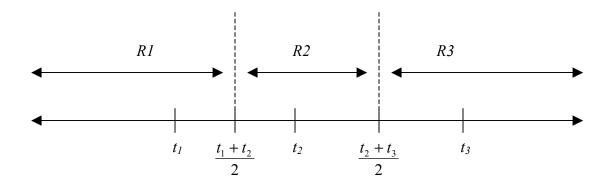
CSG142 – Digital Image Processing Lloyd-Max Quantization October 25, 2006 Corrected Nov 21, 2006

A quantization function is a function that maps a continuous range of input values to a single output value. For example, one useful quantization function is to simply round the input value to its closest integer:

$$Q(x) = \text{round}(x)$$

The Lloyd-Max quantizer (LMQ) is a quantization function that performs minimum mean squared error quantization. Suppose we want to find the best way to quantize a set of (continuous-valued) data to n discrete levels. If the n levels are known (let's say they are values t_1 through t_n), then the decision boundaries are at the midpoint between the values.

This concept is illustrated in the following diagram, where the real numbers are quantized into three values, t_1 , t_2 , and t_3 . The values in region RI are quantized to t_1 , the values in region R2 are quantized to t_2 , and the values in R3 are quantized to t_3 . The decision boundary between R1 and R2 is half way between t_1 and t_2 , and the decision boundary between R2 and R3 is half way between t_2 and t_3 .



It is easy to show that if levels t_I through t_n are known, the best decision boundaries are at the midpoint between levels. However, how can we find these values t_I through t_n in the first place? There are many ways to do this, but here I will describe an iterative method.

Iterative Lloyd-Max Quantizer

Let us define some terms:

- t_i Quantization value *i*. The quantization values should be ordered, such that $t_1 < t_2 < \cdots < t_n$.
- S_i The decision boundary between t_i and t_{i+1} .

Then, the algorithm is as follows

1) Estimate t_1 through t_n using any method. For example, if v_{\min} , v_{\max} are the minimum and maximum input values, they could be placed uniformly throughout the range, at locations:

$$t_i = v_{\min} + \frac{i - 0.5}{n} \left(v_{\max} - v_{\min} \right)$$

- 2) Loop:
 - a. Compute new values for s_1 through s_{n-1} that minimize mean squared error for current values of t_1 through t_n :

$$S_i = \frac{t_i + t_{i+1}}{2}$$

- b. Compute new values for t_l through t_n that minimize mean squared error for current values of s_l through s_{n-l} . Thus, t_i is the mean of all input values that fall between s_{i-l} and s_i .
 - It can happen that no values fall between s_{i-1} and s_i . In this case, you should choose a new location for t_i , while maintaining $t_1 < t_2 < \cdots < t_n$.
- c. Check for convergence. For example you may continue until the positions of the quantization levels have stopped changing, or if the average variance within each level has stopped changing.