
COG-DICE: An Algorithm for Solving Continuous-Observation Dec-POMDPs

Madison Clark-Turner
Department of Computer Science

University of New Hampshire
Durham, NH 03824

mbc2004@cs.unh.edu

Christopher Amato
College of Computer and Information Science

Northeastern University
Boston, MA 02115

camato@ccs.neu.edu

Abstract
The decentralized partially observable Markov de-
cision process (Dec-POMDP) is a powerful model
for representing multi-agent problems with de-
centralized behavior. Unfortunately, current Dec-
POMDP solution methods cannot solve problems
with continuous observations, which are common
in many real-world domains. To that end, we
present a framework for representing and gener-
ating Dec-POMDP policies that explicitly include
continuous observations. We apply our algorithm
to a novel tagging problem and an extended version
of a common benchmark, where it generates poli-
cies that meet or exceed the values of equivalent
discretized domains without the need for finding an
adequate discretization.

1 Introduction
As hardware costs have decreased, the prevalence of systems
with multiple agents (e.g., routers, sensors, people, robots)
has increased. These systems have the potential to be de-
ployed in complex scenarios, but appropriate models and so-
lution methods are needed to tackle the real-world issues
of uncertainty and communication limitations. The decen-
tralized partially observable Markov decision process (Dec-
POMDP), which is an extension of the POMDP [Kaelbling et
al., 1998] to consider multiple decentralized agents, is a gen-
eral model for considering these problems [Bernstein et al.,
2002; Oliehoek and Amato, 2016].

Despite the Dec-POMDP’s potential to model many multi-
agent problems, they have only been used to express small
discrete problems. The many real-world problems that use
continuous information (distance, velocity, and temperature
among others) remain mostly unexpressed because no con-
temporary solvers can handle continuous observations al-
though a few are capable of solving problems with contin-
uous states [Amato et al., 2017; Omidshafiei et al., 2016;
2017]. It has been the role of the problem designer to sep-
arate continuous observations into a manageable number of
discretizations. Accurately discretizing this information is
hard even with expert knowledge of the problem. Naive dis-
cretizations that separate continuous information into equally
sized sections could occlude pivotal aspects of the data that

are only visible from the continuous perspective. In order for
Dec-POMDPs to be truly useful, solution methods must solve
problems with continuous values.

Therefore, this paper presents a solution representation for
continuous observation problems using finite-state controllers
and the continuous-observation Graph-based Direct Cross-
Entropy (COG-DICE) algorithm for solving them. COG-
DICE extends G-DICE [Omidshafiei et al., 2016] to include
continuous observations and improves its scalability when us-
ing discrete observations. Our method divides the observa-
tion space of an agent’s policy into regions. This segmenta-
tion occurs separately on different parts of the solution (i.e.,
each node in the finite-state controller) in order to improve
the solution’s resulting quality. Our approach is evaluated on
a novel tagging problem and a modified version of the recy-
cling robots benchmark. In all cases, COG-DICE success-
fully generates solutions for problems with continuous obser-
vations that meet or exceed the results generated by current
discrete solvers and hand-coded controllers.

2 Related Work
Though no continuous observation Dec-POMDP solvers cur-
rently exist, several continuous observation POMDP methods
have been developed. In particular, methods have been de-
veloped that separate the observation space into a collection
of distinct regions using the belief space of the POMDP to
help identify the region boundaries [Hoey and Poupart, 2005;
Brunskill et al., 2008; Bai et al., 2010]. These methods are
similar in spirit to our approach, but the details are very dif-
ferent as we directly optimize the regions without the use of
a belief state (which is not available to each agent in the de-
centralized case).

Many Dec-POMDP solvers have been developed
[Oliehoek and Amato, 2016]. The Graph-Based Direct
Cross-Entropy (G-DICE) algorithm is a state-of-the-art
method that is scalable and can solve infinite-horizon prob-
lems with continuous state spaces [Omidshafiei et al., 2016].
For these reasons, we build our continuous observation
solver off of the existing G-DICE method.

3 Background
We first present a formal definition of Dec-POMDPs followed
by an explanation of the G-DICE algorithm.

3.1 Dec-POMDPs
A Dec-POMDP is defined by a tuple 〈I, S,A,O, T,Ω, R, γ〉,
with a finite number of potentially heterogenous agents I; the
set of states S; the set of joint actionsA, and each agent i ∈ I
has a set Ai of actions that it is capable of performing; the
set of joint observations O, and each agent has a set Oi of
observations that it can receive; the state transition function
T , where P (s′|s, a) indicates the probability of transitioning
from state s ∈ S to s′ ∈ S after performing joint action
a ∈ A; the joint observation probability function Ω, where
P (o|s′, a) indicates the probability of receiving joint obser-
vation o ∈ O after performing joint action a ∈ A and transi-
tioning to state s′ ∈ S; the reward function R(s, a) ∈ R that
attributes a reward for performing joint action a ∈ A when
in the current state s ∈ S; and a discount factor, γ ∈ (0, 1],
that is used to weight the benefits of receiving rewards sooner
rather than later.

Execution of a Dec-POMDP occurs over a series of dis-
crete time steps. Beginning in an initial state s0 ∈ S (or
distribution over states), each of the I agents chooses an ac-
tion from their set of available actions Ai. Based on these
actions, a joint reward is generated from R(s, a), a new state,
s′ is transitioned to according to T and a set of observations
is generated from Ω, one per agent. The Dec-POMDP can
model stochastic action executions and observations through
T and Ω respectively.

Each agent i selects actions according to its (decentralized)
policy, πi, which is a mapping from the agent’s own observa-
tion histories to its actions. Because the problem’s state is not
visible, it is beneficial for agents to remember the history of
observations received and actions performed. A joint policy
π is a set of individual policies, one for each of the I agents.

Beginning in state s, obtaining the value (V π) of an
infinite-horizon policy, π, can be calculated using the Bell-
man equation for computing this expected sum:

V π(s) = R(s, a) + γ
∑
s′,o

P (s′ | a, s)P (o | s′, a)V π(s′),

which represents the reward R(s, a) (where a is defined
by π) plus the expected discounted value of performing the
joint policy in all of the subsequent potential states. Note
that the agents do not observe s, but choose actions from
the policy based on the observation histories received. A
joint policy π∗ that maximizes V π for the Dec-POMDP given
an initial joint state s0 is termed the optimal joint policy:
π∗ = argmaxπV

π(s0).

3.2 Policies as Finite-State Controllers
Infinite-horizon joint policies can be represented by a collec-
tion of I finite-state controllers (Figure 1(a)), one for each
agent [Bernstein et al., 2009]. These controllers select ac-
tions based on the current node and transition based on the
observation seen. Specifically, the finite-state controller we
describe is a Moore controller, which for a single agent i, is
composed of a set ofm nodesQi. Each node selects an action
from Ai according to a distribution P (ai | qi) (where ai ∈ Ai
and qi ∈ Qi). Nodes are connected using |Oi| directed edges;
each edge is labelled with a different observation from the set

Oi. Edge transitions can occur between any two nodes in Qi.
When an observation is received, the policy follows the edge
with the corresponding label toward a new node according
to P (qi′ | qi, oi) (where oi ∈ Oi). The graph has no terminal
state and can continue for an infinite number of steps, making
it a preferable representation for infinite-horizon problems.
For simplicity, only a discrete version of a controller is given
in Figure 1(a).

The Bellman equation can be defined using Moore con-
trollers from initial state s and initial controller nodes for all
agents q:

V π(q, s) =
∑
a

n∏
i

P (ai | qi)
[
R(s, a) + γ

∑
s′

P (s′ | a, s)

∑
o

O(o | s′, a)
∑
qi′

n∏
i

P (qi′ | qi, oi)V π(q′, s′)

]
, (1)

where π is defined as the set of controllers with action selec-
tions and node transitions defined probabilistically.

3.3 Continuous Observation Dec-POMDPs
The previous Bellman equations (e.g., Equation 1) assume
the set of states and observations are discrete. A modified
equation that includes continuous values could be represented
by replacing the sums with integrals:

V π(s) = R(s, a)+γ

∫
s′,o

P (s′|a, s)P (o|s′, a)V π(s′)ds′do.

Unfortunately, this Bellman equation is challenging to
evaluate without structural assumptions. Instead of evaluat-
ing the policy exactly, we approximate the value using Monte
Carlo sampling [Omidshafiei et al., 2016]. Monte Carlo sam-
pling consists of executing the joint policy x times from a
variable initial state, s, and then averaging the values that

each execution generated: V̂ π(s) =

∑
x r

π(s)

x
, where rπ(s)

is the (discounted) sum of rewards for one Monte Carlo sim-
ulation from state s until a horizon cutoff has been reached
(where any future value is negligible). The averaged value
provides an estimation of the joint policy’s quality that im-
proves as the number of simulations increases. Note that this
method allows us to evaluate a policy that considers continu-
ous states and observations from a given initial state (but not
generate such a policy).

3.4 G-DICE
G-DICE is a sampling-based approach for solving Dec-
POMDPs (Algorithm 1) [Omidshafiei et al., 2016]. The al-
gorithm generates joint policies (as finite-state controllers) by
randomly sampling their actions selected and transitions at
each node from sets of distributions. The joint policies are
then evaluated and those with the highest values are used to
bias the set of distributions in the subsequent iteration where
the process is repeated.

The sampling distributions (the output, O, and transition,
T, functions) provide the probabilities that specific node-
action mappings and node-node transitions will occur. When

(a) (b) (c) (d)

Figure 1: (a) An example Moore controller. (b) Node with discrete observation transitions. (c) Node with discrete region-
dependent transitions. (d) Node with continuous region-dependent transitions (1 dimension).

G-DICE samples policies, it selects parameters according to
these distributions. The output function for agent i (Oi) out-
puts the probability that action aij is chosen for node qik in
agent i’s policy (where j and k are indices into Ai and Qi
respectively) using

Oij,k = P (aij |qik). (2)

The transition function for agent i (Ti) similarly outputs
the probability that node qij will transition to node qi′k having
received observation oil (where j and k are indices to Qi, and
l is an index into Oi) using

Tij,k,l = P (qi′k |qij , oil). (3)

G-DICE has the following input parameters: the number
of nodes in each agent’s policy, Nn, the number of iterations
to perform, Ni, the number of samples to generate in each it-
eration, Nx, the maximum number of samples used to update
the sampling distributions with Nk, and a learning rate, α.

The algorithm begins by initializing O and T as uniform
distributions across all of the Nn nodes for each agent’s pol-
icy (Algorithm 1, lines 1-3). The values Vb and Vw, the best
and worst values observed by G-DICE so far, are also ini-
tialized and set to negative infinity (lines 4 and 5). The al-
gorithm proceeds to enter the main loop, which it performs
for Ni iterations. In each iteration, G-DICE generates Nx
sample joint policies (line 8). The joint policies consist of I
controllers, one for each agent, that are each composed ofNn
nodes. Actions and transitions for each node are randomly
sampled according to the distributions in O and T. Once the
joint policies have been generated, they are evaluated (line
10). In this paper we used Monte Carlo evaluation.

Joint policies with value less than Vw are pruned, while
those that are greater than Vb replace the current best joint
policy and the value of Vb (lines 11-16). The top Nk joint
policies with values greater than Vw are stored in φlist along
with the best joint policy observed thus far (line 17). The
value of Vw is then set to the lowest value in φlist as the new
pruning metric for the subsequent iteration (line 18).

The joint policies in φlist are then used to seed the new
sampling distribution for the next iteration. The maximum
likelihood estimate (MLE) of occurrences of action-to-node
mappings and node-to-node transitions (which are the action
and node frequencies in this case) are used to generate a new
set of probabilities for the next iteration. These probabilities

Algorithm 1: The G-DICE Algorithm
input : Nn, Ni , Nx , Nk, α

1 for n = 1 to Nn do
2 Initialize the output function (O);
3 Initialize the transition function(T);
4 Vb ← −∞;
5 Vw ← −∞;
6 for i = 1 to Ni − 1 do
7 φlist ← ∅;
8 for x = 1 to Nx do
9 π ← sample from Oi and Ti;

10 Vπ ← Evaluate π;
11 if Vπ ≥ Vw,i then
12 φlist ← φlist ∪ {π};
13 Vlist ← Vlist ∪ {Vπ};
14 if Vπ ≥ Vb then
15 φb ← π;
16 Vb ← Vπ;

17 φb,list, Vb,list ← Nk policies in φlist;
18 Vw,i+1 ← min(Vb,list);
19 for n = 1 to Nn do
20 Oi+1 ←MLE of Oi using φb,list;
21 Oi+1 ← αOi+1 + (1− α)Oi;
22 Ti+1 ←MLE of Ti using φb,list;
23 Ti+1 ← αTi+1 + (1− α)Ti;

24 return φb ; // The best joint policy

are smoothed using a learning rate (α) and combined with the
previous iteration’s probabilities (lines 19-23).

4 Continuous Observations
G-DICE works well for problems with discrete observations,
but it is incapable of generating policies for problems with
continuous observations. With continuous observations, each
node in the Moore controller would require an infinite number
of transitions: an impossible task to represent let alone com-
pute. Furthermore, discretization is also problematic. Every
node has an edge for each of the agent’s observations connect-
ing the node to other nodes in the controller. If the number of
observations increases, then so will the total number of transi-
tions in the controller byNn for each new observation. When

generating new samples, each transition is selected indepen-
dently and therefore problems that possess fine discretizations
are more complex and become intractable to solve. To deal
with these issues, we develop a continuous observation con-
troller representation and a continuous observation version of
G-DICE, which exploits the knowledge that similar observa-
tions in a continuous space will transition to similar nodes to
partition the observation space.

4.1 Continuous-Observation Controller
For the policy representation, we again use the Moore con-
troller, but now include modifications that express transi-
tions across regions of the observation space rather than
with discrete observations (as shown in Figure 1(d)). We
begin by introducing divisions (d), separators that denote
boundaries in the observation space. As a parameter, COG-
DICE allows the designer to select the number of parti-
tions that the observation space is split into (Nt). This
partitioning of the space occurs separately for each node.
For example, with a one-dimensional continuous observa-
tion space over the interval [0, 1] the divisions consist of a
set of Nt − 1 points. These points partition the space us-
ing [0, d1), [d1, d2), . . . , [dNt−1, 1]. In problems with multi-
dimensional observation data, divisions can be represented
using hyperplanes or nonlinear separators.

Division functions (D) are distributions that describe where
the divisions will be placed (e.g., probabilities for the loca-
tions of the points in the one-dimensional space above). D is
expressed differently in continuous and discrete-observation
problems. In the discrete-observation problem, we will par-
tition the observation space by ordering the observations and
choosing discrete observations to denote the endpoints of the
partitions, as shown in Figure 1(c). This partitioning is done
separately for each agent and each node, so there exists divi-
sions di,kl (for the l-th division for agent i on node k). The
probability that a division is at a particular observation is ex-
pressed in the agent i’s division function Di as

Dij,k,l = P (oij |qik, dil), (4)

which represents the probability that division l for agent i at
node k occurs at observation j.

The continuous observation case lacks problem specified
values on which to place the divisions and so divisions must
be selected from the entire observation space (Figure 1(d)).
Therefore, we use a probability distribution over this con-
tinuous space for representing where to place each division
probabilistically. Many distributions could be chosen based
on the domain. In the one-dimensional case over a bounded
interval, the Beta distribution is a natural choice for each divi-
sion, but other distributions (such as the Dirichlet) could also
be used. The Beta distribution is parameterized by α and β,
so again we can represent the probability that division l for
agent i at node k occurs over the interval [0,1] as

Dik,l = Beta(αik,l, β
i
k,l). (5)

In problems with larger dimensionality, one-dimensional con-
cepts can be extended by splitting the observation space along
each axis separately, similar to axis-parallel splits, or distribu-
tions over nonlinear separators could be used (e.g., kernels).

In addition to selecting points that divide the observation
space, we must redefine the node transition function (T) to be
the same for all observations within a partition. A partition
(or region) of the observation space can be written asRdimdin ,
where dim and din are two adjacent divisions for the same node
that bound the observation space. A transition from node qi
to node qi′ in agent i’s controller can now be expressed over
regions rather than over each observation as

Tij,k = P (qi′j |qik,Rdimdin). (6)

Execution of the joint policy is unchanged with the ex-
ception of node transitions. Traditional Moore controllers
follow transitions labelled by the discrete observation that
was received after performing the most recent action. In the
continuous-observation controller, the transition is defined by
determining the region of the observation and following the
transition for that region.

4.2 COG-DICE
The key extensions in COG-DICE are shown in Algorithm
2. In summary the differences include: the new controller
representation with continuous observations, the evaluation
of this representation, sampling from the continuous division
distribution, and updating the continuous division distribu-
tion. While these operations have the same general form as
the original G-DICE algorithm, they are nontrivial to design
and more complex to carry out due to being continuous rather
than discrete.

One notable difference is the addition of input parameter
Nt, the number of regions the observation space should be
separated into at each node. In the initialization step of the
algorithm, the action selection function, O, is unchanged be-
tween the two algorithms, however, in COG-DICE the up-
dated node transition function T and division function D are
set to uniform distributions (Algorithm 2, lines 3 and 4). That
is, we are using the updated controller representation and
searching not only over the action selection and node tran-
sition parameters, but also the division parameters.

In COG-DICE’s main loop we generate a set of joint poli-
cies and update the sampling distributions. The process of
generating joint policies occurs by selecting actions for each
node according to O (line 8), divisions of the observation
space for each node according to D (line 11), and transitions
from each node to other nodes based on regions of the ob-
servation space according to T (line 12). For example, as-
suming our problem has continuous one-dimensional obser-
vations, we could use the Beta distribution in D, as described
in Section 4.1, to express the probability for each division at
each node of each agent. As a result, Nx controllers are sam-
pled for each agent.

The joint policies are evaluated, again using the new
method described in 4.1, and the best Nk joint policies are
placed in φlist which is used to update the sampling distribu-
tions for the next iteration. O, T, and D are all updated by
taking the MLE of the values present in φlist. Intuitively, the
MLE for the action selection and node transition distributions
can be calculated based on the counts of these parameters
from the best Nk joint policies (lines 14-17), while the dis-
tributions over divisions in the continuous case represent the

Algorithm 2: The COG-DICE Algorithm
input : Nn, Ni, Nx, Nk, Nt, α

1 for n = 1 to Nn do
2 Initialize the output function (O);
3 Initialize the transition function(T);
4 Initialize the division function(D);

...
5 for i = 1 to Ni − 1 do
6 for x = 1 to Nx do
7 for n = 1 to Nn do
8 πs ← sample from Oi for each agent;
9 for t = 1 to Nt do

10 if t < Nt − 1 then
11 πs ← sample from Di for each agent;
12 πs ← sample from Ti for each agent;

...
13 for n = 1 to Nn do
14 Oi+1 ←MLE of Oi using φb,list;
15 Oi+1 ← αOi+1 + (1− α)Oi;
16 Ti+1 ←MLE of Ti using φb,list;
17 Ti+1 ← αTi+1 + (1− α)Ti;
18 Di+1 ←MLE of Di using φb,list;
19 Di+1 ← αDi+1 + (1− α)Di;

20 return φb ; // The best joint policy

most likely distribution given the best sampled division points
(lines 18 and 19). The MLE of a Beta distribution [Natrella,
2010] can be computed by obtaining the sample geometric
mean Gx of the set of normalized data values and the sample
geometric mean’s mirror image G(1−x), with:

Gx =

N∏
i=1

(xi)
1/N (7)

G(1−x) =

N∏
i=1

(1− xi)1/N (8)

These values can then be used to approximate α and β us-
ing the logarithmic approximation of the digamma function
with:

α =
1

2
+

Gx
2(1−Gx −G(1−x))

(9)

β =
1

2
+

G1−x

2(1−Gx −G(1−x))
(10)

The algorithm continues updating the sampling distribu-
tions based on the highest-valued policies and sampling new
policies until the desired number of iterations. While proba-
bilistic convergence to the optimal solution in the limit given
the controller size and partition number can be proven in the
discrete case (by extending earlier proofs [Omidshafiei et al.,
2016; Oliehoek et al., 2008]), a similar proof for the continu-
ous case is future work.

Figure 2: The tagging problem. The evader (E) is represented
as an X and the taggers (T) are represented as black dots.
Dashed lines indicate observations.

5 Experiments
The COG-DICE implementation was tested on two different
domains: a tagging simulator and a recycling robots problem.

5.1 Tagging Simulation
As seen in Figure 2, in the one-dimensional tagging problem,
multiple taggers work to tag a single evader in as short a time
as possible. The state space consists of the locations of the
taggers and evader and the observations are the distance and
direction of the tagger to the evader. These are represented
using one-dimensional continuous values (denoted by [0,10]
and (-10,10) respectively). Negative observations indicate the
distance that the evader is to the left of the tagger and posi-
tive observations indicate the distance to the right. Tagging
agents can perform stochastic move actions (left or right one
space) or a tagging action. Move actions and observations
are noisy. The tagging action returns a positive reward if it
is executed in a fixed proximity to the evader and a negative
reward otherwise. The evader follows its own fixed policy to
try and escape the taggers.

In an attempt to compare our method to a state-of-the-art
optimal Dec-POMDP solver, we solved a discrete version of
the tagging problem with GMAA*-ICE [Spaan and Oliehoek,
2008]. This problem domain had 1000 states and 361 pos-
sible joint observations. GMAA*-ICE was able to generate
policies to a horizon of two after an hour of execution, but
was unable to solve the horizon three problem even after mul-
tiple days of execution. We expect similar results with other
optimal Dec-POMDP methods.

COG-DICE was applied to two variants of the one-
dimensional tagging simulation: one with discrete observa-
tions and one with continuous observations. Both variants
used continuous states and two tagging agents. For all tag-
ging problems we set the input parameters as: Nn = 3, Ni =
500, Nx = 2000, Nk = 50, Nt = 3, α = 0.1. We restricted the
controller size to see how a concise policy performed on this
problem and chose other parameters that seemed reasonable.
We also tested other similar parameter values and the results
did not change significantly. We also compare with a hand-
coded controller, which moves the taggers toward the evader
and attempts to tag if it is within an appropriate range.

We first compare our discrete-observation results for var-
ious discretization granularities. Recall that for this case,
COG-DICE will place the divisions only at the given dis-
cretizations. As seen in Table 1, when the tagging problem
used discrete observations, the value of the joint policies gen-
erated by COG-DICE increased as the size of the discretiza-
tions decreased. The observation space was discretized into
regions of size 0.5, 1.0, 2.0, and 4.0. Observations were
rounded to the nearest discretization. As expected, the level

Discretization Hand-Coded COG-DICE
continuous - 101.8

0.5 86.32 89.9
1.0 68.89 65.09
2.0 -22.11 54.09
4.0 -154.44 13.49

Table 1: Values of joint policies in the tagging problem

of discretization exhibited strong influence over the structure
and value of the solutions that were generated. If the divi-
sions were located too far outside of the tagging range (e.g.
discretizations of 2.0 and 4.0), then the taggers would have
to perform additional move actions in order to ensure that the
evader was within the tagging proximity. Using coarser dis-
cretizations reduced the time until convergence, but resulted
in poorer solutions.

We also see that COG-DICE can outperform the hand-
coded solution as seen in Table 1. As the discretization be-
comes finer both methods improve, but because COG-DICE
is optimizing the solution based on the given discretization, it
can often perform better. When finer discretizations were em-
ployed, the COG-DICE policies resembled the hand-coded
controllers in both structure and value but took increasingly
longer to converge due to the greater number of potential
division points to investigate. Convergence was assumed
when the average deviation in policy values for the previous
20 iterations fell below 0.01. The time taken until conver-
gence doubled between discretizations of 4.0 (70050s) and
0.5 (140700s) indicating the computational strain of the prob-
lem. Interestingly, the convergence of discretization of 1.0
(79670s) occurred prior to the convergence of the a discretiza-
tion of 2.0 (99330s) but this was due to the finer discretization
having randomly sampled a joint policy closer to the optimal
solution before than the more coarse discretization. Note that
implementation improvements and parameter turning could
greatly reduce running time and high-quality solutions were
found long before convergence.

In the continuous-observation results we were able to gen-
erate a joint policy using COG-DICE that exceeded the values
of any discretization. The algorithm successfully identified
division points in the observation space that maximized the
potential to tag correctly. The continuous-observation ver-
sion of COG-DICE also outperformed all discretizations of
the hand-coded controller, substantially improving solution
quality by considering the full range of observations.

5.2 Recycling Robots
In the decentralized recycling robot problem, two agents plan
when to collect small and large cans or recharge their bat-
teries to maximize overall efficiency. Gathering small cans
depletes the battery a small amount and returns a small re-
ward, but can be done by each robot independently. Moving
the big can creates a large reward, but requires collaboration
and diminishes the battery more aggressively. Exhausting the
battery is undesirable and produces a negative reward.

Current implementations of the recycling robots problem
use discrete values (“high” and “low”) for observations of the
remaining battery charge [Amato et al., 2012]. We present a

continuous state and observation representation using the per-
centage of the battery remaining. In the original problem, the
probability of the battery state transitioning to a lower state
decreased from the “high” to “low” states. For the continu-
ous problem, we used noisy linear functions to represent the
decrease in battery expenditure across the state space.

As seen in Table 2, the highest known value for the
discrete infinite-horizon recycling robots problem is 31.93
[MacDermed and Isbell, 2013]. We were able to generate a
similar value (31.27) on the same problem using G-DICE in
1605s. We used the same parameters for G-DICE as we did in
the tagging simulation problem with exception to Nk where
we used 25. By decreasing the number of retained samples
we encourage the policy to converge more quickly.

In both joint policies of the discrete problem, the agents
would only ever collect small cans or recharge. Theoretically
the agents should be able to perform the large can action and
small can actions several times before needing to recharge.
Unfortunately, because the battery state information is coarse,
agents are unable to make guarantees about the other agent’s
state and therefore cannot coordinate cooperative actions.

Problem Setting Value
Highest Known Value 31.93

Discrete Observations (G-DICE) 31.27
Continuous Observations (COG-DICE) 34.43

Table 2: Values of recycling robot joint policies

COG-DICE was able to generate a joint policy with a value
that exceeded the discretized problem value (34.43) in 21500s
(although, again, high-quality policies were found long be-
fore this time) by making use of coordinated actions. COG-
DICE used the same parameters as G-DICE and Nt was set
to 2 so that the boundaries between different battery states
would be easily identifiable. The joint policy, through the
use of continuous observations, was able to make guarantees
about how battery states in both robots would diminish over
time and coordinate cooperative actions and recharges so that
the policies could be more efficiently optimized.

6 Conclusion
This paper presented, for the first time, an algorithm that gen-
erates joint policies for Dec-POMDPs with continuous ob-
servations. We presented both a discrete-observation ver-
sion of the algorithm, which is applicable in domains with
a large number of discrete observations, and a continuous-
observation version. This method is broadly applicable as
many real-world domains have large or continuous observa-
tion spaces. COG-DICE has been successful in generating
joint policies for both a novel and a preexisting problem and
has highlighted the negative impacts that inappropriate dis-
cretization can have on joint policy structure and value. For
future work, we are interested in extending this work to high-
dimensional observation spaces by exploring other (nonlin-
ear) divisions and optimizing the algorithm parameters by ei-
ther integrating these optimizations into the algorithm or pos-
sibly building on previous work on Bayesian non-parametrics
[Liu et al., 2015].

Acknowledgments
We thank our collaborators at Lincoln Lab for helpful dis-
cussions about this work, particularly Dan Griffith and Emily
Anesta. Partial funding was provided by the Assistant Sec-
retary of Defense for Research and Engineering under Air
Force Contract No. FA8721-05-C-0002 and/or FA8702-15-
D-0001.

References
[Amato et al., 2012] Christopher Amato, Daniel S Bern-

stein, and Shlomo Zilberstein. Optimizing memory-
bounded controllers for decentralized POMDPs. Proceed-
ings of Conference on Uncertainty in Artificial Intelli-
gence, 2012.

[Amato et al., 2017] Christopher Amato, George D.
Konidaris, Ariel Anders, Gabriel Cruz, Jonathan P. How,
and Leslie P. Kaelbling. Policy search for multi-robot
coordination under uncertainty. The International Journal
of Robotics Research, 2017.

[Bai et al., 2010] Haoyu Bai, David Hsu, Wee Sun Lee, and
Vien A Ngo. Monte Carlo value iteration for continuous-
state POMDPs. In Proceedings of the International Work-
shop on the Algorithmic Foundations of Robotics, pages
13–15, 2010.

[Bernstein et al., 2002] Daniel S Bernstein, Robert Givan,
Neil Immerman, and Shlomo Zilberstein. The com-
plexity of decentralized control of Markov decision pro-
cesses. Mathematics of operations research, 27(4):819–
840, 2002.

[Bernstein et al., 2009] Daniel S Bernstein, Christopher Am-
ato, Eric A Hansen, and Shlomo Zilberstein. Policy
iteration for decentralized control of Markov decision
processes. Journal of Artificial Intelligence Research,
34(1):89, 2009.

[Brunskill et al., 2008] Emma Brunskill, Leslie Pack
Kaelbling, Tomas Lozano-Perez, and Nicholas Roy.
Continuous-state POMDPs with hybrid dynamics. In
Proceedings of the International Symposium on Artificial
Intelligence and Mathematics, 2008.

[Hoey and Poupart, 2005] Jesse Hoey and Pascal Poupart.
Solving POMDPs with continuous or large discrete obser-
vation spaces. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 1332–1338,
2005.

[Kaelbling et al., 1998] Leslie Pack Kaelbling, Michael L.
Littman, and Anthony R. Cassandra. Planning and act-
ing in partially observable stochastic domains. Artificial
Intelligence, 101:1–45, 1998.

[Liu et al., 2015] Miao Liu, Christopher Amato, Xuejun
Liao, Lawrence Carin, and Jonathan P How. Stick-
breaking policy learning in Dec-POMDPs. In Proceedings
of the International Joint Conference on Artificial Intelli-
gence, 2015.

[MacDermed and Isbell, 2013] Liam C MacDermed and
Charles Isbell. Point based value iteration with optimal

belief compression for Dec-POMDPs. In Proceedings of
the Advances in Neural Information Processing Systems,
pages 100–108, 2013.

[Natrella, 2010] Mary Natrella. NIST/SEMATECH e-
handbook of statistical methods. 2010.

[Oliehoek and Amato, 2016] Frans A Oliehoek and Christo-
pher Amato. Concise Introduction to Decentralized
POMDPs. Springer, 2016.

[Oliehoek et al., 2008] Frans A Oliehoek, Julian FP Kooij,
Nikos Vlassis, et al. The cross-entropy method for policy
search in decentralized POMDPs. Informatica, 32(4):341–
357, 2008.

[Omidshafiei et al., 2016] Shayegan Omidshafiei, Ali-akbar
Agha-mohammadi, Christopher Amato, Shih-Yuan Liu,
Jonathan P How, and John Vian. Graph-based cross
entropy method for solving multi-robot decentralized
POMDPs. In Proceedings of the 2016 IEEE International
Conference on Robotics and Automation, pages 5395–
5402. IEEE, 2016.

[Omidshafiei et al., 2017] Shayegan Omidshafiei, Ali-Akbar
Agha-Mohammadi, Christopher Amato, Shih-Yuan Liu,
Jonathan P How, and John Vian. Decentralized control
of multi-robot partially observable markov decision pro-
cesses using belief space macro-actions. The International
Journal of Robotics Research, pages 231–259, 2017.

[Spaan and Oliehoek, 2008] Matthijs T. J. Spaan and
Frans A. Oliehoek. The MultiAgent Decision Process
toolbox: software for decision-theoretic planning in
multiagent systems. In Multi-agent Sequential Decision
Making in Uncertain Domains, 2008. Workshop at
AAMAS.

