−max {x(a, t), x(b, t), x(c, t)}

)
·Ra,b,c

The first term is the probability that a receives label i in the current iteration and, in future
iterations, first b receives label j and then c receives label `. the second term is the probability
that, in future iterations, first a receives label i, then b receives label j, and then c receives label `.
By rearranging, we get

Ra,b,c = x(a, i)− x(b, i)∑k
t=1 max {x(a, t), x(b, t), x(c, t)}

·Rb,c = x(a, i)− x(b, i)
1 + 2α ·Rb,c

Using a similar argument, we can analyze the probability that a, b, c receive labels i, j, ` in a different
order. By summing over all possible choices of the labels i, j, ` and all possible orders in which a, b, c
receive labels i, j, ` (respectively), we get

Pr[p2(e) = 3] = 6α3

(1 + 2α)(1 + α)

10



By putting everything together, we get

E[p2(e)] = 2 Pr[p2(e) ≥ 2] + Pr[p2(e) = 3]

= 2
1 + 2α

(
3α+ 3α3

1 + α
−
∑
i∈L1

x(b, i)(x(a, i)− x(b, i))
1 + α

−
∑
i∈L2

x(c, i)(x(b, i)− x(c, i))
1 + α

−
∑
i∈L3

x(a, i)(x(c, i)− x(a, i))
1 + α

)

�

Using Lemma 7 and Lemma 8, we can analyze the expected integral cost of e as follows. The proof
of the lemma follows from a somewhat lengthy calculation and it can be found in Appendix A.

Lemma 9. Let e be a hyperedge of type (B). Let p(e) be a random variable equal to the number of
parts in which e is split in the partition constructed by Algorithm 3. We have

E[p(e)] ≤ 4
3

k∑
i=1

(
max
v∈e

x(v, i)−min
v∈e

x(v, i)
)
.

Finally, we consider hyperedges of type (C). The analysis is similar as for edges of type (B) and it
is even simpler, since a hyperedge of type (C) cannot be split into 3 parts.

Let a, b, c be a permutation of the vertices of e and let L1, . . . , L4 be a partition of the labels
that satisfy the conditions stated in Definition 2. Let α = ‖xb|L1 − xa|L1‖1 = ‖xa|L2 − xb|L2‖1 and
β = ‖xa|L4‖1. Note that the fractional cost of e is 3α. In the following, we analyze the expected
contribution of e to the integral cost of the solutions constructed by Algorithms 1 and 2.

Lemma 10. Let p1(e) be a random variable equal to the number of parts in which e is split in the
partition constructed by Algorithm 1. We have

E[p1(e)] ≤ 2
( ∑
i∈L1

(
x(b, i)2 − x(a, i)2

)
+
∑
i∈L2

(
x(c, i)2 − x(b, i)2

)
+
∑
i∈L3

(
x(a, i)2 − x(c, i)2

))
.

Proof: Notice that the hyperedge cannot be split into 3 parts. Thus we have

E[p1(e)] = 2 Pr[p1(e) = 2]

≤ 2
( ∑
i∈L1

∫ x(b,i)

x(a,i)
φ(t)dt+

∑
i∈L2

∫ x(c,i)

x(b,i)
φ(t)dt+

∑
i∈L3

∫ x(a,i)

x(c,i)
φ(t)dt

)

= 2
( ∑
i∈L1

(
x(b, i)2 − x(a, i)2

)
+
∑
i∈L2

(
x(c, i)2 − x(b, i)2

)
+
∑
i∈L3

(
x(a, i)2 − x(c, i)2

))

�

Now we analyze the expected number of parts in which e is split by Algorithm 2. Recall that
α = ‖xb|L1 − xa|L1‖1 = ‖xa|L2 − xb|L2‖1.

11



Lemma 11. Let p2(e) be a random variable equal to the number of parts in which e is split in the
partition constructed by Algorithm 2. We have

E[p3(e)] = 2
1 + α

(
3α−

∑
i∈L1

x(a, i)(x(b, i)− x(a, i))

−
∑
i∈L2

x(b, i)(x(c, i)− x(b, i))−
∑
i∈L3

x(c, i)(x(a, i)− x(c, i))
)

Proof: Notice that the hyperedge cannot be split into 3 parts. Thus we have

E[p2(e) = 2 Pr[p2(e) = 2] = 2 Pr[p2(e) ≥ 2].

The analysis of Pr[p2(e) ≥ 2] follows the outline in the proof of Lemma 8.
Let B be the event that none of the vertices a, b, c of e are assigned at the end of an iteration of

Algorithm 2, conditioned on the event that none of the vertices of e are assigned at the beginning
of the iteration. The probability that the vertices remain unassigned, given that the label selected
in the current iteration is i, is equal to (1−max {x(a, i), x(b, i), x(c, i)}). Thus we have

Pr[B] = 1
k

k∑
i=1

(
1−max {x(a, i), x(b, i), x(c, i)}

)

= 1− 1
k

k∑
i=1

max {x(a, i), x(b, i), x(c, i)}

= 1− 1
k

( ∑
i∈L1

x(b, i) +
∑

i∈L2∪L3∪L4

x(a, i)
)

= 1− 1 + α

k

Let (A1, . . . , Ak) be the multiway partition constructed by Algorithm 2. For each label i, let Pi
denote the probability that e ⊆ Ai. We have

Pr[p2(e) ≥ 2] = 1−
k∑
i=1

Pi

Thus is suffices to analyze each probability Pi. We have

For all i ∈ L1: Pi = x(a, i)
1 + α

(
1 + x(b, i)− x(a, i)

)

For all i ∈ L2: Pi = x(b, i)
1 + α

(
1 + x(c, i)− x(b, i)

)
For all i ∈ L3: Pi = x(c, i)

1 + α

(
1 + x(a, i)− x(c, i)

)
For all i ∈ L4: Pi = x(a, i)

1 + α

12



The proofs of the identities above are very similar to the proof of Lemma 8 and we omit them.
Therefore we have

1− Pr[p2(e) ≥ 2] =
k∑
i=1

Pi = 1− 2α
1 + α

+
∑
i∈L1

x(a, i)(x(b, i)− x(a, i))
1 + α

+
∑
i∈L2

x(b, i)(x(c, i)− x(b, i))
1 + α

+
∑
i∈L3

x(c, i)(x(a, i)− x(c, i))
1 + α

Therefore

Pr[p2(e) ≥ 2] = 3α
1 + α

−
∑
i∈L1

x(a, i)(x(b, i)− x(a, i))
1 + α

−
∑
i∈L2

x(b, i)(x(c, i)− x(b, i))
1 + α

−
∑
i∈L3

x(c, i)(x(a, i)− x(c, i))
1 + α

�

Using Lemma 10 and Lemma 11, we can analyze the expected integral cost of e as follows. The
proof of the lemma follows from a somewhat lengthy calculation and it can be found in Appendix A.

Lemma 12. Let e be a hyperedge of type (C). Let p(e) be a random variable equal to the number
of parts in which e is split in the partition constructed by Algorithm 3. We have

E[p(e)] ≤ 4
3

k∑
i=1

(
max
v∈e

x(v, i)−min
v∈e

x(v, i)
)
.

Theorem 5 follows immediately from Lemmas 6, 9, and 12. This completes the analysis of the
rounding algorithm.

13



References
[1] C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: a survey. Integration,

the VLSI Journal, 19(1–2):1–81, 1995.

[2] N. Buchbinder, J. S. Naor, and R. Schwartz. Simplex partitioning via exponential clocks and
the multiway cut problem. In Proc. of ACM STOC, pages 535–544. ACM, 2013.

[3] G. Calinescu, H. J. Karloff, and Y. Rabani. An improved approximation algorithm for multiway
cut. Journal of Computer and System Sciences, 60(3):564–574, 2000. Preliminary version in
STOC 1998.

[4] C. Chekuri and A. Ene. Approximation algorithms for submodular multiway partition. In
Proc. of IEEE FOCS, pages 807–816, 2011.

[5] C. Chekuri and A. Ene. Submodular cost allocation problem and applications. In Proc. of
ICALP, pages 354–366, 2011.

[6] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The
complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864–894, 1994. Prelim-
inary version in STOC 1992.

[7] D. R. Karger, P. N. Klein, C. Stein, M. Thorup, and N. E. Young. Rounding algorithms
for a geometric embedding of minimum multiway cut. Mathematics of Operations Research,
29(3):436–461, 2004. Preliminary version in STOC 1999.

[8] J. M. Kleinberg and É. Tardos. Approximation algorithms for classification problems with pair-
wise relationships: Metric labeling and Markov random fields. Journal of the ACM, 49(5):616–
639, 2002. Preliminary version in FOCS 1999.

[9] E. L. Lawler. Cutsets and partitions of hypergraphs. Networks, 3(3):275–285, 1973.

[10] A. Sharma and J. Vondrák. Multiway cut, pairwise realizable distributions, and descending
thresholds. In Proc. of ACM STOC, 2014.

[11] L. Zhao, H. Nagamochi, and T. Ibaraki. Greedy splitting algorithms for approximating mul-
tiway partition problems. Mathematical Programming, 102(1):167–183, 2005.

14



A Omitted proofs from section 3

Proof of Lemma 9: As before, we let p1(e) and p2(e) denote the number of parts in which e is
split by Algorithm 1 and 2, respectively. Recall that α = ‖xa|L1 − xb|L1‖1 = ‖xb|L2 − xa|L2‖1 and
β = ‖xa|L4‖1. We have

E[p(e)] = 1
3 E[p1(e)] + 2

3 E[p2(e)].

By Lemma 7 and Lemma 8, we have

E[p(e)] ≤ 2
3

( ∑
i∈L1

(
x(a, i)2 − x(b, i)2

)
+
∑
i∈L2

(
x(b, i)2 − x(c, i)2

)
+
∑
i∈L3

(
x(c, i)2 − x(a, i)2

))

+ 4
3(1 + 2α)

(
3α+ 3α3

1 + α
−
∑
i∈L1

x(b, i)(x(a, i)− x(b, i))
1 + α

−
∑
i∈L2

x(c, i)(x(b, i)− x(c, i))
1 + α

−
∑
i∈L3

x(a, i)(x(c, i)− x(a, i))
1 + α

)

= 4
1 + 2α

(
α+ α3

1 + α

)
+
∑
i∈L1

(
x(a, i)− x(b, i)

)(2x(a, i) + 2x(b, i)
3 − 4x(b, i)

3(1 + 2α)(1 + α)

)

+
∑
i∈L2

(
x(b, i)− x(c, i)

)(2x(b, i) + 2x(c, i)
3 − 4x(c, i)

3(1 + 2α)(1 + α)

)

+
∑
i∈L3

(
x(c, i)− x(a, i)

)(2x(c, i) + 2x(a, i)
3 − 4x(a, i)

3(1 + 2α)(1 + α)

)

≤ 4
1 + 2α

(
α+ α3

1 + α

)
+
∑
i∈L1

α

(
2x(a, i) + 2x(b, i)

3 − 4x(b, i)
3(1 + 2α)(1 + α)

)

+
∑
i∈L2

α

(
2x(b, i) + 2x(c, i)

3 − 4x(c, i)
3(1 + 2α)(1 + α)

)

+
∑
i∈L3

α

(
2x(c, i) + 2x(a, i)

3 − 4x(a, i)
3(1 + 2α)(1 + α)

)

= 4
1 + 2α

(
α+ α3

1 + α

)
+ α

(
4 + 2α− 4β

3 − 4(1− α− β)
3(1 + 2α)(1 + α)

)
(1)

≤ 4
1 + 2α

(
α+ α3

1 + α

)
+ α

(
4 + 2α

3 − 4(1− α)
3(1 + 2α)(1 + α)

) (
Since α, β ≥ 0

)

= α

(
4 + 2α(α− 1)(2α+ 3)

3(1 + 2α)(1 + α)

)

≤ 4α
(
Since 0 ≤ α ≤ 1

)

15



In Equation (1), we used the fact that∑
i∈L1

x(b, i) +
∑
i∈L2

x(c, i) +
∑
i∈L3

x(a, i) = 1− α− β

and ∑
i∈L1

(
x(a, i) + x(b, i)

)
+
∑
i∈L2

(
x(b, i) + x(c, i)

)
+
∑
i∈L3

(
x(c, i) + x(a, i)

)
= 2 + α− 2β

Since the fractional cost for e is 3α, the lemma follows. �

Proof of Lemma 12: As before, we let p1(e) and p2(e) denote the number of parts in which e is
split by Algorithm 1 and 2, respectively. Recall that α = ‖xb|L1 − xa|L1‖1 = ‖xa|L2 − xb|L2‖1 and
β = ‖xa|L4‖1. We have

E[p(e)] = 1
3 E[p1(e)] + 2

3 E[p2(e)].

By Lemma 10 and Lemma 11, we have

E[p(e)] ≤ 2
3

( ∑
i∈L1

(
x(b, i)2 − x(a, i)2

)
+
∑
i∈L2

(
x(c, i)2 − x(b, i)2

)
+
∑
i∈L3

(
x(a, i)2 − x(c, i)2)

)

+ 12α
3(1 + α) −

4
3

( ∑
i∈L1

x(a, i)(x(b, i)− x(a, i))
1 + α

−
∑
i∈L2

x(b, i)(x(c, i)− x(b, i))
1 + α

−
∑
i∈L3

x(c, i)(x(a, i)− x(c, i))
1 + α

)

= 4α
1 + α

+
∑
i∈L1

(
x(b, i)− x(a, i)

)(2x(a, i) + 2x(b, i)
3 − 4x(a, i)

3(1 + α)

)

+
∑
i∈L2

(
x(c, i)− x(b, i)

)(2x(b, i) + 2x(c, i)
3 − 4x(b, i)

3(1 + α)

)

+
∑
i∈L3

(
x(a, i)− x(c, i)

)(2x(c, i) + 2x(a, i)
3 − 4x(c, i)

3(1 + α)

)

≤ 4α
1 + α

+
∑
i∈L1

α

(2x(a, i) + 2x(b, i)
3 − 4x(a, i)

3(1 + α)

)

+
∑
i∈L2

α

(2x(b, i) + 2x(c, i)
3 − 4x(b, i)

3(1 + α)

)

+
∑
i∈L3

α

(2x(c, i) + 2x(a, i)
3 − 4x(c, i)

3(1 + α)

)

= 4α
1 + α

+ α

(4− 2α− 4β
3 − 4(1− 2α− β)

3(1 + α)

)
(2)

≤ 4α
1 + α

+ α

(4− 2α
3 − 4(1− 2α)

3(1 + α)

) (
Since α, β ≥ 0

)
= α

(
4− 2α

3

)

16



≤ 4α
(
Since 0 ≤ α ≤ 1

)
In Equation (2), we used the fact that∑

i∈L1

x(a, i) +
∑
i∈L2

x(b, i) +
∑
i∈L3

x(c, i) = 1− 2α− β

and ∑
i∈L1

(
x(a, i) + x(b, i)

)
+
∑
i∈L2

(
x(b, i) + x(c, i)

)
+
∑
i∈L3

(
x(c, i) + x(a, i)

)
= 2− α− 2β

Since the fractional cost for e is 3α, the lemma follows. �

B A hard example for Kleinberg-Tardos rounding scheme and the
exponential clock scheme

In this section, we give a family of instances of the Hyper-MP problem for which the Kleinberg-
Tardos rounding scheme (Algorithm 2 in Section 3) and the exponential clock scheme of [2] achieve
an approximation that is bounded from below by Ω(

√
k).

Consider a hyperedge with 2k−1 vertices whose fractional assignments are {a1/(k − 1), a2/(k −
1), . . . , ak−1/(k − 1), b}, where ai ∈ {0, 1} and b = 1−

∑
i ai/(k − 1). It is clear that the fractional

cost of this hyperedge is at most 2. In the following, we analyze the expected integral cost for the
hyperedge in the two rounding schemes. We first consider the Kleinberg-Tardos rounding scheme.

Claim 13. The expected integral cost of the Kleinberg-Tardos rounding scheme is Ω(
√
k).

Proof: Let t =
√
k/100 and (θ1, i1), . . . , (θt, it) be the first t pairs of thresholds and labels picked

by the algorithm that fall into the region ∪k−1
i=1 [0, 1/(k − 1)] × {i} ∪ [0, 1] × {k}. If a pair of a

threshold and a label picked by the algorithm falls outside of this region, then it does not assign
any label to any vertex of the hyperedge, so it is safe to ignore such a pair. By the Chernoff bound,
with high probability, the number of labels among i1, . . . , it that are equal to k is concentrated
around nk = t/2±Θ(

√
t). Similarly, the number of labels among i1, . . . , it that are smaller than k

is concentrated around r = t/2±Θ(
√
t).

First, consider the θj ’s with ij = k. The probability that all such θj ’s are at least 1/(2nk) >
1/(t+ Θ(

√
t)) is (1− 1/(2nk))nk > e−0.4. Thus, with probability at least e−0.4, all such θj ’s are at

least 1/(2nk). In the rest of the proof, we condition on this event.
By the birthday paradox, with probability at least 1-1/10, the labels among i1, . . . , it that

are smaller than k are all distinct. Without loss of generality, assume they are iπ1 , . . . , iπr where
π1 < π2 < · · · < πr. For each j ∈ {1, . . . , r}, partition iπj picks up the vertex v whose first k − 1
coordinates are either 0 if they are amongπ1, . . . , πj−1 and 1/(k − 1) otherwise. Note that this
vertex is not picked up by partition k because its kth coordinate is (j − 1)/(k − 1) < 1/(2nk).

Thus, we conclude that with constant probability, partitions iπ1 , . . . , iπr all pick up some vertices,
implying that the expected integral cost is Ω(

√
k). �

Next, we consider the exponential clock rounding scheme of [2]. For convenience, we state the
rounding scheme below.

17



Algorithm 4: Exponential clock rounding scheme
Choose i.i.d. random Zi ∼ exp(1) for i = 1, . . . , k.
Assign u to arg mini{Zi/ui : i = 1, . . . , k}.

Claim 14. The expected integral cost of the exponential clock scheme is Ω(
√
k).

Proof: Let t =
√
k/100 and Zπ1 ≤ Zπ2 ≤ · · · ≤ Zπt be the smallest among Z1, . . . , Zk−1. By

the Chernoff bound, with high probability, the number of variables among Z1, . . . , Zk−1 that are
bounded by 10t/k is at least t. In other words, Zπt ≤ 10t/k. With constant probability, Zk > 1.
For the rest of the proof, we condition on this event.

Fix j ∈ {1, . . . , t}. Consider the vertex v whose first k − 1 coordinates are either 0 if it is
among π1, . . . , πj−1, or 1/(k − 1) otherwise. We now argue that v is assigned to partition j. For
i = 1, . . . , k−1, the value Zi/vi is clearly minimized when i = πj . Furthermore, the kth coordinate
of v is (j − 1)/(k − 1). Therefore

Zk(k − 1)
j − 1 >

k − 1
j − 1 >

10t/k
1/(k − 1) ≥

Zπj
vπj

Thus, the partitions π1, . . . , πt all pick up some vertices from the hyperedge, implying that the
expected integral cost is Ω(

√
k). �

18


	Introduction
	LP Relaxation
	Rounding Algorithms
	Omitted proofs from section 3
	A hard example for Kleinberg-Tardos rounding scheme and the exponential clock scheme

