
Random Coordinate Descent Methods for
Minimizing Decomposable Submodular Functions

Alina Ene A.ENE@DCS.WARWICK.AC.UK

Department of Computer Science and DIMAP, University of Warwick

Huy L. Nguyen HLNGUYEN@CS.PRINCETON.EDU

Simons Institute, University of California, Berkeley

Abstract
Submodular function minimization is a funda-
mental optimization problem that arises in sev-
eral applications in machine learning and com-
puter vision. The problem is known to be solv-
able in polynomial time, but general purpose al-
gorithms have high running times and are unsuit-
able for large-scale problems. Recent work have
used convex optimization techniques to obtain
very practical algorithms for minimizing func-
tions that are sums of “simple” functions. In this
paper, we use random coordinate descent meth-
ods to obtain algorithms with faster linear con-
vergence rates and cheaper iteration costs. Com-
pared to alternating projection methods, our al-
gorithms do not rely on full-dimensional vec-
tor operations and they converge in significantly
fewer iterations.

1. Introduction
Over the past few decades, there has been a significant
progress on minimizing submodular functions, leading
to several polynomial time algorithms for the problem
(Grötschel et al., 1981; Schrijver, 2000; Iwata, 2003; Fleis-
cher & Iwata, 2003; Orlin, 2009). Despite this intense fo-
cus, the running times of these algorithms are high-order
polynomials in the size of the data and designing faster
algorithms remains a central and challenging direction in
submodular optimization.

At the same time, technological advances have made it pos-
sible to capture and store data at an ever increasing rate and
level of detail. A natural consequence of this “big data”
phenomenon is that machine learning applications need to

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

cope with data that is quite large and is growing at a fast
pace. Thus there is an increasing need for algorithms that
are fast and scalable.

The general purpose algorithms for submodular minimiza-
tion are designed to provide worst-case guarantees even in
settings where the only structure that one can exploit is sub-
modularity. At the other extreme, graph cut algorithms are
very efficient but they cannot handle more general submod-
ular functions. In many applications, the functions strike a
middle ground between these two extremes and it is becom-
ing increasingly more important to use their special struc-
ture to obtain significantly faster algorithms.

Following (Kolmogorov, 2012; Stobbe & Krause, 2010;
Jegelka et al., 2013; Nishihara et al., 2014a), we con-
sider the problem of minimizing decomposable submodu-
lar functions that can be expressed as a sum of simple func-
tions. We use the term simple to refer to functions F for
which there is an efficient algorithm for minimizing F +w,
where w is a linear function. We assume that we are given
black-box access to these minimization procedures for sim-
ple functions.

Decomposable functions are a fairly rich class of functions
and they arise in several applications in machine learning
and computer vision. For example, they model higher-
order potential functions for MAP inference in Markov ran-
dom fields, the cost functions in SVM models for which
the examples have only a small number of features, and the
graph and hypergraph cut functions in image segmentation.

The recent work of (Jegelka et al., 2013; Kolmogorov,
2012; Stobbe & Krause, 2010) has developed several algo-
rithms with very good empirical performance that exploit
the special structure of decomposable functions. In par-
ticular, (Jegelka et al., 2013) have shown that the problem
of minimizing decomposable submodular functions can be
formulated as a distance minimization problem between
two polytopes. This formulation, when coupled with pow-
erful convex optimization techniques such as gradient de-



scent or projection methods, yields algorithms that are very
fast in practice and very simple to implement (Jegelka et al.,
2013).

On the theoretical side, the convergence behaviour of these
methods is not very well understood. Very recently, Nishi-
hara et al. (2014a) have made a significant progress in this
direction. Their work shows that the classical alternat-
ing projections method, when applied to the distance mini-
mization formulation, converges at a linear rate.

Our contributions. In this work, we use random coordi-
nate descent methods in order to obtain algorithms for min-
imizing decomposable submodular functions with faster
convergence rates and cheaper iteration costs. We analyze a
standard and an accelerated random coordinate descent al-
gorithm and we show that they achieve linear convergence
rates. Compared to alternating projection methods, our al-
gorithms do not rely on full-dimensional vector operations
and they are faster by a factor equal to the number of simple
functions. Moreover, our accelerated algorithm converges
in a much smaller number of iterations. We experimen-
tally evaluate our algorithms on image segmentation tasks
and we show that they perform very well and they converge
much faster than the alternating projection method.

Submodular minimization. The first polynomial time
algorithm for submodular optimization was obtained by
Grötschel et al. (1981) using the ellipsoid method. There
are several combinatorial algorithms for the problem
(Schrijver, 2000; Iwata, 2003; Fleischer & Iwata, 2003;
Orlin, 2009). Among the combinatorial methods, Or-
lin’s algorithm (2009) achieves the best time complexity
of O(n5T + n6), where n is the size of the ground set
and T is the maximum amount of time it takes to evalu-
ate the function. Several algorithms have been proposed
for minimizing decomposable submodular functions (Sto-
bbe & Krause, 2010; Kolmogorov, 2012; Jegelka et al.,
2013; Nishihara et al., 2014a). Stobbe and Krause (2010)
use gradient descent methods with sublinear convergence
rates for minimizing sums of concave functions applied to
linear functions. Nishihara et al. (2014a) give an algorithm
based on alternating projections that achieves a linear con-
vergence rate.

1.1. Preliminaries and Background

Let V be a finite ground set of size n; without loss of gen-
erality, V = {1, 2, . . . , n}. We view each point w ∈ Rn
as a modular set function w(A) =

∑
i∈A wi on the ground

set V .

A set function F : 2V → R is submodular if F (A) +
F (B) ≥ F (A∩B)+F (A∪B) for any two setsA,B ⊆ V .
A set function Fi : 2V → R is simple if there is a fast
subroutine for minimizing Fi+w for any modular function

w ∈ Rn.

In this paper, we consider the problem of minimizing a sub-
modular function F : 2V → R of the form F =

∑r
i=1 Fi,

where each function Fi is a simple submodular set func-
tion:

min
A⊆V

F (A) ≡ min
A⊆V

r∑
i=1

Fi(A). (DSM)

We assume without loss of generality that the function F
is normalized, i.e., F (∅) = 0. Additionally, we assume
we are given black-box access to oracles for minimizing
Fi +w for each function Fi in the decomposition and each
w ∈ Rn.

The base polytope B(F ) of F is defined as follows.

B(F ) = {w ∈ Rn | w(A) ≤ F (A) for all A ⊆ V,
w(V ) = F (V )}.

The discrete problem (DSM)1 admits an exact convex pro-
gramming relaxation based on the Lovász extension of a
submodular function. The Lovász extension f of F can be
written as the support function of the base polytope B(F ):

f(x) = max
w∈B(F )

〈w, x〉 ∀x ∈ Rn.

Even though the base polytope B(F ) has exponentially
many vertices, the Lovász extension f can be evaluated ef-
ficiently using the greedy algorithm of Edmonds (see for
example (Schrijver, 2003)). Given any point x ∈ Rn, Ed-
monds’ algorithm evaluates f(x) using O(n log n + nT )
time, where T is the time needed to evaluate the submodu-
lar function F .

Lovász showed that a set function F is submodular if and
only if its Lovász extension f is convex (Lovász, 1983).
Thus we can relax the problem of minimizing F to the fol-
lowing non-smooth convex optimization problem:

min
x∈[0,1]n

f(x) ≡ min
x∈[0,1]n

r∑
i=1

fi(x),

where fi is the Lovász extension of Fi.

The relaxation above is exact. Given a fractional solution
x to the Lovász Relaxation, the best threshold set of x has
cost at most f(x).

An important drawback of the Lovász relaxation is that its
objective function is not smooth. Following previous work
(Jegelka et al., 2013; Nishihara et al., 2014a), we consider a
proximal version of the problem (‖· ‖ denotes the `2-norm):

1DSM stands for decomposable submodular function mini-
mization.
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RCDM Algorithm for (Prox-DSM)
〈〈We can take the initial point y0 to be 0〉〉
Start with y0 = (y

(1)
0 , . . . , y

(r)
0 ) ∈ Y

In each iteration k (k ≥ 0)
Pick an index ik ∈ {1, 2, . . . , r} uniformly at random
〈〈Update the block ik〉〉
y
(ik)
k+1 ← arg min

y∈B(Fik
)

(〈
∇ikg(yk), y − y(ik)k

〉
+
Lik

2

∥∥∥y − y(ik)k

∥∥∥2 )
Figure 1. Random block coordinate descent method for (Prox-
DSM). It finds a solution to (Prox-DSM) given access to an oracle
for miny∈B(Fi)

(
〈y, a〉+ ‖y‖2

)
.

min
x∈Rn

(
f(x) +

1

2
‖x‖2

)
≡ min
x∈Rn

r∑
i=1

(
fi(x) +

1

2r
‖x‖2

)
.

(Proximal)
Given an optimal solution x to the proximal problem
minx∈Rn

(
f(x)+ 1

2 ‖x‖
2 ), we can construct an optimal so-

lution to the discrete problem (DSM) by thresholding x at
zero; more precisely, the set {v ∈ V : x(v) ≥ 0} is an op-
timal solution to (DSM) (Proposition 8.6 in (Bach, 2011)).
Lemma 1 ((Jegelka et al., 2013)). The dual of the proximal
problem

min
x∈Rn

r∑
i=1

(
fi(x) +

1

2r
‖x‖2

)
is the problem

max
y(1)∈B(F1),...,y(r)∈B(Fr)

−1

2

∥∥∥∥∥
r∑
i=1

y(i)

∥∥∥∥∥
2

.

The primal and dual variables are linked as x =
−
∑r
i=1 y

(i).

We write the dual proximal problem in the following equiv-
alent form:

min
y(1)∈B(F1),...,y(r)∈B(Fr)

∥∥∥∥∥
r∑
i=1

y(i)

∥∥∥∥∥
2

. (Prox-DSM)

It follows from the discussion above that, given an op-
timal solution y = (y(1), . . . , y(r)) to (Prox-DSM), we
can recover an optimal solution to (DSM) by thresholding
x = −

∑r
i=1 y

(i) at zero.

2. Random Coordinate Descent Algorithm
In this section, we give an algorithm for the problem (Prox-
DSM) that is based on the random coordinate gradient de-
scent method (RCDM) of (Nesterov, 2012). The algo-
rithm is given in Figure 1. The algorithm is very easy to

implement and it uses oracles for problems of the form
miny∈B(Fi)

(
〈y, a〉+ ‖y‖2

)
, where i ∈ [r] and a ∈ Rn.

Since each function Fi is simple, we have such oracles that
are very efficient.

In the remainder of this section, we analyze the conver-
gence rate of the RCDM algorithm. We emphasize that the
objective function of (Prox-DSM) is not strongly convex
and thus we cannot use as a black-box Nesterov’s anal-
ysis of the RCDM method for minimizing strongly con-
vex functions. Instead, we exploit the special structure of
the problem to achieve convergence guarantees that match
the rate achievable for strong convex objectives with strong
convexity parameter 1/(n2r). Our analysis shows that the
RCDM algorithm is faster by a factor of r (same conver-
gence rate but faster iterations) than the alternating projec-
tions algorithm from (Nishihara et al., 2014a).

Outline of the analysis: Our analysis has two main com-
ponents. First, we build on the work of (Nishihara et al.,
2014a) in order to prove a key theorem (Theorem 2). This
theorem exploits the special structure of the (Prox-DSM)
problem and it allows us to overcome the fact that the
objective function of (Prox-DSM) is not strongly convex.
Second, we modify Nesterov’s analysis of the RCDM algo-
rithm for minimizing strongly convex functions and we re-
place the strong convexity guarantee by the guarantee given
by Theorem 2.

We start by introducing some notation; for the most part,
we follow the notation of (Nesterov, 2012) and (Nishihara
et al., 2014a). Let Rnr =

⊗r
i=1 Rn. We write a vector

y ∈ Rnr as y = (y(1), . . . , y(r)), where each block y(i)

is an n-dimensional vector. Let Y =
⊗r

i=1B(Fi) be the
constraint set of (Prox-DSM). Let g : Rnr → R be the
objective function of (Prox-DSM): g(y) =

∥∥∑r
i=1 y

(i)
∥∥2.

We use ∇g to denote the gradient of g, i.e., the (nr)-
dimensional vector of partial derivatives. For each i ∈
{1, . . . , r}, we use ∇ig(y) ∈ Rn to denote the i-th block
of coordinates of∇g(y).

Let S ∈ Rn×nr be the following matrix:

S =
1√
r

[
InIn · · · In︸ ︷︷ ︸

r times

]
.

Note that g(y) = r ‖Sy‖2 and ∇g(y) = 2rSTSy. Addi-
tionally, for each i ∈ {1, 2, . . . , r}, ∇ig is Lipschitz con-
tinuous with constant Li = 2:

‖∇ig(x)−∇ig(y)‖ ≤ Li
∥∥∥x(i) − y(i)∥∥∥ , (1)

for all vectors x, y ∈ Rnr that differ only in block i.

Our first step is to prove the following key theorem that
builds on the work of (Nishihara et al., 2014a).
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Theorem 2. Let y ∈ Y be a feasible solution to (Prox-
DSM). Let y∗ be an optimal solution to (Prox-DSM) that
minimizes ‖y − y∗‖. We have

‖S(y − y∗)‖ ≥ 1

nr
‖y − y∗‖ .

The proof of Theorem 2 uses the following key result from
(Nishihara et al., 2014b). We will need the following defi-
nitions from (Nishihara et al., 2014b).

Let d(K1,K2) = inf {‖k1 − k2‖ : k1 ∈ K1, k2 ∈ K2} be
the distance between sets K1 and K2. Let P and Q be two
closed convex sets in Rd. Let E ⊆ P and H ⊆ Q be the
sets of closest points

E = {p ∈ P : d(p,Q) = d(P,Q)} ,
H = {q ∈ Q : d(q,P) = d(P,Q)} .

Since P and Q are convex, for each point in p ∈ E, there
is a unique point q ∈ H such that d(p, q) = d(P,Q) and
vice versa. Let v = ΠQ−P0, where ΠQ−P is the projection
operator ontoQ−P; note thatH = E+v. LetQ′ = Q−v;
Q′ is a translated version ofQ and it intersects P at E. Let

κ∗ = sup
x∈(P∪Q′)\E

d(x,E)

max {d(x,P), d(x,Q′)}
.

By combining Corollary 5 and Proposition 11 from (Nishi-
hara et al., 2014b), we obtain the following theorem.

Theorem 3 ((Nishihara et al., 2014a)). If P is the
polyhedron

⊗r
i=1B(Fi) and Q is the polyhedron{

y ∈ Rnr :
∑r
i=1 y

(i) = 0
}

, we have κ∗ ≤ nr.

Now we are ready to prove Theorem 2. Let

P =
⊗r

i=1
B(Fi) = Y,

Q =
{
y ∈ Rnr :

∑r

i=1
y(i) = 0

}
= {y ∈ Rnr : Sy = 0} .

We define Q′ and κ∗ as above.

Let y and y∗ be the two points in the statement of the the-
orem. Note that y ∈ P and y∗ ∈ E, since E is the set of
all optimal solutions to (Prox-DSM). We may assume that
y /∈ E, since otherwise the theorem trivially holds. Since
y ∈ P \ E, we have

κ∗ ≥
d(y,E)

d(y,Q′)
.

Since y∗ is an optimal solution that is closest to y, we have
d(y,E) = ‖y − y∗‖. Using the fact that the rows of S form
a basis for the orthogonal complement of Q, we can show
that d(y,Q′) = ‖S(y − y∗)‖.

Therefore

κ∗ ≥
‖y − y∗‖
‖S(y − y∗)‖

.

Theorem 2 now follows from Theorem 3.

In the remainder of this section, we use Nesterov’s analysis
(Nesterov, 2012) in conjunction with Theorem 2 in order to
show that the RCDM algorithm converges at a linear rate.
Recall that E is the set of all optimal solutions to (Prox-
DSM).

Theorem 4. After (k + 1) iterations of the RCDM algo-
rithm, we have

E
[
d(yk, E)2 + g(yk+1)− g(y∗)

]
≤(

1− 2

n2r2 + r

)k+1 (
d(y0, E)2 + g(y0)− g(y∗)

)
,

where y∗ ∈ E is an arbitrary optimal solution to (Prox-
DSM).

We devote the rest of this section to the proof of Theorem 4.
We recall the following well-known lemma, which we refer
to as the first-order optimality condition.

Lemma 5 (Theorem 2.2.5 in (Nesterov, 2004)). Let f :
Rd → R be a differentiable convex function and let Q ⊆
Rd be a closed convex set. A point x∗ ∈ Rd is a solution to
the problem minx∈Q f(x) if and only if

〈∇f(x∗), x− x∗〉 ≥ 0

for all x ∈ Q.

It follows from the first-order optimality condition for y(ik)k+1

that, for any z ∈ B(Fik),〈
∇ikg(yk) + Lik

(
y
(ik)
k+1 − y

(ik)
k

)
, z − y(ik)k+1

〉
≥ 0. (2)

We show in the supplement that

g(yk+1) = g(yk)+〈
∇ikg(yk), y

(ik)
k+1 − y

(ik)
k

〉
+
Lik
2

∥∥∥y(ik)k+1 − y
(ik)
k

∥∥∥2 . (3)

Let y∗ = arg miny∈E ‖y − yk‖ be the optimal solution
that is closest to yk. Using (2) and (3), we show in the
supplement that

‖yk+1 − y∗‖2

≤ ‖yk − y∗‖2 +
2

Lik

〈
∇ikg(yk), (y∗)(ik) − y(ik)k

〉
−

2

Lik
(g(yk+1)− g(yk)) . (4)

If we rearrange the terms of the inequality (4), take expec-
tation over ik, and substitute Lik = 2, we obtain

Eik
[
‖yk+1 − y∗‖2 + g(yk+1)− g(y∗)

]
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≤ ‖yk − y∗‖2 + g(yk)− g(y∗) +
1

r
〈∇g(yk), y∗ − yk〉.

(5)

We can upper bound 〈∇g(yk), y∗ − yk〉 as follows.

〈∇g(yk), y∗ − yk〉 = 2r
〈
STSyk, y

∗ − yk
〉

= r
〈
STSyk + STSy∗, y∗ − yk

〉
+

r
〈
STSyk − STSy∗, y∗ − yk

〉
= r

〈
STSyk + STSy∗, y∗ − yk

〉
− r ‖S(yk − y∗)‖2

= r 〈S(yk + y∗), S(y∗ − yk)〉 − r ‖S(yk − y∗)‖2

= (g(y∗)− g(yk))− r ‖S(yk − y∗)‖2

≤ (g(y∗)− g(yk))− 1

n2r
‖yk − y∗‖2 . (By Theorem 2)

(6)

On the first and fifth lines, we have used the fact that
∇g(z) = 2rSTSz and g(z) = r ‖Sz‖2 for any z ∈ Rnr.
On the last line, we have used Theorem 2.

Since y∗ is an optimal solution to (Prox-DSM), the first-
order optimality condition gives us that

〈∇g(y∗), y∗ − yk〉 = 2r〈STSy∗, y∗ − yk〉 ≤ 0. (7)

Using the inequality above, we can also upper bound
〈∇g(yk), y∗ − yk〉 as follows.

〈∇g(yk), y∗ − yk〉 = 2r〈STSyk, y∗ − yk〉
= 2r〈STSy∗, y∗ − yk〉+ 2r〈STSyk − STSy∗, y∗ − yk〉

= 2r〈STSy∗, y∗ − yk〉 − 2r ‖S(yk − y∗)‖2

(7)

≤ −2r ‖S(yk − y∗)‖2

≤ − 2

n2r
‖yk − y∗‖2 . (By Theorem 2) (8)

By taking 2
n2r+1 × (6) +

(
1− 2

n2r+1

)
× (8), we obtain

〈∇g(yk), y∗ − yk〉 ≤

− 2

n2r + 1

(
g(yk)− g(y∗) + ‖yk − y∗‖2

)
. (9)

By (5) and (9),

Eik
[
‖yk+1 − y∗‖2 + g(yk+1)− g(y∗)

]
≤
(

1− 2

n2r2 + r

)(
g(yk)− g(y∗) + ‖yk − y∗‖2

)
.

Note that d(yk+1, E)2 ≤ ‖yk+1 − y∗‖2 and d(yk, E)2 =

‖yk − y∗‖2. Therefore

Eik
[
d(yk+1, E)2 + g(yk+1)− g(y∗)

]
≤
(

1− 2

n2r2 + r

)(
d(yk, E)2 + g(yk)− g(y∗)

)
.

APPROX algorithm applied to (Prox-DSM)
Start with z0 = (z

(1)
0 , . . . , z

(r)
0 ) ∈ Y , θ0 = 1

r , u0 = 0
In each iteration k (k ≥ 0)

Generate a random set of blocks Rk where each
block is included independently with probability 1

r
uk+1 ← uk, zk+1 ← zk
For each i ∈ Rk
t
(i)
k ← arg min

t+z
(i)
k ∈B(Fik

)

( 〈
∇ig

(
θ2kuk + zk

)
, t
〉

+ 2rθk ‖t‖2
)

z
(i)
k+1 ← z

(i)
k + t

(i)
k

u
(i)
k+1 ← u

(i)
k −

1−rθk
θ2k

t
(i)
k

θk+1 =

√
θ4k+4θ2k−θ

2
k

2
Return θ2kuk+1 + zk+1

Figure 2. The APPROX algorithm of (Fercoq & Richtárik, 2013)
applied to (Prox-DSM). It finds a solution to (Prox-DSM) given
access to an oracle for miny∈B(Fi)

(
〈y, a〉+ ‖y‖2

)
.

ACDM Algorithm for (Prox-DSM)
〈〈We can take the initial point y0 to be 0〉〉
Start with y0 = (y

(1)
0 , . . . , y

(r)
0 ) ∈ Y

In each epoch ` (` ≥ 0)
Run the algorithm in Figure 2 for (4nr3/2 + 1)

iterations with y` as its starting point (z0 = y`)
Let y`+1 be the vector returned by the algorithm

Figure 3. Accelerated block coordinate descent method for (Prox-
DSM). It finds a solution to (Prox-DSM) given access to an oracle
for miny∈B(Fi)

(
〈y, a〉+ ‖y‖2

)
.

By taking expectation over ξ = (i1, . . . , ik), we get

Eξ
[
d(yk+1, E)2 + g(yk+1)− g(y∗)

]
≤
(

1− 2

n2r2 + r

)k+1 (
d(y0, E)2 + g(y0)− g(y∗)

)
.

Therefore the proof of Theorem 4 is complete.

3. Accelerated Coordinate Descent Algorithm
In this section, we give an accelerated random coordinate
descent (ACDM) algorithm for (Prox-DSM). The algo-
rithm uses the APPROX algorithm of Fercoq and Richtárik
(2013) as a subroutine. The APPROX algorithm (Algo-
rithm 2 in (Fercoq & Richtárik, 2013)), when applied to
the (Prox-DSM) problem, yields the algorithm in Figure 2.
The ACDM algorithm runs in a sequence of epochs (see
Figure 3). In each epoch, the algorithm starts with the so-
lution of the previous epoch and it runs the APPROX al-
gorithm for Θ(nr3/2) iterations. The solution constructed
by the APPROX algorithm will be the starting point of the
next epoch. Note that, for each i, the gradient ∇ig(y) =

5



2
∑
j y

(j) can be easily maintained at a cost of O(n) per
block update, and thus the iteration cost is dominated by
the time to compute the projection.

In the remainder of this section, we use the analysis of (Fer-
coq & Richtárik, 2013) together with Theorem 2 in order to
show that the ACDM algorithm converges at a linear rate.
We follow the notation used in Section 2.
Theorem 6. After ` epochs of the ACDM algorithm (equiv-
alently, (4nr3/2 + 1)` iterations), we have

E[g(y`+1)− g(y∗)] ≤ 1

2`+1
(g(y0)− g(y∗)).

In the following lemma, we show that the objective func-
tion of (Prox-DSM) satisfies Assumption 1 in (Fercoq &
Richtárik, 2013) and thus the convergence analysis given
in (Fercoq & Richtárik, 2013) can be applied to our setting.
Lemma 7. Let R ⊆ {1, 2, . . . , r} be a random sub-
set of coordinate blocks with the property that each i ∈
{1, 2, . . . , r} is in R independently at random with proba-
bility 1/r. Let x and h be two vectors in Rnr. Let hR be
the vector in Rnr such that (hR)(i) = h(i) for each block
i ∈ R and (hR)(i) = 0 otherwise. We have

E [g (x+ hR)] ≤ g(x) +
1

r
〈∇g(x), h〉+

2

r
‖h‖2 .

Proof: We have

E [g (x+ hR)] = E
[
r ‖S(x+ hR)‖2

]
= E

[
r ‖Sx‖2 + r ‖ShR‖2 + 2r 〈Sx, ShR〉

]
= E

[
r ‖Sx‖2 + r ‖ShR‖2 + 2r

〈
STSx, hR

〉]
= E

g(x) +

∥∥∥∥∥
r∑
i=1

h
(i)
R

∥∥∥∥∥
2

+ 〈∇g(x), hR〉


= g(x) +

1

r2

∑
i 6=j

〈h(i), h(j)〉+
1

r

r∑
i=1

∥∥∥h(i)∥∥∥2 +

1

r
〈∇g(x), h〉

≤ g(x) +
2

r

r∑
i=1

∥∥∥h(i)∥∥∥2 +
1

r
〈∇g(x), h〉.

�

Lemma 7 together with Theorem 3 in (Fercoq & Richtárik,
2013) give us the following theorem.
Theorem 8 (Theorem 3 of (Fercoq & Richtárik, 2013)).
Consider iteration k of the APPROX algorithm (see Fig-
ure 2). Let yk = θ2kuk+1 + zk+1. Let y∗ =
arg miny∈E ‖y − z0‖ is the optimal solution that is clos-
est to z0. We have

E[g(yk)− g(y∗)] ≤ 4r2

(k − 1 + 2r)2
·

((
1− 1

r

)
(g(z0)− g(y∗)) + 2 ‖z0 − y∗‖2

)
.

Proof: It follows from Lemma 7 that the objective func-
tion g of (Prox-DSM) and the random blocks Rk used by
the APPROX algorithm satisfy Assumption 1 in (Fercoq
& Richtárik, 2013) with τ = 1 and νi = 4 for each
i ∈ {1, 2, . . . , r}. Thus we can apply Theorem 3 in (Fercoq
& Richtárik, 2013). �

Consider an epoch `. Let y`+1 be the solution constructed
by the APPROX algorithm after 4nr3/2+1 iterations, start-
ing with y`. Let y∗ = arg miny∈E ‖y − y`‖ be the opti-
mal solution that is closest to y`. Let ξ` denote the random
choices made during epoch `. By Theorem 8,

Eξ` [g(y`+1)− g(y∗)] ≤ 4r2

(4nr3/2 + 2r)2
·((

1− 1

r

)
(g(y`)− g(y∗)) + 2 ‖y` − y∗‖2

)
≤ 1

(2nr1/2 + 1)2

(
g(y`)− g(y∗) + 2 ‖y` − y∗‖2

)
.

We also have

g(y`) = g(y∗) + 〈∇g(y∗), y` − y∗〉+∫ 1

0

〈∇g(y∗ + t(y` − y∗))−∇g(y∗), y` − y∗〉dt

≥ g(y∗) +

∫ 1

0

〈∇g(y∗ + t(y` − y∗))−∇g(y∗), y` − y∗〉dt

= g(y∗) +

∫ 1

0

2tr ‖S(y` − y∗)‖2 dt

= g(y∗) + r ‖S(y` − y∗)‖2

≥ g(y∗) +
1

n2r
‖y` − y∗‖2 . (By Theorem 2)

In the second line, we have used the first-order optimality
condition for y∗ (Lemma 5). In the last line, we have used
Theorem 2.

Therefore

‖y` − y∗‖2 ≤ n2r(g(y`)− g(y∗)),

and hence

Eξ` [g(y`+1)− g(y∗)] ≤ 2n2r + 1

(2nr1/2 + 1)2
(g(y`)− g(y∗))

≤ 1

2
(g(y`)− g(y∗)).

Let ξ = (ξ0, . . . , ξ`) be the random choices made during
the epochs 0 to `. We have

Eξ[g(y`+1)− g(y∗)] ≤ 1

2`+1
(g(y0)− g(y∗)).

This completes the proof of Theorem 6 and the conver-
gence analysis for the ACDM algorithm.
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(a) Smooth gaps - Octopus
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(b) Smooth gaps - Penguin
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(c) Smooth gaps - Plane
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(d) Smooth gaps - Small plant
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(e) Discrete gaps - Octopus
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(f) Discrete gaps - Penguin
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(g) Discrete gaps - Plane
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(h) Discrete gaps - Small plant (i) Penguin

Figure 4. Comparison of the convergence of the three algorithms (UCDM, ACDM, AP) on four image segmentation instances.

(a) ACDM 1
νs = 8.74 · 106
νd = 1.12 · 105

(b) ACDM 20
νs = 7.65 · 106
νd = 8.86 · 104

(c) ACDM 100
νs = 1.78 · 106
νd = 1.65 · 104

(d) AP 1
νs = 8.04 · 106
νd = 1.06 · 105

(e) AP 20
νs = 7.65 · 106
νd = 1.05 · 105

(f) AP 100
νs = 6.72 · 106
νd = 8.31 · 104

Figure 5. Penguin segmentation results for the fastest (ACDM) and slowest (AP) algorithms, after 1, 20, and 100 projections. The νs
and νd values are the smooth and discrete duality gaps.
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4. Experiments
Algorithms. We empirically evaluate and compare the fol-
lowing algorithms: the RCDM described in Section 2, the
ACDM described in Section 3, and the alternating projec-
tions (AP) algorithm of (Nishihara et al., 2014a). The AP
algorithm solves the following best approximation problem
that is equivalent to (Prox-DSM):

min
a∈A,y∈Y

‖a− y‖2 (Best-Approx)

whereA =
{

(a(1), a(2), . . . , a(r)) ∈ Rnr :
∑r
i=1 a

(i) = 0
}

and Y =
⊗r

i=1B(Fi).

The AP algorithm starts with a point a0 ∈ A and it iter-
atively constructs a sequence {(ak, yk)}k≥0 by projecting
onto A and Y: yk = ΠY(ak), ak+1 = ΠA(yk).

ΠK(· ) is the projection operator onto K, that is, ΠK(x) =
arg minz∈K ‖x− z‖. Since A is a subspace, it is straight-
forward to project onto A. The projection onto Y can be
implemented using the oracles for the projections ΠB(Fi)

onto the base polytopes of the functions Fi.

For all three algorithms, the iteration cost is dominated
by the cost of projecting onto the base polytopes B(Fi).
Therefore the total number of such projections is a suit-
able measure for comparing the algorithms. In each itera-
tion, the RCDM algorithm performs a single projection for
a random block i and the ACDM algorithm performs a sin-
gle projection in expectation. The AP algorithm performs
r projections in each iteration, one for each block.

Image Segmentation Experiments. We evaluate the algo-
rithms on graph cut problems that arise in image segmen-
tation or MAP inference tasks in Markov Random Fields.
Our experimental setup is similar to that of (Jegelka et al.,
2013). We set up the image segmentation problems on a
8-neighbor grid graph with unary potentials derived from
Gaussian Mixture Models of color features (Rother et al.,
2004). The weight of a graph edge (i, j) between pixels i
and j is a function of exp(−‖vi − vj‖2), where vi is the
RGB color vector of pixel i. The optimization problem that
we solve for each segmentation task is a cut problem on the
grid graph.

Remarks on the ACDM algorithm: We emphasize that, in
our experiments, the number of iterations is smaller than
the size of an epoch of the ACDM algorithm, and thus
there are no restarts. We have run experiments where we
restarted the ACDM algorithm after a much smaller num-
ber of iterations, and we have found that this approach leads
to a slower convergence rate.

Our implementation of the ACDM algorithm uses random
permutations of the blocks instead of picking a block inde-
pendently and uniformly at random in each iteration.

Since the ACDM algorithm is randomized, we have run the
algorithm several times. We have found that the difference
in the duality gaps between different runs is very small and
we have chosen to report the results of a single run instead
of the averages.

Function decomposition: We partition the edges of the grid
into a small number of matchings and we decompose the
function using the cut functions of these matchings. Note
that it is straightforward to project onto the base polytopes
of such functions using a sequence of projections onto line
segments.

Duality gaps: We evaluate the convergence behaviours
of the algorithms using the following measures. Let y
be a feasible solution to the dual of the proximal prob-
lem (Proximal). The solution x = −

∑r
i=1 y

(i) is a fea-
sible solution for the proximal problem. We define the
smooth duality gap to be the difference between the ob-
jective values of the primal solution x and the dual solution
y: νs =

(
f(x) + 1

2 ‖x‖
2
)
−
(
− r2 ‖Sy‖

2
)

. We use the
pool adjacent violators algorithm to search for an improve-
ment to the smooth duality gap; we use the same approach
as the one described in (Jegelka et al., 2013). Additionally,
we compute a discrete duality gap for the discrete problem
(DSM) and the dual of its Lovász relaxation; the latter is the
problem maxz∈B(F )(z)−(V ), where (z)− = min {z, 0}
applied elementwise (Jegelka et al., 2013). The best level
set Sx of the proximal solution x = −

∑r
i=1 y

(i) is a so-
lution to the discrete problem (DSM). The solution z =
−x =

∑r
i=1 y

(i) is a feasible solution for the dual of the
Lovász relaxation. We define the discrete duality gap to be
the difference between the objective values of these solu-
tions: νd(x) = F (Sx)− (−x)−(V ).

We evaluated the algorithms on four image segmentation
instances2 (Jegelka & Bilmes, 2011; Rother et al., 2004).
Figure 4 shows the smooth and discrete duality gaps on the
four instances. Figure 5 shows some segmentation results
for one of the instances.

Acknowledgements. We thank Stefanie Jegelka for pro-
viding us with some of the data used in our experiments.

2The data is available at http://melodi.ee.
washington.edu/˜jegelka/cc/index.html and
http://research.microsoft.com/en-us/um/
cambridge/projects/visionimagevideoediting/
segmentation/grabcut.htm
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A. Proof of Lemma 1
By the definition of the Lovász extension, for each i ∈ [r],
we have

fi(x) = max
y(i)∈B(Fi)

〈y(i), x〉.

Therefore

min
x∈Rn

r∑
i=1

(
fi(x) +

1

2r
‖x‖2

)

= min
x∈Rn

r∑
i=1

(
max

y(i)∈B(Fi)
〈y(i), x〉+

1

2r
‖x‖2

)

= min
x∈Rn

max
y(1)∈B(F1),...,y(r)∈B(Fr)

r∑
i=1

(
〈y(i), x〉+

1

2r
‖x‖2

)

= max
y(1)∈B(F1),...,y(r)∈B(Fr)

min
x∈Rn

r∑
i=1

(
〈y(i), x〉+

1

2r
‖x‖2

)

= max
y(1)∈B(F1),...,y(r)∈B(Fr)

−1

2

∥∥∥∥∥
r∑
i=1

y(i)

∥∥∥∥∥
2

.

On the third line, we have used the fact that the function
〈y, x〉 + (1/2r) ‖x‖2 is convex in x and linear in y, which
allows us to exchange the min and the max (see for exam-
ple Corollary 37.3.2 in Rockafellar (Rockafellar, 1970)).
On the fourth line, we have used the fact that the minimum
is achieved at x = −

∑r
i=1 y

(i).

B. Proofs omitted from Section 2
If x ∈ Rnr and X is a subspace of Rnr, we let ΠX (x)
denote the projection of x on X , that is, ΠX (x) =
arg minz∈Rnr ‖x− z‖. We let X⊥ denote the orthogonal
complement of the subspace X .

Proposition 9. For any point x ∈ Rnr, ΠQ⊥(x) = STSx
and thus ΠQ(x) = x− STSx.

Proof: SinceQ is the null space of S,Q⊥ is the row space
of S. Since the rows of S are orthonormal, they form a
basis for Q⊥. Therefore, if we let v1, . . . , vn denote the
rows of S, we have

ΠQ⊥(x) =

n∑
i=1

〈x, vi〉vi = STSx.

�

Proposition 10. The set of all optimal solutions to (Prox-
DSM) is equal to E.

Proof: We have

d(P,Q) = min
y∈P
‖y −ΠQ(y)‖

= min
y∈P

∥∥STSy∥∥ 〈〈By Proposition 9〉〉

= min
y∈P
‖Sy‖ .

Since (Prox-DSM) is the problem miny∈P r ‖Sy‖2, E is
the set of all optimal solutions to (Prox-DSM). �

Proposition 11. Let y ∈ Rnr and let p ∈ E. We have
d(y,Q′) = ‖S(y − p)‖.

Proof: Since Q′ = Q− v, we have

d(y,Q′) = d(y + v,Q)

= ‖ΠQ⊥(y + v)‖
=
∥∥STS(y + v)

∥∥ 〈〈By Proposition 9〉〉
=
∥∥STS(y − STSp)

∥∥ 〈〈Since v = −STSp〉〉
=
∥∥STS(y − p)

∥∥ 〈〈Since SST = In〉〉
= ‖S(y − p)‖ .

�

Proof of Equation (3): We have

g(yk+1)

=g(yk) +

∫ 1

0

〈yk+1 − yk,∇g(yk + t(yk+1 − yk))〉dt

=g(yk) + 〈∇g(yk), yk+1 − yk〉+

∫ 1

0

〈
yk+1 − yk,

∇g(yk + t(yk+1 − yk))−∇g(yk)
〉
dt

=g(yk) +
〈
∇ikg(yk), y

(ik)
k+1 − y

(ik)
k

〉
+

∫ 1

0

〈
y
(ik)
k+1 − y

(ik)
k ,

∇ikg(yk + t(yk+1 − yk))−∇ikg(yk)
〉
dt

≤g(yk) +
〈
∇ikg(yk), y

(ik)
k+1 − y

(ik)
k

〉
+

∫ 1

0

∥∥∥y(ik)k+1 − y
(ik)
k

∥∥∥
‖∇ikg(yk + t(yk+1 − yk))−∇ikg(yk)‖ dt

≤g(yk) +
〈
∇ikg(yk), y

(ik)
k+1 − y

(ik)
k

〉
+∫ 1

0

Lik

∥∥∥y(ik)k+1 − y
(ik)
k

∥∥∥2 tdt
=g(yk) +

〈
∇ikg(yk), y

(ik)
k+1 − y

(ik)
k

〉
+
Lik
2

∥∥∥y(ik)k+1 − y
(ik)
k

∥∥∥2 .
On the third line, we have used the fact that yk and yk+1

agree on all coordinate blocks except the ik-th block. On
the fourth line, we have used the Cauchy-Schwartz inequal-
ity. On the fifth line, we have used the fact that ∇ikg(·) is
Lik -Lipschitz. �

Proof of Equation (4): We have

‖yk+1 − y∗‖2

= ‖yk − y∗‖2 + ‖yk+1 − yk‖2 + 2〈yk − y∗, yk+1 − yk〉

= ‖yk − y∗‖2 − ‖yk+1 − yk‖2 + 2 〈yk+1 − y∗, yk+1 − yk〉10



= ‖yk − y∗‖2 −
∥∥∥y(ik)k+1 − y

(ik)
k

∥∥∥2 +

2
〈
y
(ik)
k+1 − (y∗)(ik), y

(ik)
k+1 − y

(ik)
k

〉
(2)

≤ ‖yk − y∗‖2 −
∥∥∥y(ik)k+1 − y

(ik)
k

∥∥∥2 +

2

Lik

〈
∇ikg(yk), (y∗)(ik) − y(ik)k+1

〉
= ‖yk − y∗‖2 +

2

Lik

〈
∇ikg(yk), (y∗)(ik) − y(ik)k

〉
− 2

Lik

(
Lik
2

∥∥∥y(ik)k+1 − y
(ik)
k

∥∥∥2 +
〈
∇ikg(yk), y

(ik)
k+1 − y

(ik)
k

〉)
(3)

≤ ‖yk − y∗‖2 +
2

Lik

〈
∇ikg(yk), (y∗)(ik) − y(ik)k

〉
−

2

Lik
(g(yk+1)− g(yk)) . (10)

On the third line, we have used the fact that yk and yk+1

agree on all coordinate blocks except the ik-th block. On
the fourth line, we have used the inequality (2) with z =
(y∗)(ik). On the last line, we have used inequality (3). �
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