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Abstract— Given a set of n points in `1, how many dimensions
are needed to represent all pairwise distances within a specific
distortion? This dimension-distortion tradeoff question is well un-
derstood for the `2 norm, where O((logn)/ε2) dimensions suffice
to achieve 1 + ε distortion. In sharp contrast, there is a significant
gap between upper and lower bounds for dimension reduction in
`1. A recent result shows that distortion 1 + ε can be achieved
with n/ε2 dimensions. On the other hand, the only lower bounds
known are that distortion δ requires nΩ(1/δ2) dimensions and that
distortion 1+ε requires n1/2−O(ε log(1/ε)) dimensions. In this work,
we show the first near linear lower bounds for dimension reduction
in `1. In particular, we show that 1 + ε distortion requires at least
n1−O(1/ log(1/ε)) dimensions.

Our proofs are combinatorial, but inspired by linear program-
ming. In fact, our techniques lead to a simple combinatorial
argument that is equivalent to the LP based proof of Brinkman-
Charikar for lower bounds on dimension reduction in `1.
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1. INTRODUCTION

In this paper, we study dimension reduction questions of
the following form: Given a set X of n points in Rd with
distances measured by the `p norm, the objective is to find
an embedding f : X → Rd′ with d′ � d that roughly
preserves pairwise distances. We say that the distortion of
the embedding is δ if there exists a constant c such that for
all x, y ∈ X:

c||x− y||p ≤ ||f(x)− f(y)||p ≤ c · δ||x− y||p

Dimension reduction has received a lot of attention in
recent years, due to its numerous applications in computer
science (see [8], [9], [11], [12], [7] and the references
therein). Furthermore, it is a topic of interest from a purely
mathematical point of view and has been well-studied in the
area of functional analysis.

For the ‖ · ‖2 norm, the famous Johnson-Lindenstrauss
Lemma [10] states that for any ε > 0 one can linearly embed
an n point subset of `2 into d′ = O((log n)/ε2) dimensions
with distortion at most 1 + ε. This is essentially tight, as
shown by Alon [1]. Unfortunately, the situation for spaces
other than Euclidean is far from understood. In this work,
we focus on the `1 norm for which there are huge gaps
between currently known upper and lower bounds.

Ball [2] showed that in order to embed some n point
subset of `1 isometrically (with distortion 1),

(
n
2

)
dimensions

are necessary (and always suffice). A strong lower bound
for dimension reduction in `1 was shown by Brinkman and
Charikar [4], with a simpler geometric proof by Lee and
Naor [13]. They exhibit an n point subset of `1 requiring
dimension at least nΩ(1/D2) for distortion D. They also
showed that for distortion 1 + ε the dimension required is
at least n1/2−Õ(ε). There has been some progress on upper
bounds: Indyk [8] showed a weak form of dimension reduc-
tion in `1, which is already sufficient for certain applications
such as norm estimation in streaming, and approximate
nearest neighbor search (see, for example, Datar et al. [6]).
For dimension reduction with 1 + ε distortion, Schecht-
man [15], and Talagrand [16] showed that O((n log n)/ε2)
dimensions suffice. This was recently improved by Newman
and Rabinovich [14] to O(n/ε2) based on the sparsification
techniques of Batson, Spielman, and Srivastava [3].

In the 1 + ε distortion regime, the gap between the best
known lower and upper bounds is Ω(n1/2). We narrow this
gap substantially, and show that when the distortion is close
to 1, the required number of dimensions is near linear.

Theorem 1. For any ε > 0 and integer n > 0 there exists
an n point subset X of `1, such that any embedding of
X into `1 with distortion 1 + ε requires dimension at least
n1−O(1/ log(1/ε)).

1.1. Techniques

The lower bound of [4] and [13] was obtained by using the
so-called diamond graph, which is defined recursively: G0

is a single edge, and Gi is obtained from Gi−1 by replacing
every edge with a 4-cycle where two antipodal vertices of
the cycle are identified with the original end points of the
edge. [4] established the bound by exhibiting a dual solution
of a certain linear program that captures the constraints
imposed on pairwise distances by a line embedding. The
alternate, simpler proof of [13] first showed a lower bound
on embedding the diamond graph in `p for p close to 1,
and then used the relation between `p and `1 norms in order
to achieve the dimension lower bound for embedding into
`1. The metric based on the diamond graph in these lower



bounds is isometrically embeddable in
√
n dimensions –

hence it cannot establish a lower bound better than
√
n.

The basis for our near linear lower bound is a series-
parallel graph that generalizes the diamond graph: in the
recursive construction, edges are replaced by cycles of length
2/ε – we call this the recursive cycle graph. Similarly to [5],
[4], we use the notion of stretch (defined in the sequel) to
argue about the number of dimensions needed for a low
distortion `1 embedding. Informally, a stretch s embedding
is a distribution over line embeddings where no pairwise
distance is increased by a factor of more than s. We show
that a Poincaré inequality – a linear inequality (involving
distances for antipodal pairs of the cycles in the graph and
edges) — must hold for all embeddings of limited stretch but
cannot hold for any low distortion embedding. This implies
that any low distortion embedding must have high stretch,
and hence, high dimension.

While the use of stretch for proving dimension lower
bounds has been established in previous work, using this
proof technique involves the following two steps: (1) identi-
fying an appropriate Poincaré inequality, and (2) proving that
it holds for any line embedding with low stretch. Both steps
are challenging in general and this is our main technical
contribution. We made crucial use of linear programming in
executing these two steps.

We briefly elaborate on this methodology for proving
dimension lower bounds. In order to capture the limitations
of line embeddings with low stretch, we write (1) linear
constraints on pairwise distances (viewed as variables) using
the fact that they arise from a line embedding and (2)
constraints imposed by the stretch ≤ s condition. In general,
there is no principled way to write down the appropriate
constraints (1) for any line embedding. A key idea we use
in expressing these constraints is to incorporate information
about the line embedding by using a convenient renaming
of vertices which is a function of the line embedding. Next,
we write (3) a set of constraints on average distances on
certain groups of pairwise distances implied by the distortion
≤ δ condition, using the intuition about the particular metric
under consideration, that low stretch embeddings tend to
expand certain groups of distances, and contract other groups
of distances. For the lower bound example in this paper,
these groups are the set of edges and for every level, the
set of antipodal pairs at that level. The infeasibility of this
system of linear inequalities leads to a proof that no stretch
s embedding can have distortion ≤ δ. In fact the Poincaré
inequality that establishes this is obtained from a linear
combination of the constraints (3) where the multipliers are
the values of the dual variables for these constraints.

This is in fact how we derived the inequality we use to
establish our dimension lower bound. Although the proof we
present here makes no reference to linear programming, it is
in fact a combinatorial interpretation of the LP based proof
(and more insightful than an LP duality based proof, we

believe). Our proof uses a certain charging argument and
inspired by this, we give a simple combinatorial proof of
the original result of [4] that is equivalent to the original LP
based proof. The Poincaré-type inequality and the distances
involved are similar to the case of the recursive cycle graph
but with a slight twist: some of the distances are directed
distances i.e. they could take positive and negative values.

1.2. Organization

In Section 2 we recall the notion of stretch and its
connection to distortion and dimension. In Section 3.2 we
demonstrate our techniques in a relatively simple setting,
and prove Theorem 2, a lower bound for Cn, the cycle graph
on n vertices. Then in Section 3.3 we extend the methods
to the recursive cycle graph, and prove Theorem 1. Finally
in Section 4 we show the versatility of our technique, and
reprove [4] lower bound by a somewhat simpler argument.

2. PRELIMINARIES

Definition 1. An embedding of a metric (X, d) to `1 with
stretch s and distortion D is a distribution over mappings
f : X → R that satisfies the following conditions for all
x, y ∈ X ,

1) stretch constraint: |f(x)− f(y)| ≤ s · d(x, y) for all
f in the support of the distribution.

2) distortion constraint:
d(x, y)/D ≤ Ef [|f(x)− f(y)|] ≤ d(x, y)

The following claim relating stretch to dimension was
shown in [5]

Claim 1. If a metric space (X, d) has an embedding into `s1
with distortion α, then it also has embedding with distortion
α and stretch at most s.

In order to show the tradeoff between stretch and distor-
tion, we will prove certain Poincaré-type inequalities and
apply the following lemma, which essentially was proven in
[5]. A proof is provided below for completeness.

Lemma 2. Consider a metric (X, d). If there are positive
numbers αx,y, βx,y and γ such that for any line embedding
f : X → R of stretch at most s,∑
x,y∈X

βx,y|f(x)−f(y)|−
∑
x,y∈X

αx,y|f(x)−f(y)| ≤ γ (1)

then any embedding to `1 of stretch at most s has distortion
at least

∑
x,y βx,yd(x,y)∑

x,y αx,yd(x,y)+γ .

Proof: Consider an embedding, i.e. a distribution over
line embeddings f , with stretch s and distortion D. By
definition,∑
x,y∈X

αx,yEf [|f(x)− f(y)|] + γ ≤
∑
x,y∈X

αx,yd(x, y) + γ



and ∑
x,y∈X

βx,yEf [|f(x)− f(y)|] ≥
∑
x,y∈X

βx,yd(x, y)/D

Since inequality (1) holds for all line embeddings, we have∑
x,y∈X

βx,yEf [|f(x)−f(y)|] ≤
∑
x,y∈X

αx,yEf [|f(x)−f(y)|]+γ

Combining the above inequalities, we get
∑

x,y βx,yd(x,y)

D ≤∑
x,y αx,yd(x, y) + γ i.e. D ≥

∑
x,y βx,yd(x,y)∑

x,y αx,yd(x,y)+γ .
We note that, like in the setting of embeddability into `1

(without dimension restriction), if a metric X does not admit
an embedding of stretch s for a certain distortion, then there
exists a proof of non-embeddability of the above form (that
is, there exist α and β satisfying the condition of Lemma 2).

Notation 1. Let x◦y denote the concatenation of two strings
x and y.

3. THE LOWER BOUND

3.1. Proof Overview

Our lower bound is based on the shortest path metric
of a recursively constructed graph. The basic ingredient of
the construction is the cycle C2k and we first establish
a dimension-distortion tradeoff for this simple graph. The
intuition for the lower bound comes from the basic case of
the Borsuk-Ulam theorem: in any continuous embedding of
the cycle into R, an antipodal pair is mapped to the same
point. This intuition is made precise in a discrete setting
by the notion of flipped antipodals (see Definition 2). We
establish an inequality relating antipodal distances that “tend
to contract” to edge distances that “tend to expand” in a
line embedding. The proof then uses a charging argument,
based on the flipped antipodals and the triangle inequality,
to bound the lengths of the antipodals by the lengths of the
edges. Finally the stretch bound is used on some edges that
were charged “often”.
C2k has an isometric embedding with stretch k. Our proof

shows that any distortion 1+ε embedding of C2k must have
stretch at least Ω(1/ε). This lower bound on stretch is tight
up to constants, since C2k has a 1 + ε distortion embedding
with stretch O(1/ε).

Next we consider a certain product construction of the
cycle, that we call the recursive cycle graph Gt – this
has (2k)t edges and Θ((2k)t) vertices. For this product
construction, we show (roughly speaking) that the stretch
bound is raised to the power t. In particular, we show
that any 1 + 1/k distortion embedding of Gt must have
stretch (Ω(k))t by reasoning about the lengths of edges and
antipodal pairs. This gives our main result showing a near
linear lower bound for 1 + ε distortion embeddings of `1.
The lower bound we show for Gt is almost optimal in the
following sense: Gt has an embedding with stretch kt that
is isometric for all edges and antipodal pairs. Also, there is

a stretch (O(1/ε))t embedding of Gt that has distortion at
most 1 + ε for edges and antipodal pairs.

3.2. Simple Case

We begin by proving the following theorem for the
shortest path metric of the cycle C2k. In this process, we
will establish some machinery that will be useful for the
general case later.

Theorem 2. For any integer k and ε ≥ 1/k, any embedding
of C2k into `1 with distortion at most 1 + ε requires
dimension at least Ω(1/ε).

Assume w.l.o.g that k is even, and label the vertices of
C2k by a1, a2, . . . , ak, a−1, a−2, . . . , a−k, so that for every
1 ≤ i ≤ k, (ai, a−i) is an antipodal pair denoted by di. In
what follows we identify indices k+ i with −i and −(k+ i)
with i for any 1 ≤ i ≤ k. Fix some f : C2k → R, and
let L =

∑k
i=1 |f(ai) − f(a−i)| and E =

∑k
i=1 |f(ai) −

f(ai+1)|+ |f(a−i)− f(a−(i+1))|.

Lemma 3. Let f : C2k → R be a line embedding with
stretch at most s, then the following Poincaré-type inequality
holds

2L− k(1− 2ε)E ≤ s · (2εk)2 . (2)

Before proving this lemma, let us show that it implies
Theorem 2. Apply Lemma 2 with the appropriate coeffi-
cients αai,ai+1

= αa−i,a−(i+1)
= k(1− 2ε), βai,a−i

= 2 for
all 1 ≤ i ≤ k (set α and β to zero everywhere else) and
γ = s·(2εk)2, to conclude that any embedding F : C2k → `1
with stretch at most s must have distortion at least∑

x,y∈V (C2k) βx,yd(x, y)∑
x,y∈V (C2k) αx,yd(x, y) + γ

=
2k2

2k2(1− 2ε) + s · (2εk)2

=
1

1− 2ε+ 2sε2
,

where it was used that the total antipodal length in C2k is
k2 and the total edge length is 2k. Finally set s = 1/(2ε)
and obtain distortion at least 1

1−2ε+ε > 1 + ε. By Claim 1
this suggests that an embedding into fewer than s = 1/(2ε)
dimensions cannot have distortion bounded by 1 + ε, so it
concludes the proof of Theorem 2. We now turn to prove
the main lemma.

Proof of Lemma 3:
The notion of flipped antipodal pairs is key to showing

that some antipodal distances tend to be short relative to
distances of edges in any line embedding.

Definition 2. Let f : C2k → R and fix 1 ≤ i ≤ k.
Two antipodal pairs di, di+1 are called flipped under f if
sign(f(ai) − f(a−i)) 6= sign(f(ai+1) − f(a−(i+1))) (or if
sign(f(ai)− f(a−i)) = 0).



Claim 4. In any map f : C2k → R there exist flipped
antipodal pairs di, di+1, which satisfy:

|f(ai)− f(ai+1)|+ |f(a−i)− f(a−(i+1))|
≥ |f(ai)− f(a−i)|+ |f(ai+1)− f(a−(i+1))| (3)

Proof: To see the existence of the flipped antipo-
dal pairs, consider the values f(a1) − f(a−1), f(a2) −
f(a−2), . . . , f(ak)−f(a−k), f(a−1)−f(a1). Since the first
is the opposite of the last, the sign must change at some
point, and there will be the flipped pair.

To prove (3), assume w.l.o.g that f(ai) ≥ f(a−i) and
f(ai+1) ≤ f(a−(i+1)). Then

(f(ai)− f(a−i)) + (f(a−(i+1))− f(ai+1))

= (f(ai)− f(ai+1)) + (f(a−(i+1))− f(a−i))

≤ |f(ai)− f(ai+1)|+ |f(a−(i+1))− f(a−i)| .

Labeling Cycle Edges: Consider the two flipped an-
tipodal pairs di, di+1 guaranteed to exist by Claim 4. Let e0

be the length under f of the edge connecting ai to ai+1, i.e.
e0 = |f(ai) − f(ai+1)|, and e0′ = |f(a−i) − f(a−(i+1))|.
Similarly, let ej , e−j , ej′ and e−j′ be the length under
f of the four edges of distance j from e0, e0′ respec-
tively, for j = 1, . . . , k/2, see Figure 1 (note that the
last two edges have multiple names under this labeling,
but will not be considered in our proof). Furthermore, let
Ej = ej + e−j + ej′ + e−j′ (for ease of notation we
define e−0 = e−0′ = 0). We also abuse notation and write
dj = |f(aj)− f(a−j)|.

By (3) we have that

di + di+1 ≤ e0 + e0′ = E0 .

Consider now the two adjacent antipodals di−1 and di+2.
By the triangle inequality

di−1+di+2 ≤ (e−1+di+e1′)+(e1+di+1+e−1′) ≤ E0+E1 .

In a similar manner for any integer 0 ≤ j < k/2 we bound

di−j + di+1+j ≤ di + di+1 +

j∑
h=1

(ej + ej′ + e−j + e−j′)

≤ E0 + E1 + · · ·+ Ej .

So we have the following antipodal charging inequality (see
Figure 2):

2L ≤ 2

k/2−1∑
j=0

(E0 + · · ·+ Ej) =

k/2−1∑
j=0

(k − 2j)Ej . (4)

For simplicity assume that ε = q/k for some integer q ≥ 1,
then

2L− k(1− 2ε)E ≤
k/2−1∑
j=0

(k − 2j)Ej −
k/2−1∑
j=0

(k − 2q)Ej

≤ 2

q−1∑
j=0

(q − j)Ej .

Since f has stretch at most s, E0 ≤ 2s and Ej ≤ 4s for
j ≥ 1. Hence,

2L− k(1− 2ε)E ≤ 4sq + 8s

q−1∑
j=1

(q − j)

= 4sq + 8s(q − 1)q/2

= s · (2εk)2 ,

which concludes the proof of the lemma.

3.3. Recursive Cycle Graph
In this section we extend our techniques to prove Theo-

rem 1. The bulk of the proof is showing that the recursive
cycle graph requires high dimension for small distortion,
then in Section 3.4 we exhibit a subset of n points in `1 that
has the same dimension-distortion tradeoff. Let k = 1/ε,
and w.l.o.g assume that k is an even integer. The graph
is defined recursively as follows: G0 is a single edge, and
for i > 0, Gi is obtained from Gi−1 by replacing every
edge (u, v) ∈ E(Gi−1) with a disjoint copy of C2k, where
some antipodal pair, say a1 and a−1, are associated with
u, v respectively, see Figure 3. The edge (u, v) is called the
parent edge for the cycle it induces. We call Gt the level
t graph, note that the number of edges in Gt is (2k)t, the
number of vertices is n = Θ((2k)t) and the diameter is
kt ≈ n1−1/ log k.

Fix some f : Gt → R. In what follows we define a label-
ing scheme for the edges and antipodals of Gt (note that this
labeling depends on f ), for ease of presentation, the label of
a pair will also indicate its length under f . For 1 ≤ i ≤ t,
let Ci be the collection of level i cycles (note that |Ci| =
(2k)i−1). Let A = {−k/2, . . . , k/2, (−k/2)′, . . . , (k/2)′}
be a set of indices. The single edge of G0 is labeled e∅, and
the rest of the edges and antipodals are labeled recursively.
For level i > 0, fix some C ∈ Ci whose parent is an
edge labeled ex for x ∈ Ai−1. Recall that by Claim 4 C
will have a pair of flipped antipodals under f . An edge in
C is labeled by ex◦z where z ∈ A chosen by the same
labeling for the single cycle case, which is determined by the
flipped antipodals, and is depicted in Figure 1. The flipped
antipodals will be named dx◦0, dx◦0′ , and the two antipodals
of distance j from the flipped ones will be named dx◦j , dx◦j′
(for notational convenience we let dx◦−j = dx◦−j′ = 0
and ignore the multiple labeled edges, as these are never
charged).



Figure 1. Notation for cycle edges, d and d′ are the flipped antipodals

Figure 2. Antipodal charging scheme: in two left images the antipodals are charged to the depicted edges, right image shows the total edge charge (the
dashed lines are the flipped antipodals)

Let Li =
∑
x∈Ai dx be the total antipodal length in level

i, and E =
∑
x∈At ex the total (level t) edge length.

Lemma 5. Let f : Gt → R be a line embedding with stretch
at most s, then the following Poincaré-type inequality holds

t∑
i=1

2t+1−iLi − (tk − 2t)E ≤ s · t(32)t . (5)

Once again, before attempting to prove this lemma, we
show that it implies Theorem 1. Apply Lemma 2 with the
appropriate coefficients: for x ∈ At let αex = tk − 2t, and
for all 1 ≤ i ≤ t and x ∈ Ai let βdx = 2t+1−i (set α and β
to zero everywhere else) and γ = s · t(32)t. Note that there
are (2k)i−1 · k antipodals in level i, each of length kt+1−i,
so the total antipodal length in level i is 2i−1kt+1, and the
total edge length is (2k)t. Now, any embedding F : Gt → `1
with stretch at most s must have distortion at least∑

x,y∈V (Gt)
βx,yd(x, y)∑

x,y∈V (Gt)
αx,yd(x, y) + γ

=

∑t
i=1 2t+1−i · 2i−1kt+1

(tk − 2t)(2k)t + s · t(32)t

=
t2tkt+1

t2tkt+1 − 2t(2k)t + s · t(32)t

Finally set s = (k/16)t and obtain distortion at least

t2tkt+1

t2tkt+1 − 2t(2k)t + t(2k)t
=

1

1− 1/k
> 1 + 1/k .

By Claim 1 this suggests that an embedding into fewer than
(Ω(k))t = n1−O(1/ log k) dimensions cannot have distortion
bounded by 1 + 1/k (recall that ε = 1/k). It remains to
prove the main lemma.

Proof of Lemma 5:
As the inequality (5) suggests, we will charge antipodal

lengths from all levels to the level t edges. The following
claim will be useful.

Claim 6. Let ex be the length of a level i edge in Gt for
some 1 ≤ i ≤ t and x ∈ Ai. Let E(ex) =

∑
y∈At−i ex◦y

(this is the total length of the level t edges whose ancestor
is ex), then

ex ≤
E(ex)

2t−i
.

Proof: By inverse induction on i. When i = t this
is immediate as E(ex) = ex. Assume it holds for i + 1,
and note that the triangle inequality suggests that ex ≤
1
2

∑
z∈A ex◦z (in words, the length of an antipodal is at

most half of the sum of all edges in a cycle). Now ap-
ply the induction hypothesis on each ex◦z , and note that
E(ex) =

∑
z∈AE(ex◦z) to obtain

ex ≤
1

2

∑
z∈A

ex◦z ≤
1

2

∑
z∈A

E(ex◦z)

2t−(i+1)
=
E(ex)

2t−i
.



Figure 3. Recursive cycle graph, the first three levels

Fix some i > 0. By the antipodal charging inequality (4),
for any x ∈ Ai−1

2t+1−i
∑
z∈A

dx◦z

≤ 2t−i
k/2−1∑
j=0

(k − 2j)(ex◦j + ex◦j′ + ex◦−j + ex◦−j′)

≤
∑

y∈At−i

k/2−1∑
j=0

(k − 2j)(ex◦j◦y + ex◦j′◦y + ex◦−j◦y + ex◦−j′◦y) ,

where the second inequality is by Claim 6 (for notational
convenience we let ex◦−0◦y = ex◦−0′◦y = 0 for any x, y).
Now,

2t+1−iLi = 2t+1−i
∑

x∈Ai−1

∑
z∈A

dx◦z (6)

≤
∑

x∈Ai−1

∑
y∈At−i

k/2−1∑
j=0

(k − 2j)(ex◦j◦y + ex◦j′◦y + ex◦−j◦y + ex◦−j′◦y) .

Next we attempt to bound
∑t
i=1 2t+1−iLi. Consider x ∈

At and an edge labeled ex. The number of times that this
edge length was charged by Li in (6) depends only on the
symbol xi. For z ∈ A let |z| be the value of z, which is
simply the number (without the minus or prime signs), and
for a vector x ∈ At, |x| =

∑t
i=1 |xi|. Now (6) suggests

that if |xi| = j this adds k − 2j to the charge of ex. We
conclude that the total number of times ex appears is exactly∑t
i=1(k − 2|xi|) = tk − 2|x|, in other words,

t∑
i=1

2t+1−iLi ≤
∑
x∈At

(tk − 2|x|)ex = tkE − 2
∑
x∈At

|x|ex .

Plugging this into (5) it remains to show that

2
∑
x∈At

(t− |x|)ex ≤ s · t(32)t . (7)

Notice that 0 ≤ |x| ≤ tk/2, so the only edges that have a
positive sign on the LHS of the inequality are those edges
for which |x| < t, and these are the edge on which we
will apply the stretch assumption, that for any edge ex ≤ s.
Write

2
∑
x∈At

(t− |x|)ex ≤ 2

t−1∑
j=0

∑
x∈At:|x|=j

(t− j)ex

≤ 2ts

t−1∑
j=0

∑
x∈At:|x|=j

1 ,

and now we are left with a counting task. For each 1 ≤ i ≤ t
fix some value vi ∈ {0, 1, . . . , k/2}, and notice that there
are at most 4t vectors x ∈ At for which |xi| = vi for all
1 ≤ i ≤ t. The number of choices for the vi that sum exactly
to j, is at most the number of ways of writing j as the sum of
t non-negative integers, which is bounded by 2j+t (because
there are only t possible terms). It follows that

t−1∑
j=0

∑
x∈At:|x|=j

1 ≤ t(4t)2 = t16t ,

and finally that

2
∑
x∈At

(t− |x|)ex ≤ 2ts · t16t ≤ s · t(32)t ,

where we used that 2t ≤ 2t. This concludes the proof of
(7), and thus the proof of the lemma.

3.4. Canonical `1 Embedding of Recursive Cycle Graph

Unfortunately, the metric induced by the recursive cycle
graph is not necessarily an `1 metric. Since we are interested



in the low distortion regime, a bi-Lipschitz map of Gt into
`1 will not suffice, so we would like to argue that there exists
an `1 metric with the same ”edges” and ”antipodals” as the
recursive cycle graph. This will suffice to prove the lower
bound, because these are the only distances that appeared in
the Poincaré-type inequality.

Definition 3. For an integer t ≥ 1, an embedding gt : Gt →
`1 is called canonical if it satisfies the following:
• gt is an isometry on edges and antipodals.
• For any edge (u, v) ∈ E(Gt), there exists a single

coordinate i such that |(gt(u)− gt(v))i| = 1.

Claim 7. For any integer t ≥ 1 there is a canonical
embedding of Gt to `1.

Proof: By induction on t, the base case for t = 0
is trivial. Assume we have a canonical embedding gt−1 :
Gt−1 → `1, and define gt as follows: for every x ∈ V (Gt−1)
let gt(x) =

⊕k
j=1 gt−1(x). It remains to extend gt to

the new points. Let C = C2k be some level t cycle,
and note that the antipodal pair a1, a−1 is already fixed
by gt−1. Since (a1, a−1) ∈ E(Gt−1) and by the induc-
tion hypothesis, there is a single dimension i in which
|(gt−1(a1) − gt−1(a−1)i| = 1, so there are k dimensions
I in which |(gt(a1) − gt(a−1))i| = 1 for i ∈ I . Denote by
e1, . . . , ek the standard basis unit vectors spanning I , and
define for each 1 ≤ j ≤ k − 1, g(aj+1) = g(aj) + ej and
g(a−(j+1)) = g(a−j)− ej .

Note that by the construction of the recursive cycle graph,
for any pair x, y ∈ V (Gt−1), dGt

(x, y) = k · dGt−1
(x, y),

so the edges and antipodals that were preserved by gt−1 are
also preserved by gt. Furthermore, it can be checked that gt
is isometry on every level t cycle, and that edges are mapped
to one dimension.

4. A COMBINATORIAL VIEW OF THE
BRINKMAN-CHARIKAR PROOF

In this section we give an alternate view of the Linear
Programming proof by Brinkman-Charikar [4] for dimension
reduction in `1 in the large distortion regime using the
diamond graphs.

The diamond graphs are constructed as follows. G0 con-
sists of a single edge of length 1. One end point of the edge is
designated as the head and the other end point is designated
as the tail. Gi is constructed from Gi−1 as follows. For each
edge (s, t) in Gi−1, where s is the head and t is the tail, we
replace it with a diamond s, u, t, v with edge length 2−i. s
is designated as the head of the edges (s, u) and (s, v). t is
designated as the tail of the edges (u, t) and (v, t). The other
end points are designated as heads and tails accordingly. The
edge (s, t) is called an edge of level i−1 and (v, u) is called
a diagonal of level i.

Now we define some notations with respect to a line
embedding f : Gt → R. Label the original edge in G0 the

empty string. Consider the diamond in Gi corresponding to
the edge (s, t) in Gi−1 with label x ∈ {0, 1}i−1. Of the two
new vertices introduced by the replacement of (s, t) with
a diamond, let u be the vertex with smaller f value and
v be the vertex with larger f value i.e. f(u) ≤ f(v). The
difference f(s) − f(t) is called the directed length of the
edge (s, t) with head s and tail t. The absolute value of the
directed length of (s, t) is the length of (s, t). The absolute
difference |f(u)− f(v)| is called the diagonal length of the
diamond s, u, t, v. Label the edges from s to u and from v
to t with x ◦ 0 and label the edges from s to v and from
u to t with x ◦ 1, as shown in Figure 4. Note that for any
x ∈ {0, 1}i, there are 2i edges in level i with label x. Let
Ei be the sum of the directed lengths of level i edges, Di

be the sum of the lengths of level i diagonals, Ei,x be the
sum of the directed lengths of level i edges whose labels
end with x, and Fi be the sum of the lengths of the level i
edges. Below are some properties relating Ei, Di, and Ei,x.

Property 1. Ei +Di+1 = Ei+1,0

Proof: Consider an arbitrary diamond in Gi+1 corre-
sponding to an edge (s, t) in Gi. Of the two new vertices
introduced by the replacement of (s, t) with a diamond,
let u be the vertex with smaller f value and v be the
vertex with larger f value i.e. f(u) ≤ f(v). We have
(f(s)−f(t))+(f(v)−f(u)) = (f(s)−f(u))+(f(v)−f(t)).
Summing over all diamonds of Gi+1, we get the property.

Property 2. Ei,x = 1
2 (Ei+1,x◦0 + Ei+1,x◦1). In particular,

Ei = 1
2 (Ei+1,0 + Ei+1,1) = 1

2Ei+1.

Property 3. For any binary string x of length less than i,
we have Ei,x = Ei,0◦x + Ei,1◦x

Theorem 3. Any embedding of Gt into `1 with distortion
at most d requires 2Ω(t/d2)/d2 dimensions.

Note that the number of vertices in Gt is n = Θ(4t) so
the theorem states that any embedding of Gt into `1 with
distortion at most d requires 1

d2n
Ω(1/d2) dimensions. Now

we get to the proof.
Proof: In order to establish the lower bound, we will

prove the following Poincaré-type inequality for any line em-
bedding f : Gt → R with stretch at most s ≤ 2Θ(t/d2)/d2,

d

t−1∑
i=0

2t−iDi+1 − (t− 2d)Ft ≤ (d+ 1) · 2t (8)

First, we show the inequality implies the theorem. Apply
Lemma 2 with βu,v = d · 2t−i for all diagonals (u, v) of
level i + 1, αs,t = (t − 2d) for all edges (s, t) of level t
(set β, α zero everywhere else), and γ = (d + 1)2t. Any
embedding with stretch at most 2Θ(t/d2)/d2 has distortion
at least



∑
x,y∈V (Gt)

βx,yd(x, y)∑
x,y∈V (Gt)

αx,yd(x, y) + γ

=
d
∑t−1
i=0 2t−i · 4i · 2−i

(t− 2d) · 4t · 2−t + (d+ 1) · 2t
=

dt · 2t

(t+ 1− d)2t
≥ d

By Claim 1, the theorem immediately follows.
Now we proceed to prove (8). By Property 1,

t−1∑
i=0

2t−iDi+1 =

t−1∑
i=0

2t−iEi+1,0 −
t−1∑
i=0

2t−iEi

By Property 2, Ei,x = 1
2t−i

∑
y∈{0,1}t−i Et,x◦y . Apply

this identity and Property 3 to the RHS and simplify, we get
a sum

∑
x∈{0,1}t cxEt,x where cx are coefficients depending

on x. The contribution to cx from
∑t−1
i=0 2t−iEi+1,0 is 2(t−

|x|1) and from −
∑t−1
i=0 2t−iEi is −t. Thus, cx = t− 2|x|1.

Let W =
∑
x∈{0,1}t mxEt,x where

mx =

 t− 2d if |x|1 ≤ t/2− t/(2d)
2d− t if |x|1 ≥ t/2 + t/(2d)
d(t− 2|x|1) otherwise

We have

d

t−1∑
i=0

2t−iDi+1 −W =
∑

x∈{0,1}t
Et,x(dcx −mx)

=
∑

x∈{0,1}t:| t2−|x|1|≥
t
2d

Et,x(d(t− 2|x|1)−mx)

For any x ∈ {0, 1}t and m ∈ R, by the definition of
stretch, mEt,x ≤ |m| · |Et,x| ≤ |m|s, so∑
x∈{0,1}t:| t2−|x|1|≥

t
2d

Et,x(d(t− 2|x|1)−mx)

≤ 2s
∑

x∈{0,1}t:|x|1≤ t
2−

t
2d

|d(t− 2|x|1)− (t− 2d)|

≤ 2s

t
2−

t
2d∑

i=0

(
t

i

)
|(d(t− 2i)− t+ 2d| ≤ sd2(1 + d)2t−Θ(t/d2)

The last inequality follows from a series of calculations
in [4]. Notice that |mx| ≤ t − 2d ∀x so W ≤ (t − 2d)Ft.
Thus, when the stretch is bounded by s ≤ 2Θ(t/d2)/d2, we
have

d

t−1∑
i=0

2t−iDi+1−(t−2d)Ft ≤ d
t−1∑
i=0

2t−iDi+1−W ≤ (d+1)2t
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Figure 4. Labels of edges of a diamond s, u, t, v with respect to a line
embedding f with f(u) ≤ f(v).
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