
Using TOP-C and AMPIC to Port Large Parallel Applications

to the Computational Grid

Gene Cooperman∗ Henri Casanova†‡

Jim Hayes†‡ Thomas Witzel∗

∗ College of Computer Science, Northeastern University.

{gene,twitzel}@ccs.neu.edu
† Computer Science and Engineering Department, University of California, San Diego.

{casanova,jhayes}@cs.ucsd.edu
‡ San Diego Supercomputer Center, University of California, San Diego.

Abstract

Porting large applications to distributed computing
platforms is a challenging task from a software en-
gineering perspective. The Computational Grid has
gained tremendous popularity as it aggregates unprece-
dented amounts of compute and storage resources by
means of increasingly high performance network tech-
nology. The primary aim of this paper is to demon-
strate how the development time to port very large ap-
plications to this environment can be significantly re-
duced. TOP-C and AMPIC are software packages that
have each seen successful application in their respec-
tive domains of parallel computing and process cre-
ation/communication. We combine them to implement
and deploy a master-worker model of parallel comput-
ing over the Computational Grid. To demonstrate the
benefit of our approach, we ported the 1,000,000 line
Geant4 sequential code in three man-weeks by using
our TOP-C/AMPIC integration. This paper evaluates
the benefits of our approach from a software engineer-
ing perspective, and presents experimental results ob-
tained with the new implementation of Geant4 on a
Grid testbed.

1 Introduction

The problem of porting large parallel applications to
new distributed computing platforms poses many soft-
ware engineering challenges. The common approach

This work is supported by the National Science Foundation
under grants ACI-9872114 (*) and ASC-9619020 (†‡).

is to define generic programming models that can ac-
commodate ranges of applications. Each programming
model must be enabled on the target platform thanks
to the specification of an Application Programming
Interface (API) and the implementation of that API
with available software technology. An example is the
Message Passing Interface (MPI) [4], which provides
a generic message passing programming model for dis-
tributed memory platforms. MPI comes with an ex-
tensive API and has been implemented on many plat-
forms [5].

Even though the message-passing model is funda-
mental for many scientific applications, it is possible to
provide higher levels of abstraction in order to describe
the overall structure of classes of applications of dis-
tributed computing platforms. The advantage is that
higher abstractions are more directly usable by a sci-
entist as they hide underlying mechanisms on the com-
puting platforms (such as messages). A popular ab-
straction is the master-worker paradigm which is appli-
cable when a problem can be divided into a number of
smaller independent work units that a master process
distributes to many worker processes. Master-worker
computing has been successfully applied to many ap-
plication domains and has been the object of a number
of research endeavors (e.g. see [24] for a comprehensive
survey of applications and techniques).

The TOP-C project [12] provides a simple master-
worker model for applications implemented in Single
Program, Multiple Data (SPMD) fashion. Like MPI, it
provides an API that can be used to write applications.
Since the master-worker model is more abstract than a
pure message passing model, TOP-C’s API is simpler
and provides fewer but richer primitives [8, 9, 12]. The

1

power of the TOP-C abstractions was demonstrated
in [7, 11, 14, 15, 33].

Among today’s available distributed computing
platforms, the Computational Grid (or Grid) [19, 22]
has gained tremendous popularity. It aggregates large
amounts of compute and storage resources over the
wide area by means of increasingly high performance
network technology. Therefore, it promises to achieve
unprecedented levels of performance for many scien-
tific applications. In order to enable Grid computing,
it has been recognized that a number of basic mid-
dleware services must be provided for issues such as
authentication/security, information, resource access,
data management, etc. A precise set of such services
has been identified and corresponding software was de-
veloped as part of the Globus project [23]. Those ser-
vices are being generalized in the context of the Global
Grid Forum [3].

Given those technological advances, it is necessary
that adequate programming models be provided for de-
velopers to target applications to the Computational
Grid. In that context, the master-worker model pro-
vided by TOP-C is particularly relevant, since one of
its design goals is high latency tolerance. The TOP-C
model also provides a natural load balancing. In order
to enable TOP-C to make use of the emerging Grid
infrastructure, it is necessary to re-engineer its imple-
mentation so that it can use Grid services. Rather
than implementing TOP-C directly on top of Globus
services, we advocate the use of an intermediate soft-
ware layer: AMPIC.

AMPIC [1] provides a layer of abstraction on top of
fundamental Grid services to implement the concepts
of remote process creation and inter-process communi-
cation. In addition, AMPIC also provides those same
abstractions for traditional parallel computing technol-
ogy, such as MPI [4] or PVM [26], shared memory ar-
chitectures, as well as basic mechanisms such as Secure
Shell and sockets. Like TOP-C, AMPIC’s focus is on
simplicity and ease of use and has been successfully
used in several applications [2, 24, 31]. The goal of this
paper is to demonstrate that the integration of TOP-C
and AMPIC makes it possible to port master-worker
applications to the Grid in a way that: (i) requires
minimal software engineering effort; and (ii) exploits
existing Grid technology such as Globus services.

In order to demonstrate and validate our approach
we take as a case study the Geant4 particle physics
application [25]. Geant4 is a 1,000,000 line library pro-
duced by a team of over 100 developers from around
the world and coordinated by a core development team
at CERN. This test case is realistic since Geant4 was
originally conceived purely as a sequential application,

with no thought for parallelization.

This work is related to numerous works targeting
master-worker applications. Among recent such ef-
forts in the context of the Computational Grid are the
AMWAT project [2], and the MW project realized as
part of Condor [28, 29]. Those projects have address
scheduling and resource management issues that are di-
rectly applicable to the TOP-C framework and that we
will examine in the next phase of this work. In terms
of providing a framework for enabling master-worker
applications, this work makes the following contribu-
tions. TOP-C provides a richer abstraction that con-
tains notions of shared data, non-trivial parallelism,
high latency tolerance, and application robustness and
resilience [12]. This work demonstrate how the integra-
tion of TOP-C with AMPIC makes the TOP-C model
directly applicable to Grid computing on existing re-
sources running a variety of software services.

Even though the MW project [28, 29] was originally
Condor-centric, it also partially aims at supporting a
variety of underlying mechanisms (e.g. Globus). We
claim the we have achieved that goal thanks to the use
of AMPIC with only minimal software engineering ef-
forts. From that standpoint, aspects of this work would
be eminently applicable to the MW project. A related
issue is that our approach could use resources man-
aged by systems like Condor or Legion [27]. This would
only require that AMPIC support remote process cre-
ation mechanisms of those systems. Such AMPIC de-
velopments are not currently under way but would be
straightforward. Other avenues that could be explored
are the reimplementation of the TOP-C programming
model in Java, where it could take advantage of the
MANTA [32] support for wide-area computing and di-
rect support for objects.

This paper is organized as follows. In Sections 2
and 3 we present the TOP-C and AMPIC models and
software implementations. In Section 4 we describe
our software integration effort in the context of the
GEANT application. Section 5 contains preliminary
experimental results and Section 6 concludes the pa-
pers and highlights future directions.

2 The TOP-C model

TOP-C is free, open source software [13]. It is de-
signed with the goals of

• following a simple, easy-to-use, general program-
mer’s model,

• supporting easy parallelization of existing sequen-
tial code, and

2

• having high latency tolerance.

The TOP-C (Task Oriented Parallel C/C++) model
was developed almost ten years ago. It has been ported
to LISP [8], to C and C++ [9] and to GAP [10]. It
provides a uniform interface which can execute both in
a distributed and shared memory model [12]. Source
code for a TOP-C application can be compiled and
linked with the appropriate TOP-C library to run on
a shared memory machine using POSIX threads, or to
run on a cluster using either MPI or TCP/IP sockets.

TOP-C also provides a sequential version of the li-
brary. Typically, a TOP-C application is developed
first as a sequential application. The traditional se-
quential debugging tools (symbolic debugger, etc.) are
used to ensure that the application is running correctly.
Then the application is re-linked with one of the TOP-
C parallel libraries.

The TOP-C model is based on a master/worker
model with a Single Program, Multiple Data (SPMD)
implementation. Each process operates independently
until a call to TOPC master slave() which serves as
a point of synchronization. When all processes have
reached this routine, the thread of control is passed to
TOP-C, and TOP-C invokes application-defined call-
back routines as needed.

The TOP-C programming model is based on three
concepts: the task, the shared data, and the action
(See Figures 1, 2, and 3).

A TOP-C application depends on four application-
defined callback functions:

1. TOPC BUF GenerateTaskInput();

2. TOPC BUF DoTask(void *taskInput);

3. TOPC ACTION CheckTaskResult(void

*taskInput, void *taskOutput); and

4. void UpdateSharedData(void *taskInput,

void *taskOutput).

Pointers to these four callback functions are passed
as arguments to TOPC master slave(). When
TOPC master slave() executes, TOP-C receives the
thread of control. GenerateTaskInput() is then in-
voked from the master process. Its output is a buffer,
taskInput. DoTask() is invoked from a worker pro-
cess. Its output is a buffer, taskOutput. TOP-C does
not do any marshaling of the task input and output
buffers. Marshalling is left to be implemented in one
or more independent library, some of which may be
application-specific.

In general, non-trivial parallelism is implemented
through other possible actions, including UPDATE (in-
voke UpdateSharedData() on all processes) and REDO

Global Shared Data

Data
OutputInput

Data Task

Figure 1. TOP-C Concept #1: The task ab-
straction

CheckTaskResultDoTask
UpdateSharedData

Global Shared Data

GenerateTaskInput

Figure 2. TOP-C Concept #2: The shared data
abstraction

(invoke DoTask() again with the original taskInput
on the original worker process, but using the most re-
cent version of the shared data). Provision is made
for more efficient execution of REDO, since the worker
process can can store intermediate results from the pre-
vious DoTask() computation and re-use those results
in the second computation. For a more detailed de-
scription, see the TOP-C home page [13].

3 The AMPIC middleware

The AppLeS Multi-Protocol Interprocess Communi-
cation (AMPIC) [1] package addresses the two follow-
ing fundamental issues:

1. inter-process communication,

2. remote process management.

Many software projects have addressed those issues for
the deployment of distributed computing applications.
The goal of AMPIC is not to provide yet another set
of mechanisms, but rather to provide a common and
easy-to-use interface to existing mechanisms.

AMPIC was originally developed as part of the Ap-
pLeS Master-Worker Application Template (AMWAT)
project [2, 24] which is related to TOP-C in the follow-
ing way. Like TOP-C, AMWAT targets master-worker

3

CheckTaskResult

UpdateSharedData

UPDATE
 task output)
(task input,

CONTINUATION
 REDO,

GenerateTaskInput

DoTask

NO_ACTION

(task input)

Figure 3. TOP-C Concept #3: The action abstraction

applications. However, AMWAT’s focus in on schedul-
ing whereas TOP-C’s focus is on providing a flexible
and powerful programming model. In fact, the schedul-
ing techniques developed as part of AMWAT would be
eminently applicable as part of the TOP-C software
(see Section 6). Very early, AMWAT developers rec-
ognized that the communication and process manage-
ment component of the software could be abstracted as
a completely separate package, which became AMPIC.

AMPIC consists of 4,000 lines of C and is currently
freely available at [1]. AMPIC provides fundamen-
tal functions as part of its API to identify commu-
nication peers, transfer data, and start remote pro-
cesses: AMPIC MyId(), AMPIC Send(), AMPIC Recv(),
AMPIC Spawn(). AMPIC also contains several other
functions that provide finer levels of control. The
AMPIC API was defined by inspecting many avail-
able technologies in the parallel computing commu-
nity and converging towards a common denominator.
In its current version, AMPIC allows applications to
use the following underlying technology transparently:
MPI [4], PVM [26], Globus [23], sockets, Secure Shell,
and shared memory. In addition, AMPIC allows appli-
cations to use a mix of the above technologies simul-
taneously. AMPIC has been ported and tested on all
major flavors of UNIX. In addition, AMPIC has been
ported to the Windows operating systems, where it can
use shared memory, sockets, and Secure Shell.

Even though the initial goal for AMPIC was to be
an in-house software tool used only for AMWAT, it
quickly became apparent that the AMPIC model an-
swers the needs of other application developers. This
is demonstrated in the next section, where we describe
our software integration effort.

4 Software Integration

The software generated as part of this work was
developed using TOP-C version 2.4.0, Geant4 ver-
sion 4.3.2, AMPIC version 1.2, and Globus ver-
sion 1.1.3. The TOP-C and AMPIC packages are writ-
ten in C, while Geant4 consists of 1,000,000 lines of
C++ based on strict software engineering principles.

This work took three large software projects that
had been independently developed, and integrated
them into a single binary application capable of run-
ning both over the Globus toolkit and over a cluster
using TCP/IP sockets. Using the TOP-C –seq switch,
it can also run as a single process for ease of debugging
during development. The total effort to combine these
packages was approximately one man-month, of which
the majority of the time was spent in understanding
and parallelizing the Geant4 software design. In part,
this work demonstrates the ability to rapidly integrate
these disparate software packages. The natural soft-
ware architecture for this work consists of the layers
depicted in Figure 4.

Geant4 Application

Geant4

TOP-C

AMPIC

Globus Toolkit

Figure 4. Integration of Software Layers

4

4.1 Integration of Geant4 with TOP-C

Geant4 (GEometry ANd Tracking) [6, 25] is a sim-
ulation package for particle-matter interaction devel-
oped at CERN. Although initially developed to as-
sist in collider design, its use has spread to many ar-
eas of physics, engineering and biomedicine. Includ-
ing the associated toolkits, Geant4 contains approx-
imately 1,000,000 lines of C++ code. The Geant4
software was developed by RD44, a world-wide collab-
oration of about 100 scientists participating in more
than 10 collider experiments in Europe, Russia, Japan,
Canada and the United States. Many specialized work-
ing groups are responsible for the various domains of
the toolkit.

An early parallelization of Geant4 using TOP-C was
reported on in [7]. That work was carried out indepen-
dently of the Geant4 developers with the single goal
of simulating cosmic ray showers over Geant4. It is
notable as being the first successful parallelization of
Geant4 sufficient to execute large simulations. Ap-
proximately four man-weeks of software development
were required. After meetings and discussions with the
Geant4 team in July, 2001, a second, independent par-
allelization of Geant4 using TOP-C was executed. This
time, the goal was to leave the Geant4 kernel library
unmodified. The total development time was approxi-
mately three weeks.

The changes were created by writing a distinct li-
brary that was linked with the Geant4 library. This
involved writing approximately 200 new lines of code
for a new derived class to shadow existing virtual func-
tions in Geant4, and then writing approximately 250
lines of independent code needed for marshaling the
Geant4 data structures. The new derived class replaced
Geant4’s own work queue with a call to TOP-C rou-
tines to manage the work queue.

Once the combination of Geant4 and TOP-C
(ParGeant4) was working correctly in sequential mode,
it was re-linked with the TOP-C distributed memory
library over sockets. Initial experiments were carried
out on the CERN cluster of 50 Pentium III CPUs run-
ning at 550 MHz. The measured speedup was approx-
imately 10 times, and it ran in 29 seconds. There were
20,000 TOP-C tasks. Hence each task took approxi-
mately 72.5 ms (50 × 29/20, 000 ms). The measured
CPU load on the master process was only 18%. It is
an important confirmation of the TOP-C methodol-
ogy, which dictates that all CPU-intensive operations
should be executed on worker processes via the appli-
cation callback routine, DoTask().

The speedup could have been further improved by
running multiple worker processes on each processor,

in order to better overlap communication and compu-
tation. Another technique is to merge multiple mes-
sages for task input. However, these techniques were
not used in this initial experiment measuring the raw
communication overhead.

4.2 Integration of TOP-C with AMPIC

Approximately one man-week was devoted to inte-
gration of TOP-C with AMPIC. The primary coding
for this phase of the project was carried out by the
fourth author, an undergraduate student. The elapsed
time from the beginning to the end of this phase was
two weeks.

Initially TOP-C/AMPIC was tested using the
AMPIC sockets mode. Once TOP-C/AMPIC was cor-
rectly running simple TOP-C applications over sockets,
we then quickly ported ParGeant4 (Geant4/TOP-C) to
run using AMPIC over sockets. There were no prob-
lems experienced in this phase.

Note that integrating TOP-C with AMPIC provides
the following advantage from the software engineering
standpoint: AMPIC provides a cleanly separated com-
ponent, which is in charge of the logistics of remote
process management and inter-process communication.
Note that the AMPIC’s functionality is comparable
to that of Globus’ Nexus [21] and GRAM [17]. As
a matter of fact, AMPIC can use GRAM as a mech-
anism and could potentially support Nexus communi-
cation. The main argument in favor of AMPIC for
this work is its simplicity, which made the software
integration straightforward. An added benefit of in-
tegrating TOP-C with AMPIC is that TOP-C now
benefits from AMPIC developments “for free”. This
was key in achieving the use of Globus services and
therefore in getting TOP-C to work in Computational
Grid environments. TOP-C directly supports MPI [4],
sockets using Secure Shell, and has a shared memory
mode. AMPIC supports all of these mechanisms, and
PVM [26], and also simultaneous combinations of the
above mechanisms.

The combined software (Geant4/TOP-C/AMPIC)
was tested with Globus on a Grid testbed as described
in Section 5. This step required a half day of debug-
ging as misconceptions of the fourth author about the
proper invocation of AMPIC were quickly corrected by
the third author (maintainer of AMPIC).

Finally, in tests over our Grid testbed, the
Geant4/TOP-C/AMPIC application was tested for the
first time in a situation in which there was no shared file
system. An issue came up because the location of the
application executable was given by different absolute
path names on different administrative domains. TOP-

5

C and the Globus toolkit each have different mecha-
nisms for specifying the directory of a remote process.
For this experiment, we inserted code in the applica-
tion to directly change directories. A future version will
include some combination of the TOP-C and Globus
mechanisms.

5 Experimental Results

The main goal of this paper is to demonstrate
how the integration of TOP-C and AMPIC reduces
the software engineering effort required in paralleliz-
ing and porting master-slave applications to the Com-
putational Grid. This has been demonstrated in the
previous section. In order to further validate our ap-
proach we performed two sets of experiments on which
we report here.

5.1 Small Geant4 Runs

This set of experiments was designed to estimate
some of the overhead due to using Grid middleware.
We used a Grid testbed consisting of 8 hosts at the
University of California, San Diego, and 8 hosts at the
University of Tennessee, Knoxville. The testbed was
used in non-dedicated mode and we performed back-to-
back application runs in order to ensure some degree of
reproducibility. Each host in the testbed was a single
processor node running Linux and Globus version 1.1.3.
All results presented in this section are averages over
10 application runs.

Average Average Average
procs elapsed busy spawn

time (s) time (s) time (s)
2 272.8 267.8 5.0
4 143.7 133.2 10.5
7 87.6 66.6 21.0
16 95.5 33.9 61.6

Table 1. Execution time breakdowns for small
Geant4 runs on the Grid testbed.

We performed a set of runs of the Geant4 applica-
tion with 2, 4 and 8 hosts on the UCSD system, and
with 16 hosts using all UCSD and UTK resources. Ob-
tained results are shown in Table 1. Experiments were
run for a total of 16 Geant4 work units. In all those
experiments, the spawning of the TOP-C processes is
performed from a host on the UCSD system. That
node also participates in the computation (spawning

a TOP-C process on itself). For each number of pro-
cessors the table shows the average elapsed time for
the application, the actual “busy time”, as well as the
“spawn time”, that is the time to start all remote pro-
cesses on Grid resources. The elapsed time is the sum
of the busy time and the spawn time. Note that the
busy time includes the time spent in inter-process com-
munication. In these experiments, standard deviations
for all numbers in Table 1 were below 2 seconds.

The busy time decreases nearly linearly as the num-
ber of processors increases. This is due to the fact
that in this Geant4 run, communication was not a bot-
tleneck for the application. It is interesting that the
spawn time for these results is significant. It is be-
tween 2.5 and 3.0 seconds for hosts on the UCSD sys-
tem, and between 5.0 and 6.0 seconds for hosts on the
UTK system.

This spawning cost negates the benefit of using 16
hosts for this Geant4 run as it leads to a performance
decrease of 9% over using 8 hosts. Note that here that
behavior is solely due to the overhead incurred when
accessing and acquiring Grid resources (public-key au-
thentication with the Globus Security Infrastructure
(GSI) [20] and remote process creation with the Globus
Resource Allocation Manager (GRAM) [17]). The ap-
plication executable and required data files were pre-
staged onto the resources and thus caused no additional
network overhead. Note also that in these experiments
we do not access Grid information services (such as
the MDS [16]) but instead cache that information as it
rarely changes. Work performed as part of the GrADS
project [30, 18] has quantified the overhead and has
shown it to be significant with current implementations
of Grid information services. Local caching is indeed
the approach of choice. Our results further confirm
that Grid middleware overhead can be extremely sig-
nificant for relatively short-lived Grid application runs
such as short Geant4 runs.

5.2 Larger Geant4 Runs

Using the same testbed as in the previous section,
we executed larger Geant4 runs with between 4 and 16
hosts. We performed 2 sets of such runs on Feb. 22nd
2002, and 3 sets on Feb. 25th 2002, for a total 10 hours
of runtime. Each observed execution time is shown as
a single data point on Figure 5. The average execution
time for a given number of processors over the 5 sets
is shown, and solid lines show linear fits for the UCSD
runs (under 8 hosts) and the UCSD+UTK runs (over 9
hosts). The use of remote hosts at UTK leads to some
improvement, but is limited by the available Internet
bandwidth over the wide-area. Overall, running the

6

4 6 8 10 12 14 16
400

450

500

550

600

650

700

750

800

850

Number of Processors

E
xe

cu
tio

n
T

im
e

Experimental Point
Average
Linear Fit to Average

Figure 5. Execution times for larger Geant4
runs on the Grid testbed.

application on 16 hosts at UCSD and UTK leads to
a relative average improvement of 11% over running
the application only on 8 hosts at UCSD. Note that
we purposely used a Grid testbed with relatively poor
connectivity (we observed around 1.5 Mbps over the
wide-area during those experiments). This indicates
that Geant4 would efficiently run on a more tightly
connected Grid, e.g. on a campus.

The results in this section show that our work en-
ables realistic application runs over a wide-area testbed
using Globus. Most importantly, this is accomplished
completely transparently to the user thanks to the
TOP-C/AMPIC integration. Note that in this paper
we only addressed the software engineering aspect of
Grid application development and that we did not ad-
dress the issues of application performance tuning and
scheduling. We highlight such research directions in
the next section.

6 Conclusion and Future Work

The main focus of this paper was on the integration
of TOP-C, AMPIC, and Geant4, and how that integra-
tion provides an elegant and easy way to parallelize and
port classes of applications to the Computational Grid
using Globus resources. The TOP-C/AMPIC integra-
tion appears to hold the potential for rapidly porting
classes of large sequential applications to the Grid. In
our experiments we primarily used the Globus toolkit
for spawning remote processes, after which TCP/IP
sockets were employed for communication.

Note that this initial implementation did not use the

more advanced features of TOP-C, which support non-
trivial parallelism, high latency tolerance, checkpoint-
ing, natural load balancing, soft aborts, dynamic pro-
cess creation, and robustness as network connections
die. These features can be combined with scheduling
and resource management strategies in order to pro-
mote application performance. Our next focus for this
work will be on application performance tuning. We
will evaluate adaptive scheduling techniques developed
in previous work [2, 24, 28, 29], demonstrate how TOP-
C provides a good framework for implementing those
techniques, and perform extensive sets of experiments
with a number of applications on various Grid testbeds.

Acknowledgements

The authors wish to thank the Innovative Com-
puting Laboratory at the University of Tennessee,
Knoxville for providing computing resources for run-
ning experiments.

References

[1] Ampic webpage. http://grail.sdsc.edu/projects/
ampic/.

[2] AMWAT webpage. http://grail.sdsc.edu/

projects/amwat.
[3] Global Grid Forum. http://www.gridforum.org.
[4] MPI Forum webpage. http://www.mpi-forum.org.
[5] MPICH webpage. http://www.mpi-forum.org.
[6] J. Allison, J. Apostolakis, G. Cosmo, P. Nieminen,

M. Pia, and the Geant4 Collaboration. Geant4 Status
and Results. In Proc. of CHEP 2000, pages 81–84,
Padua, 2000.

[7] G. Alverson, L. Anchordoqui, G. Cooperman, V. Grin-
berg, T. McCauley, S. Reucroft, and J. Swain. Using
TOP-C for Commodity Parallel Computing in Cosmic
Ray Physics Simulations. Nuclear Physics B (Proc.
Suppl.), 97:193–195, 2001.

[8] G. Cooperman. STAR/MPI: Binding a Parallel Li-
brary to Interactive Symbolic Algebra Systems. In
Proc. of International Symposium on Symbolic and
Algebraic Computation (ISSAC ’95), volume 249 of
Lecture Notes in Control and Information Sciences,
pages 126–132. ACM Press, 1995. http://www.ccs.

neu.edu/home/gene/software.html#starmpi.
[9] G. Cooperman. TOP-C: A Task-Oriented Parallel C

interface. In 5th International Symposium on High
Performance Distributed Computing (HPDC-5), pages
141–150. IEEE Press, 1996.

[10] G. Cooperman. GAP/MPI: Facilitating Parallelism.
In Proc. of DIMACS Workshop on Groups and Com-
putation II, volume 28 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages
69–84. AMS, 1997.

7

[11] G. Cooperman. Practical Task-Oriented Parallelism
for Gaussian Elimination in Distributed Memory. Lin-
ear Algebra and its Applications, 275–276:107–120,
1998.

[12] G. Cooperman. TOP-C: Task-Oriented Parallel C for
distributed and shared memory. In Workshop on Wide
Area Networks and High Performance Computing, vol-
ume 249 of Lecture Notes in Control and Informa-
tion Sciences, pages 109–118. Springer Verlag, 1999.
http://www.ccs.neu.edu/home/gene/topc.html.

[13] G. Cooperman. TOP-C: Task Oriented Paral-
lel C/C++. http://www.ccs.neu.edu/home/gene/

topc.html, 2001. includes 40-page manual.

[14] G. Cooperman and V. Grinberg. Scalable Parallel
Coset Enumeration Using Bulk Definition. In Proc. of
International Symposium on Symbolic and Algebraic
Computation (ISSAC ’01), pages 77–84. ACM Press,
2001.

[15] G. Cooperman and M. Tselman. New Sequential and
Parallel Algorithms for Generating High Dimension
Hecke Algebras using the Condensation Technique. In
Proc. of International Symposium on Symbolic and
Algebraic Computation (ISSAC ’96), pages 155–160.
ACM Press, 1996.

[16] C. Czajkowski, S. Fitzgerald, I. Foster, and C. Kessel-
man. Grid Information Services for Distributed Re-
source Sharing. In Proceedings of the 10th IEEE Sym-
posium on High-Performance Distributed Computing,
2001. to appear.

[17] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,
S. Martin, W. Smith, and S. Tuecke. A Resource
Management Architecture for Metacomputing Sys-
tems. In Proceedings of IPPS/SPDP’98 Workshop
on Job Scheduling Strategies for Parallel Processing,
pages 62–82, 1998.

[18] H. Dail. A modular framework for adaptive scheduling
in grid application development environments. Mas-
ter’s thesis, University of California at San Diego,
March 2002. Available as UCSD Tech. Report CS2002-
0698.

[19] I. Foster and C. Kesselman. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann
Publishers, Inc., 1998.

[20] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke.
A Security Architecture for Computational Grids. In
Proceedings of the 5th ACM Conference on Computer
and Communications Security, pages 83–92, 1998.

[21] I. Foster, C. Kesselman, and S. Tuecke. The Nexus
Approach to Integrating Multithreading and Commu-
nication. Journal of Parallel and Distributed Comput-
ing, 37:70–82, 1996.

[22] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy
of the Grid: Enabling Scalable Virtual Organizations.
International Journal of High Performance Comput-
ing Applications, 2001. to appear.

[23] I. Foster and K. Kesselman. Globus: A Metacomput-
ing Infrastructure Toolkit. International Journal of
Supercomputer Applications, 11(2):115–128, 1997.

[24] G. Shao. Adaptive Scheduling of Master/Worker Ap-
plications on Distributed Computational Resources.
PhD thesis, University of California, San Diego, May
2001.

[25] Geant4 Team. Geant4. http://wwwinfo.cern.ch/

asd/geant4/geant4.html, 2001.
[26] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,

R. Manchek, and V. Sunderam. PVM : Parallel Vir-
tual Machine. A Users’ Guide and Tutorial for Net-
worked Parallel Computing. The MIT Press Cam-
bridge, Massachusetts, 1994.

[27] A. Grimshaw, A. Ferrari, F. Knabe, and
M. Humphrey. Wide-Area Computing: Resource
Sharing on a Large Scale. IEEE Computer, 32(5):29–
37, May 1999.

[28] E. Heymann, M. Senar, E. Luque, and M. Livny.
Adaptive Scheduling for Master-Worker Applications
on the Computational Grid. In Proceedings of the First
IEEE/ACM Internation Workhop on Grid Computing
(GRID 2000), Bangalore, India, December 2000.

[29] J. Linderoth, S. Kulkarni, J.-P. Goux, and M. Yoder.
An Enabling Framework for Master-Worker Applica-
tions on the Computational Grid. In Proceedings of
the Ninth IEEE Symposium on High Performance Dis-
tributed Computing (HPDC9), Pittsburgh, Pennsylva-
nia, pages 43–50, August 2000.

[30] A. Petitet, S. Blackford, J. Dongarra, B. Ellis,
G. Fagg, K. Roche, and S. Vadhiyar. Numerial
Libraries and the Grid: The GrADS Experiment
with ScaLAPACK. In Proceedings of SC’01, Denver,
November 2001.

[31] G. Shao and R. Berman, F.and Wolski. Master/Slave
Computing on the Grid. In 9th Heterogeneous Com-
puting Workshop, May 2000.

[32] R. van Nieuwpoort, J. Maassen, H. Bal, T. Kielmann,
and R. Veldema. Wide-area Parallel Programming
Using the Remote Method Invocation Model. Con-
currency Practice & Experience, 12(8):643–666, July
2000.

[33] M. Weller. Construction of Large Permutation Repre-
sentations for Matrix Groups II. Applicable Algebra in
Engineering, Communication and Computing, 11:463–
488, 2001.

8

