
Talk Notes: Substructural Logics
Programming Research Laboratory (PRL) Seminar

Northeastern University

Chris Martens∗

September 2023

1 Computing with Inference Rules

Consider the problem of deriving all reachable nodes in a directed graph from
a single starting point, e.g. in the following graph:

We can describe this problem as a deductive system. First, we represent the
graph as a collection of edge predicates:

edge(a, b), edge(a, c), edge(b, d),
edge(b, e), edge(c, e), edge(e, f)

Then we define inference rules that define a path relation as the reflexive,
transitive closure over edges.

∗With gratitude to Frank Pfenning for making his course notes, on which this note is
heavily based, publicly available.

1

http://www.cs.cmu.edu/\protect \unhbox \voidb@x \protect \penalty \@M \ {}fp/courses/15816-f16/

edge(X,Y)

path(X,Y)
path/edge

edge(X,Y) path(Y,Z)

path(X,Z)
path/trans

This notation means: if we know all of the facts that sit above the horizontal
line (the premises), then we are allowed to deduce the one beneath it (the
conclusion). The label sitting off to the side is simply a name we have chosen
for the rule.

By themselves, these inference rules have no “operational” definition, and
therefore do not constitute an algorithm for solving the problem. They are
simply a mathematical representation of what it means to be a path, stated in
the language of proof theory (inference rules) rather than in the language of set
theory (for example).

However, we can also imaging “running” these rules. Suppose we think of
our collection of edge predicates as an initial state—the state here is the set
of facts we know. We can transition states by applying any applicable rules
of inference. So for example, we’d first collect all the facts from applying the
path/edge rule to each of the edges:

path(a, b), path(a, c), path(b, d),
path(b, e), path(c, e), path(e, f)

From there, we can compute all two-step paths by applying the path/trans
rule (to our original edge facts along with these newly derived facts):

path(a, d), path(a, e), path(b, d), path(b, f), path(c, f)

(On the board, I will draw the explicit justifications for each new derivation.)
Note that, although we were able to derive path(a, e) in two different ways,

we only added it to our collection of facts once. Intuitively, this is because once
we learn something is true, we don’t gain any new information from learning it
again.

Finally, we can derive the three-step path

path(a, f)

Note that at each step, our “knowledge state” implicitly contains every pre-
vious fact we have collected along the way. These facts can allow us to derive
new ones, and we might use them to derive multiple new facts, or we might not
touch them again at all.

So how do we know we can “stop” after the above derivations?
If we consider every possible way that our inference rules might apply, they

would only generate knowledge that we already have. This condition is called
“saturation.”

Implementing this form of reasoning with inference rules is known as forward-
chaining proof search, and it is very close to what you find in the logic program-
ming Datalog, a close cousin of prolog.

2

2 Substructural Inference

Now let’s think about a couple of different kinds of inference. One thing that the
form structural inference we’ve been working with does not let us do is represent
state change. Once we know something, we know it forever. But truth is often
ephemeral! For example, if I have a dollar in my bank account today, there is
no guarantee that I will tomorrow.

The next kind of inference we’ll examine can be thought of as a kind of
resource exchange. We’ll now write our inference rules with multiple conclusions,
and they should be read as: “if we have all of the premises, we can spend them
to receive the conclusions.”

2.1 Linear Inference

Here is an example about harvesting and crafting with natural resources. Per-
haps we could call it “Craftmine”.

tree
wood wood wood wood

chopT wood
plank plank

chopW
plank

stick stick
chopP

stick plank plank

pickaxe
craftP

stone pickaxe

cobble pickaxe
mineS

A question we might ask about this system of rules is: if I start out with
one tree and three stones, can I produce three cobbles? See if you can use your
intuition to sketch a forward-chaining proof that you can, using these rules.

(Not written here: the failure version of the derivation that gets stuck be-
cause we spend all of our planks by eagerly decomposing things.)

The sequence of states to successfully do this might look like (where we use
an to represent the proposition a present n times):

tree stone3

chopT : wood4 stone3

chopW : plank2 wood3 stone3

chopW : plank4 wood2 stone3

chopP : plank3 stick2 wood2 stone3

craftP : pickaxe plank2 stick wood2 stone3

mineS : pickaxe cobble stick wood2 stone2

mineS : pickaxe cobble2 stick wood2 stone
mineS : pickaxe cobble3 stick wood2

Or alternatively we can draw this as a DAG, to avoid repeating elements of
the state that aren’t involved in a given rule:

tree stone

____________________________________ |

| \ \ \ |

3

wood wood wood wood |

________ ______ /

| \ | \ /

plank plank plank plank /

______ \ | /

| \ \ | /

stick stick \ | /

\ \ / /

_______ /

pickaxe /

| |

cobble pickaxe

For this kind of inference, states (contexts) aremultisets, and state transition
can delete elements as well as add them. But it doesn’t matter what order they
are in (other than to be able to draw a nicer proof DAG). Reasoning with this
form of inference leads to linear logic [1] (or more properly affine logic, which
drops contraction but not weakening—i.e. we don’t care if there are extra
premises lying around, but we do care that they are used at most once).

2.2 Ordered Inference

Finally, we visit a kind of inference where we actually treat proof states as
ordered lists, and we don’t in general allow them to commute around each
other. One example, in fact the original application of this logic, is parsing
natural-language expressions:

NounPhrase VerbPhrase
Sentence

sent/nv
if Sentence,Sentence

Sentence
sent/if

the cat
NounPhrase

np/cat sits
VerbPhrase

vp/sit fits
VerbPhrase

vp/fit

Now a “proof” corresponds to parsing a sentence! For example, the following
forward-chaining proof is valid:

if the cat fits, the cat sits
np/cat if NounPhrase fits, the cat sits
np/cat if NounPhrase fits, NounPhrase sits
vp/fit if NounPhrase VerbPhrase, NounPhrase sits
vp/sit if NounPhrase VerbPhrase, NounPhrase VerbPhrase

sent/nv if Sentence, NounPhrase VerbPhrase
sent/nv if Sentence, Sentence
sent/if Sentence

4

If we write this proof in tree form, we actually get grammatical parse trees,
which you may have been forced to write in an English (or other language)
classroom as a child.

...
NounPhrase

...
VerbPhrase

Sentence

There are ways to make this work better for some of the irregularities of
English, e.g. subject/verb agreement, which are shown in the original paper
by Lambek introducing this idea [3]. They involve modeling parts of speech
(language categories) as ordered implication, e.g. “if I find this kind of structure
to my left, I can become this.” See Lambek’s paper for more details.

Exercise: What would happen if you turned all of the rules upside down?
What would proofs correspond to?

Exercise: Another cool application of ordered logic is using it to rewrite
grid-states, e.g. for a grid-based game. Could you write the rules for how Chess
pieces move using ordered logic? There is a cool game-prototyping tool called
Puzzlescript where you actually program the logic of tile-based puzzle games
with a syntax very close to this.

3 Logical Connectives

If we want to reason about all the kinds of rules (like path and edge) that
one might write, in any domain, rather than designing a new set of inference
rules for each domain, it’s useful to give some notation for representing them
within the logic, i.e. as a class of propositions. This is where we get the idea of
logical connectives: we turn our notation for representing things with inference
rules into propositional objects that can then themselves be reasoned over within
another, more general set of inference rules. We’d like to be able to describe in
general when it’s possible to derive a conclusion from some set of assumptions,
i.e. when we can create a forward-inference chain of the form:

x1:A1 . . . xn:An

...
B

To do this, it’s helpful to use the metavariable Γ to refer to assumptions
x1:A1 . . . xn:An, and to write the entire thing Γ ⊢ B, read “Γ entails B”. This
structure—a context of assumptions, a conclusion, and the entailment relation
between them—is known as a sequent in logic. You might have seen this kind
of thing before in programming languages textbooks or papers, in the form of
typing rules, like Γ ⊢ e : τ (expression e has type τ under context Γ, where Γ
contains variables with typing assumptions that are in scope when typechecking
e).

5

To look at how inference works with sequents, let us consider our previous
path example. Our “knowledge state” now lives on the left hand side of the
sequent, so we will read it “upside-down”, i.e. from bottom to top. For example,
the path/trans rule becomes:

Γ, edge(X,Y), path(Y,Z), path(X,Z) ⊢ C

Γ, edge(X,Y), path(Y,Z) ⊢ C

C here stands for some arbitrary goal we are working towards. If we read the
rule bottom-up, we can interpret the conclusion as a goal, and the premise(s)
to a rule as subgoals. Note that we maintain the facts from the bottom as we
move upward!

On the right hand side of the sequent, however, we can only write one propo-
sition.1 So we need a logical connective to internalize the idea that our goals
can be made of multiple things, and this connective will be conjunction (∧). We
can write a general rule to represent this:

Γ ⊢ A Γ ⊢ B
Γ ⊢ A ∧B

Again reading this rule bottom-up, it says that if our goal is to prove we can
reach a knowledge state A ∧B, then our subgoals are to prove we can reach A
and we can reach B.

We can likewise describe how to reason, in general, if our goal is to prove a
hypothetical derivation, which we will write as implication A ⇒ B:

Γ, A ⊢ B

Γ ⊢ A ⇒ B

In our subgoal, we add A to the context and continue trying to prove B.
Now that we can shift propositions from the right side of the sequent to the

left, however, we need to be able to state what we can do with these connectives
on the left.

It turns out that ∧ just “internalizes” our notion of state composition (i.e.
“,”), so we can re-interpret it that way on the left:

Γ, A,B ⊢ C

Γ, A ∧B ⊢ C

To use implication on the left, we need to be able to derive its left-hand side,
after which we can continue by using its right-hand side.

Γ ⊢ A Γ, B ⊢ C

Γ, A ⇒ B ⊢ C

Using these general rules, we can prove more general kinds of facts about
inference, such as A ∧B ⇒ B ∧A. We can also re-interpret our inference rules
for specific domains as logical propositions, i.e.:

1If we try to do this development with multiple propositions on the right, we run into
trouble when we try to define implication, i.e. reason about hypothetical judgments.

6

edge(x, y) ⇒ path(x, y)
edge(x, y) ∧ path(y, z) ⇒ path(x, z)

3.1 Substructural Connectives

Since you have seen substructural inference, however, you may observe that some
of these principles don’t apply to how we used them to modify knowledge states.
In particular, for structural inference, we always added things to the context as
we work upward, whereas in linear inference we want to replace them:

Γ,wood,wood,wood,wood ⊢ C

Γ, tree ⊢ C

This also makes our original definition of ∧ seem suspect, because we used
the same context to solve our subgoals. What might make more sense for linear
logic? We will use a different symbol ⊗ (tensor) to represent this kind of con-
junction, which is meant to represent combining linear resources (internalizing
the linear logic version of “,”).

∆1 ⊢ A ∆2 ⊢ B

∆1 ∆2 ⊢ A⊗B

That is, to prove that we can get to a goal consisting of both A and B,
simultaneously, we need to use part of our resources to get A and part of our
resources to get B.

Actually, we could use the previous definition of ∧ in linear logic (usually we
write in &). What would it mean?

We can use it to represent the fact that our same initial state actually makes
it possible to derive multiple different goals—recall how one of our forward
inference chains got stuck, and we wound up somewhere we didn’t want to be.
We can characterize this kind of nondeterminism with the & connective.

4 The Possibility Space of Substructural Logics

Now that we have sequent notation, we can finally give formal definitions to the
structural rules:

Γ ⊢ C
Γ, B ⊢ C

weaken

Γ, A,A ⊢ C

Γ, A ⊢ C
contract

Γ,Γ′ ⊢ C

Γ′,Γ ⊢ C
exchange

In structural inference, contexts permit all of the structural rules (either im-
plicitly or by fiat), and substrucural contexts do not. The inclusion or exclusion

7

of these rules determines whether a valid proof (program) must respect the or-
dering of assumptions as we use them, and how many times we can use them.
Linear logic, by forgoing weakening and contraction, requires every assumption
to be used exactly once; affine logic forgoes only contraction (use each assump-
tion zero or one times); strict logic only weakening (use each assumption at least
once); and ordered logic forgoes all three. We’ve currently investigated only two
of these—linear and ordered logic—but you now have the conceptual tools to
think about the others.

An alternate view is that each of these logics can be thought of as modeling
the context with different algebraic structures. Structural logic’s contexts be-
have like sets; linear logical contexts behave like commutative monoids; ordered
logical contexts like (noncommutative) monoids. (For those with an interest in
category theory, there is also a useful story about interpreting these context
structures into different categories and getting their different connectives via
the same categorical constructions; you can ask me about that later if you’re
curious.)

Here’s a table summarizing the differences between logics in terms of struc-
tural rules, as witnessed by their multiplicative conjunction forms:

Associativity Commutativity Idempotence
SL A ∧ (B ∧ C) ≡ (A ∧B) ∧ C A ∧B ≡ B ∧A A ∧A ≡ A
LL A⊗ (B ⊗ C) ≡ (A⊗B)⊗ C A⊗B ≡ B ⊗A A⊗A ̸≡ A
OL A • (B • C) ≡ (A •B) • C A •B ̸≡ B •A A •A ̸≡ A

(You can read A ≡ B as “bi-entailment”, i.e. A ⊢ B and B ⊢ A.)
One might wonder if we could drop structural equivalences even further,

eschewing associativity, in which case the context is a magma. This gives us
rigid logic. Developing its connectives (and computational potential) is left as
an exercise to the reader.

It is also fruitful to consider combinations of the structural rules not given
here, such as dropping contraction but not weakening or weakening but not
contraction. Dropping exchange is only meaningful when you also drop both
weakening and contraction; otherwise, you can recover exchange (proving this
is an exercise for the reader).

4.1 Combining Logics

So, you may be asking yourself, what is the point of writing down all these
different kinds of symbol-pushing? One answer is that they follow different
rules, so they model different kinds of problems. The idea is that these logics
give us more expressive power by making finer distinctions between the kinds of
programs we might want to write. But to really make use of these features, we
need to be able to combine their powers. After all, we don’t want a typechecker
to force all of our functions to use their arguments exactly once!

If want to be able to use all of modes of truth represented in these logics in

8

one setting, then we need to combine them. One way to do this is to start off in
the “most restrictive” logic you want to use (say, ordered logic), and “import”
propositions from the less-restrictive logics. We can do this with modalities:
a structural logic proposition As can be mapped to OL with !As (the “bang”
modality), and a linear (mobile, from the OL point of view) proposition Al can
be mapped with ¡Al (the “gnab” modality). (There is another way to do this,
that also generalizes to logics beyond substructural ones, based on a category
theoretic concept called adjoint functors, which you can read up on [5] if you’re
curious!)

5 Conclusion

We have explored the idea of substructural logics first through the idea of mod-
eling inference about different kinds of systems (path enumeration in graphs;
resource exchange; syntax parsing), then by developing logical connectives and
their corresponding proof terms, which give rise to different computational in-
terpretations. Different ways of defining the same logical connectives give us
distinct computational interpretations, which in turn give us more precise ways
of exposing to programmers the distinct mathematical structures that underlie
computational problems.

References

[1] J.-Y. Girard. Linear logic. Theoretical computer science, 50(1):1–101, 1987.

[2] J.-Y. Girard. On the unity of logic. Annals of pure and applied logic,
59(3):201–217, 1993.

[3] J. Lambek. The mathematics of sentence structure. The American Mathe-
matical Monthly, 65(3):154–170, 1958.

[4] P. B. Levy. Call-by-push-value. PhD thesis, 2013.

[5] K. Pruiksma, W. Chargin, F. Pfenning, and J. Reed. Adjoint logic. Unpub-
lished manuscript, April, 2018.

A Things I didn’t talk about: Functional Pro-
gramming

9

A.1 Introduction

Practitioners and theorists of functional programming may be familiar with the
common typing judgment for typed lambda calculi, often read “expression e has
type τ under context Γ”:

Γ ⊢ e : τ

The presence of the context Γ, which usually consists of variable typing as-
signments x1:τ1 . . . xn:τn, allows us to typecheck expressions that contain vari-
ables within the appropriate scope. This also allows us to describe the opera-
tion of functions, or lambda abstraction, as taking arguments which can then
be added to the context as variables to type their bodies:

Γ, x : τ ⊢ e : τ ′

Γ ⊢ λx:τ . e : τ → τ ′

This talk concerns the nature of contexts Γ and the computational content
of different decisions one can make about its structure. For example, by default,
one would expect the function

λx:A. ⟨x, x⟩

to be well-typed at A → A×A, and likewise the function

λx:A. λy:B. y

at A → B → B. However, each of these type assignments relies on certain
facts about how variables added to the context are accessed, called the structural
rules (because they define the structure of contexts, rather than of specific type
assignments).

Γ ⊢ C
Γ, B ⊢ C

weaken

Γ, A,A ⊢ C

Γ, A ⊢ C
contract

Γ,Γ′ ⊢ C

Γ′,Γ ⊢ C
exchange

The first example relies on contraction, which is that we can access variables
multiple times in expressions here they are in scope. The second uses weakening,
which is the idea that we can ignore assumptions (or, alternately, if an expression
is well-typed in Γ, it is also well-typed in any extension of Γ, such as Γ, x:B).
Finally, we also expect that we can use variables in any order that they are
introduced by function abstraction, which corresponds to the notion of exchange,
i.e. that contexts (while we may write them or implement them as lists) are
actually order-agnostic.

Substructural logics are logics—and by extension, type systems—that es-
chew one or more of these structural rules.

10

A.2 Logical Connectives

We can turn our path inference rules into the following proposition:

∀x, y, w. edge(x, y) ∨ (path(x,w) ∧ path(w, y)) ⇒ path(x, y)

This proposition uses the connectives ∀ (universal quantification), ∨ (dis-
junction), ∧ (conjunction), and ⇒ (implication), along with propositional atoms
edge(x, y) and path(x, y) (defined by the “domain”). Each of these connectives
internalizes some idea from the meta-logic of inference rules: universal quan-
tification captures the idea of generalizing rules over term variables (here, the
nodes of the graph); disjunctions, the presence of multiple rules that can derive
the same fact; conjunction, the idea of requiring multiple rule-premises; and
implication, the concept of inference from premises.

We don’t have time to get into how all of these connectives are defined, but
to provide a taste, consider the following two rules which can be used to define
(∧):

Γ ⊢ A Γ ⊢ B
Γ ⊢ A ∧B

pair Γ ⊢ A ∧B
Γ ⊢ A

π1
Γ ⊢ A ∧B
Γ ⊢ B

π2

These rules explain both how to construct proofs of A ∧ B (the pair rule)
and how to use them (the π1 and π2 rules), all in terms of the machinery of
inference rules and not by involving any other connectives. This idea of defining
connectives in terms of introductions and eliminators is key to understanding
the correspondence between proofs an programs: you may already be able to see
from these suggestive rule names how these proofs correspond to typing rules
for pairs and projections in a language with product types.

We also need to give a rule for using an assumption in the context:

x:A ∈ Γ
Γ ⊢ A

x

This is known as the hypothesis rule. With these four rules, we can see how
to construct a simple proof (“conjunction is commutative”):

x:A ∧B ⊢ A ∧B
x

x:A ∧B ⊢ B
π2

x:A ∧B ⊢ A ∧B
x

x:A ∧B ⊢ A
π1

x:A ∧B ⊢ B ∧A
pair

Finally, if you use a kind of similar notation to our “compact” proof from
before, the correspondence with programs is even more obvious:

x:A ∧B ⊢ pair(π2(x), π1(x)) : B ∧A

A.3 Substructural Connectives

We would like to make these different kinds of inference formal in terms of how
we define our logic and its connectives. Let’s first look at the “hypothesis” rule:

11

x:A ∈ Γ
Γ ⊢ A

x

If we want to not treat contexts as sets, we should refine this rule to

x:A ⊢ A
x

That is, we can conclude A if it is the only thing in our context.
Since we saw how and (∧) was defined for structural logic, let’s see if we can

define it more generally for the substructural cases. We’ll use a different context
metavariable ∆ this time:

??? ⊢ A ??? ⊢ B
∆ ⊢ A ∧B

Now we can see a choice: should the context in which we prove A and B be
the same as the context in which we conclude their conjunction? Or should the
conjunction use some kind of combination of the two?

If we want conjunction to internalize the structure of contexts, we should
write the rules as follows, using ⊗ to represent this kind of conjunction (pro-
nounced “tensor”):

∆1 ⊢ A ∆2 ⊢ B

∆1 ∆2 ⊢ A⊗B
⊗I

∆ ⊢ A⊗B ∆1 A B ∆2 ⊢ C

∆1 ∆ ∆2 ⊢ C
⊗E

Ordered logic’s context-internalizing conjunction, written A •B, can be de-
fined in much the same way. (We elide the full definition of the logic, but the
main difference is at the structural level, i.e. how we treat contexts, rather than
in the definition of specific connectives.)

An interesting question: what do the proof terms look like?

∆1 ⊢ M : A ∆2 ⊢ N : B

∆1 ∆2 ⊢ {M,N} : A⊗B
⊗I

∆ ⊢ M : A⊗B ∆1 x:A y:B ∆2 ⊢ Nx,y : C

∆1 ∆ ∆2 ⊢ let {x, y} = M in N : C
⊗E

This proof term assignment might remind you of pattern matching on pairs
in a functional language. This is not mere coincidence!

It turns out we can also write a rule for a connective defined more closely to
the structural version of “and”, and get a different kind of conjunction. We’ll
write this one &, pronounced “with”:

∆ ⊢ A ∆ ⊢ B
∆ ⊢ A&B

&I
∆ ⊢ A&B
∆ ⊢ A

&E1
∆ ⊢ A&B
∆ ⊢ B

&E2

We call this the additive conjunction, as opposed to multiplicative conjunc-
tion (⊗).

What does the & connective represent in terms of substructural logics, e.g.
in our specific examples?

If we’re using ordered logic to represent grammatical parses, this corresponds
to an ambiguous parse. That is, a given phrase represented in ∆ could parse

12

as A or as B. In linear logic, it represents multiple ways to use the same set
of resources, e.g. spending the same ten dollars to purchase different items. In
general, A&B represents the possibility of drawing multiple conclusions from
the same set of premises.

The idea of being able to represent conjunction in these two different ways
gives us insight about the nature of structural logic’s ∧ that we wouldn’t have
otherwise: in particular, the idea of pattern matching on pairs is sound (in
structural logic!) with respect to the alternate definition using projections. It
may be illustrative to write proof terms witnessing the fact that, if we treat
contexts structurally, A&B ≡ A⊗B. (You can read A ≡ B as “bi-entailment”,
i.e. A ⊢ B and B ⊢ A.) Substructural logics, by separating these two definitions
into distinct logical connectives, paves the way to understanding a concept called
polarity [2], which turns out to be a deep theory about the nature of program
structure, pattern matching, and evaluation order (also known as call-by-push-
value [4]).

Apart from conjunction, other substructural connectives one can define in-
clude linear implication (⊸), two kinds of ordered implication (depending on
whether the argument is expected to the left or right) (↣, ↠), a substructural
version of disjunction (⊕), and units for all of the binary connectives (1 for ⊗;
⊤ for &; 0 for ⊕).

13

	Computing with Inference Rules
	Substructural Inference
	Linear Inference
	Ordered Inference

	Logical Connectives
	Substructural Connectives

	The Possibility Space of Substructural Logics
	Combining Logics

	Conclusion
	Things I didn't talk about: Functional Programming
	Introduction
	Logical Connectives
	Substructural Connectives

