
Stick-Breaking Policy Learning in Dec-POMDPs

Miao Liu
MIT

Cambridge, MA
miaoliu@mit.edu

Christopher Amato
University of New Hampshire

Durham, NH
camato@cs.unh.edu

Xuejun Liao, Lawrence Carin
Duke University

Durham, NC
{xjliao,lcarin}@duke.edu

Jonathan P. How
MIT

Cambridge, MA
jhow@mit.edu

Abstract
Expectation maximization (EM) has recently been
shown to be an efficient algorithm for learning
finite-state controllers (FSCs) in large decentral-
ized POMDPs (Dec-POMDPs). However, current
methods use fixed-size FSCs and often converge to
maxima that are far from the optimal value. This
paper represents the local policy of each agent us-
ing variable-sized FSCs that are constructed using
a stick-breaking prior, leading to a new framework
called decentralized stick-breaking policy represen-
tation (Dec-SBPR). This approach learns the con-
troller parameters with a variational Bayesian al-
gorithm without having to assume that the Dec-
POMDP model is available. The performance of
Dec-SBPR is demonstrated on several benchmark
problems, showing that the algorithm scales to large
problems while outperforming other state-of-the-art
methods.

1 Introduction
Decentralized partially observable Markov decision processes
(Dec-POMDPs) [Amato et al., 2013; Oliehoek, 2012] pro-
vide a general framework for solving the cooperative multi-
agent sequential decision-making problems that arise in nu-
merous applications, including robotic soccer [Messias et al.,
2010], transportation [Amato et al., 2015], extraplanetary ex-
ploration [Bernstein et al., 2001], and traffic control [Wu et
al., 2013]. Dec-POMDPs can be viewed as a POMDP con-
trolled by multiple distributed agents. These agents make
decisions based on their own local streams of information (i.e.,
observations), and their joint actions control the global state
dynamics and the expected reward of the team. Because of
the decentralized decision-making, an individual agent gener-
ally does not have enough information to compute the global
belief state, which is a sufficient statistic for decision making
in POMDPs. This makes generating an optimal solution in a
Dec-POMDP more difficult than for a POMDP [Bernstein et
al., 2002], especially for long planning horizons.

To circumvent the difficulty of solving long-horizon Dec-
POMDPs optimally, while still generating a high quality pol-
icy, this paper presents scalable learning methods using a finite
memory policy representation. For infinite-horizon problems

(which continue for an infinite number of steps), significant
progress has been made with agent policies represented as
finite-state controllers (FSCs) that map observation histories
to actions [Bernstein et al., 2009; Amato et al., 2010]. Recent
work has shown that expectation-maximization (EM) [Demp-
ster et al., 1977] is a scalable method for generating con-
trollers for large Dec-POMDPs [Kumar and Zilberstein, 2010;
Pajarinen and Peltonen, 2011]. In addition, EM has also been
shown to be an efficient algorithm for policy-based reinforce-
ment learning (RL) in Dec-POMDPs, where agents learn FSCs
based on trajectories, without knowing or learning the Dec-
POMDP model [Wu et al., 2013].

An important and yet unanswered question is how to define
an appropriate number of nodes in each FSC. Previous work
assumes a fixed FSC size for each agent, but the number of
nodes affects both the quality of the policies and the conver-
gence rate. When the number of nodes is too small, the FSC
is unable to represent the optimal policy and therefore will
quickly converge to a sub-optimal result. By contrast, when
the number is too large, the FSC overfits data, often yielding
slow convergence and, again, a sub-optimal policy.

This paper uses a Bayesian nonparametric approach to de-
termine the appropriate controller size in a variable-size FSC.
Following previous methods [Wu et al., 2013; Oliehoek, 2012],
learning is assumed to be centralized, and execution is decen-
tralized. That is, learning is accomplished offline based on
all available information, but the optimization is only over
decentralized solutions. Such a controller is constructed us-
ing the stick-breaking (SB) prior [Ishwaran and James, 2001].
The SB prior allows the number of nodes to be variable, but
the set of nodes that is actively used by the controller is en-
couraged to be compact. The nodes that are actually used are
determined by the posterior, combining the SB prior and the
information from trajectory data. The framework is called
the decentralized stick-breaking policy representation (Dec-
SBPR) to recognize the role of the SB prior.

In addition to the use of variable-size FSCs, the paper also
makes several other contributions. Specifically, our algorithm
directly operates on the (shifted) empirical value function
of Dec-POMDPs, which is simpler than the likelihood func-
tions (a mixture of dynamic Bayes nets (DBNs)) in existing
planning-as-inference frameworks [Kumar and Zilberstein,
2010; Wu et al., 2013]. Moreover, we derive a variational
Bayesian (VB) algorithm for learning the Dec-SBPR based

only on the agents’ trajectories (or episodes) of actions, ob-
servations, and rewards. The VB algorithm is linear in the
number of agents and at most quadratic in the problem size,
and is therefore scalable to large application domains. In prac-
tice, these trajectories can be generated by a simulator or a
set of real-world experiences that are provided, and this batch
data scenario is general and realistic, as it is widely adopted
in learning from demonstration [Martins and Demiris, 2010],
and reinforcement learning. To the best of our knowledge, this
is the first application of Bayesian nonparametric methods to
the difficult and little-studied problem of policy-based RL in
Dec-POMDPs.

2 Background and Related Work
Before introducing the proposed method, we first describe the
Dec-POMDP model and some related work.

2.1 Decentralized POMDPs
A Dec-POMDP can be represented as a tuple M =
〈N ,A,S,O, T ,Ω,R, γ〉, where N = {1, · · · , N} is a fi-
nite set of agent indices; A = ⊗nAn and O = ⊗nOn re-
spectively are sets of joint actions and observations, with An
and On available to agent n. At each step, a joint action
~a = (a1, · · · , aN) ∈ A is selected and a joint observation
~o = (o1, · · · , oN) is received; S is a set of finite world states;
T : S × A × S → [0, 1] is the state transition function with
T (s′|s,~a) denoting the probability of transitioning to s′ af-
ter taking joint action ~a in s; Ω : S × A × O → [0, 1] is
the observation function with Ω(~o|s′,~a) the probability of ob-
serving ~o after taking joint action ~a and arriving in state s′;
R : S ×A → R is the reward function with r(s,~a) the imme-
diate reward received after taking joint action ~a in s; γ ∈ [0, 1)
is a discount factor. A global reward signal is generated for
the team of agents after joint actions are taken, but each agent
only observes its local observation. Because each agent lacks
access to other agents’ observations, each agent maintains
a local policy πn, defined as a mapping from local observa-
tion histories to actions. A joint policy consists of the local
policies of all agents. For an infinite-horizon Dec-POMDP
with initial belief state b0, the objective is to find a joint pol-
icy Ψ = ⊗nΨn, such that the value of Ψ starting from b0,
V Ψ(b(s0)) = E

[∑∞
t=0 γ

tr(st,~at)|b0,Ψ
]
, is maximized.

An FSC is a compact way to represent a policy as a map-
ping from histories to actions. Formally, a stochastic FSC for
agent n is defined as a tuple Θn = 〈An,On,Zn, µn,Wn, πn〉,
where,An andOn are the same as defined in the Dec-POMDP;
Zn is a finite set of controller nodes for agent n; µn is the
initial node distribution with µzn the probability of agent n
initially being in z; Wn is a set of Markov transition matrices
with W z,z′

n,a,o denoting the probability of the controller node
transiting from z to z′ when agent n takes action a in z and
sees observation o; πn is a set of stochastic policies with πan,z
the probability of agent n taking action a in z.

For simplicity, we use the following notational conventions.
Zn = {1, 2, · · · , Cn}, where Cn

def
= |Zn| is the cardinality of

Zn, and An and On follow similarly. Θ = {Θ1, · · · ,ΘN} is
the joint FSC of all agents. A consecutively-indexed variable
is abbreviated as the variable with the index range shown in

the subscript or superscript; when the index range is obvious
from the context, a simple “:” is used instead. Thus, an,0:T =
(an,0, an,1 , . . . , an,T) represents the actions of agent n from
step 0 to T and W z,:

n,a,o = (W z,1
n,a,o,W

z,2
n,a,o, · · · ,W

z,|Zn|
n,a,o) rep-

resents the node transition probabilities for agent n when
starting in node z, taking action a and seeing observation o.
Given hn,t = {an,0:t−1, on,1:t}, a local history of actions and
observations up to step t, as well as an agent controller, Θn, we
can calculate a local policy p(an,t|hn,t,Θn), the probability
that agent n chooses its action an,t.

2.2 Planning as Inference in Dec-POMDPs
A Dec-POMDP planning problem can be transformed into
an inference problem and then efficiently solved by EM al-
gorithms. The validity of this method is based on the fact
that by introducing binary rewards R such that P (R =
1|a, s) ∝ r(a, s),∀a ∈ A, s ∈ S and choosing the geomet-
ric time prior p(T) = γT (1− γ), maximizing the likelihood
L(Θ) = P (R = 1; Θ) =

∑∞
T=0 P (T)P (R = 1|T ; Θ) of a

mixture of dynamic Bayes nets is equivalent to optimizing the
associated Dec-POMDP policy, as the joint-policy value V (Θ)
and L(Θ) are related through an affine transform [Kumar and
Zilberstein, 2010]

L(Θ)=
(1− γ)(V (Θ)−

∑
T γ

TRmin)

Rmax −Rmin
=

(1− γ)V̂ (Θ)

Rmax −Rmin
, (1)

where Rmax and Rmin are maximum and minimum reward
values andV̂ (Θ)

def
=V (Θ)−

∑
T γ

TRmin is a shifted value.
Previous EM methods [Kumar and Zilberstein, 2010;

Pajarinen and Peltonen, 2011] have achieved success in scal-
ing to larger problems by factoring the distribution over states
and histories for inference, but these methods require using a
POMDP model to construct a Bayes net for policy evaluation.
When the exact model parameters T , Ω andR are unknown,
one needs to solve a reinforcement learning (RL) problem. To
address this important yet less addressed problem, a global
empirical value function extended from the single-agent case
[Li et al., 2009], is constructed based on all the action, obser-
vation and reward trajectories, and the product of local policies
of all agents. This serves as the basis for learning (fixed-size)
FSCs in RL settings.
Definition 1. (Global empirical value function) Let
D(K) = {(~o k0 ~a k0 rk0~o k1 ~a k1 rk1 · · ·~o kTk~a

k
Tk

rkTk)}k=1,··· ,K be a
set of episodes resulting from N agents who choose actions
according to Ψ = ⊗nΨn, a set of stochastic behavior
policies with pΨn(a|h) > 0, ∀ action a, ∀ history h. The

global empirical value function is defined as V̂
(
D(K); Θ

)def
=∑K

k=1

∑Tk
t=0

γt(rkt−Rmin)
K

∏t
τ=0

∏N
n=1 p(a

k
n,τ |h

k
n,τ ,Θn)∏t

τ=0

∏N
n=1 p

Ψn (akn,τ |hkn,τ)
where

h kn,t = (akn,0:t−1, o
k
n,1:t), 0 ≤ γ < 1 is the discount.

According to the strong law of large numbers [Robert and
Casella, 2004], V̂ (Θ) = limK→∞ V̂

(
D(K); Θ

)
, i.e., with

a large number of trajectories, the empirical value function
V̂
(
D(K); Θ

)
approximates V̂ (Θ) accurately. Hence, apply-

ing (1), V̂
(
D(K); Θ

)
approximates L(Θ), and offers an objec-

tive for learning the decentralized policies and can be directly
maximized by the EM algorithms in [Li et al., 2009].

3 Bayesian Learning of Policies
EM algorithms infer policies based on fixed-size representa-
tion and observed data only, it is difficult to explicitly handle
model uncertainty and encode prior (or expert) knowledge. To
address these issues, a Bayesian learning method is proposed
in this section. This is accomplished by measuring the like-
lihood of Θ using L

(
D(K); Θ

)
, which is combined with the

prior p(Θ) in Bayes’ rule to yield the posterior

p(Θ|D(K)) = L
(
D(K); Θ

)
p(Θ)

[
p
(
D(K)

)]−1

, (2)

where p
(
D(K)

)
is the marginal likelihood of the joint FSC

and, up to additive constant, proportional to the marginal value
function,

V̂
(
D(K)

)def
=

∫
V̂
(
D(K); Θ

)
p(Θ)dΘ

∝
∫
L
(
D(K); Θ

)
p(Θ)dΘ = p

(
D(K)

)
. (3)

To compute the posterior, p(Θ|D(K)), Markov chain Monte
Carlo (MCMC) simulation [Robert and Casella, 2004] is the
most straight forward method. However, MCMC is costly in
terms of computation and storage, and lacks a strong conver-
gence guarantee. An alternative is a variational Bayes (VB)
method [Beal, 2003], which performs approximate posterior
inference by minimizing the Kullback-Leibler (KL) diver-
gence between the true and approximate posterior distributions.
Because the VB method has a (local) convergence guarantee
and is able to trade-off scalability and accuracy, we focus
on the derivation of VB method here. Denoting q(Θ) as the
variational approximation to p(Θ|D(K)), and qkt (~z k0:t) as the
approximation to p(~z k0:t|~o k1:t,Θ), a VB objective function 1 is

KL
({
qkt (~z k0:t)q(Θ)

}
k=1:K

||
{
ν kt p(~z

k
0:t,Θ)

}
k=1:K

)
=

lnV̂
(
D(K)

)
− LB

({
qkt (~z k0:t)

}
, q(Θ)

)
, (4)

where

LB
({
qkt (~z k0:t)

}
, q(Θ)

) def
=∑

k,t,z k1:N,0:t

∫
qkt (~z k0:t)

K/q(Θ)
ln
νkt p(~z

k
0:t,Θ|hk0:t)

qkt (~z k0:t)q(Θ)
dΘ (5)

is the lower bound of lnV̂
(
D(K)

)
and

ν kt
def
=

γtrkt
∏N
n=1 p(a

k
n,0:t|okn,1:t,Θ)∏N

n=1

∏t
τ=0 p

Ψn(akn,τ |hkn,τ)V̂ (D(K),Θ)
,∀ t, k, (6)

is the re-weighted reward. Since lnV̂
(
D(K)

)
in equation (4)

is independent of Θ and {qkt (~z k0:t)}, minimizing the KL diver-
gence is equivalent to maximizing the lower bound, leading to
the following constrained optimization problem,

max{
qkt

(
~z k0:t

)}
q(Θ)

LB
({
qkt (~z k0:t)

}
, q(Θ)

)
subject to: qkt (~z k0:t,Θ) =

∏N
n=1 q

k
t (z kn,0:t)q(Θn),

K∑
k=1

Tk∑
t=0

|Z|∑
z k1:N,0:t=1

qkt (~z k0:t) = K, qkt (~z k0:t) ≥ 0,∀~z kt , t, k,

1Refer to the supplemental material [URL, b] for more details.

∫
p(Θ)dΘ = 1 and p(Θ) ≥ 0,∀Θ (7)

where the constraint in the second line arises both from the
mean-field approximation and from the decentralized policy
representation, and the last two lines summarize the normal-
ization constraints. It is worth emphasizing that we developed
this variational mean-field approximation to optimize a decen-
tralized policy representation, showing that the VB learning
problem formulation (7) is both a general and accurate method
for the multiagent problem considered in this paper.

3.1 Stick-breaking Policy Priors
To solve the Bayesian learning problem described above and
obtain the variable-size FSCs, the stick-breaking prior is used
to specify the policy’s structure. As such, Dec-SBPR is for-
mally given in definition 2.
Definition 2. The decentralized stick breaking policy repre-
sentation (Dec-SBPR) is a tuple (N ,A,O,Z, µ, η, ρ), where
N ,A and O are as in the definition of Dec-POMDP; Z is
an unbounded set of nodes indexed by positive integers; for
notational simplicity2,µ are assumed to be deterministic with
µ1
n = 1, µ2:∞

n = 0,∀n; (η, ρ) determine (W,π), the FSC
parameters defined in section 2.1, as follows

W i,1:∞
n,a,o ∼SB(σi,1:∞

n,a,o , η
i,1:∞
n,a,o), π

1:|An|
n,i ∼ Dir(ρ

1:|An|
n,i) (8)

where Dir represents Dirichlet distribution and SB
represents the stick-breaking process with W i,j

n,a,o =

V i,jn,a,o
∏j−1
m=1(1 − V i,mn,a,o) and V i,jn,a,o∼Beta(σi,jn,a,o, η

i,j
n,a,o),

ηi,jn,a,o∼Gamma(c, d), n = 1, · · · , N and i, j = 1, · · · ,∞.
DECSBPR differs from previous nonparametric Bayesian

RL methods [Liu et al., 2011; Doshi-Velez et al., 2010].
Specifically, Dec-SBPR performs policy-based RL and gen-
eralizes the nonparametric Bayesian policy representation
of POMDPs [Liu et al., 2011] to the decentralized domain.
Whereas [Doshi-Velez et al., 2010] is a model-based RL
method that doesn’t assume knowledge about the world’s
model, but explicitly learns it and then performs planning.
Moreover, Dec-SBPR further distinguishes from previous
methods [Doshi-Velez et al., 2010; Liu et al., 2011] by the
prior distributions and inference methods employed. These
previous methods employed hierarchical Dirichlet processes
hidden Markov models (HDP-HMM) to infer the number
of controller nodes. However, due to the lack of conjugacy
between two levels of DPs in the HDP-HMM, a fully conju-
gate Bayesian variational inference does not exist3. There-
fore, these methods used MCMC which requires high com-
putational and storage costs, making them not ideal for solv-
ing large problems. In contrast, Dec-SBPR employs single
layer SB priors over FSC transition matrices W and sparse
Gamma priors over SB weight hyperparameters η to bias tran-
sition among nodes with smaller indices. Although a similar
framework has been explored to infer hidden Markov mod-
els(HMMs) [Paisley and Carin, 2009] , it has never been used
to model the uncertainty of policy representations in multia-
gent planning and RL problems.

2Nonparametric priors over µ can also be used.
3The VB method in [Bryant and Sudderth, 2012] imposes point-

mass proposals over top level DPs, lacking a uncertainty measure.

Algorithm 1 Batch VB Inference for Dec-SBPR

1: Input: Episodes D(K), the number of agents N , initial policies
Θ, VB lower bound LB0 = −Inf , ∆LB = 1, Iter = 0;

2: while ∆LB > 10−3 do
3: for k = 1 to K, n = 1 to N do
4: Update the global rewards {ν̂kt } using (9).
5: Compute {αn,kτ } and {βn,kt,τ }.
6: end for
7: Iter = Iter + 1.
8: Compute LBIter using (5)
9: ∆LB = (LBIter − LBIter−1)/|LBIter−1|

10: for n = 1 to N do
11: Compute {ξn,kt,τ (i, j)} and {φn,kt,τ (i)} using (11).
12: Update the hyper-parameters of Θn using (10) .
13: Compute |Zn| using (13).
14: end for
15: end while
16: Return: Policies {Θn}Nn=1, and controller sizes {|Zn|}Nn=1.

It is also worth noting that SB processes subsume Dirich-
let Processes (DPs) [Ferguson, 1973] as a special case, when
σi,jn,a,o=1,∀i, j, n, a, o (in Dec-SBPR). The purpose of using
SB priors is to encourage a small number of FSC nodes. Com-
pared to a DP, the SB priors can represent richer patterns of
sparse transition between the nodes of an FSC, because it al-
lows arbitrary correlation between the stick-breaking weights
(the weights are always negatively correlated in a DP).

3.2 Variational Stick-breaking Policy Inference
It is shown in [Ishwaran and James, 2001] that the random
weights constructed by the SB prior are equivalently governed
by a generalized Dirichlet distribution (GDD) and are therefore
conjugate to the multinomial distribution; hence an efficient
variational Bayesian algorithm for learning the decentralized
policies can be derived. To accommodate an unbounded num-
ber of nodes, we apply the retrospective representation of SB
priors [Papaspiliopoulos and Roberts, 2008] to the Dec-SBPR.
For agent n, the SB prior is set with a truncation level |Zn|,
taking into account the current occupancy as well as additional
nodes reserved for future new occupancies. The solution to (7)
under the stick-breaking priors is given in Theorem 3, which
is proved in the supplementals [URL, b].

Theorem 3. Let p(Θ) be constructed by the SB priors defined
in (8) with hyper-parameters (σ̂, η̂, ρ̂), then iterative applica-
tion of the following updates leads to monotonic increase of
(5), until convergence to a maxima. The updates of {qkt } are

qkt (zkn,0:t) = ν̂kt p(z
k
n,0:t|okn,1:t, a

k
n,0:t, Θ̃n),∀n, t, k, (9)

where ν̂kt is computed using (6) with Θ replaced by Θ̃ =

{π̃, µ̃, W̃}, a set of under-normalized probability (mass)
functions , with π̃an,i = e〈lnπ

a
n,i〉p(π|ρ̂) , and W̃ i,j

n,a,o =

e〈lnW
i,j
n,a,o〉p(W |σ̂,η̂) , and 〈·〉p denotes expectations of · with

respect to distributions p. The hyper-parameters of the poste-
rior distribution are updated as

σ̂i,jn,a,o = σi,jn,a,o + ζi,jn,a,o, η̂i,jn,a,o = ηi,jn,a,o +

|Zn|∑
l=j+1

ζi,ln,a,o,

Table 1: Computational Complexity of Algorithm 1.

VAR BEST CASE WORST CASE

α Ω(N |Z|2KT) O(N |Z|2KT)
β Ω(N |Z|2KT) O(N |Z|2KT 2)
νkt Ω(K) O(KT)
Θ Ω(N |Z|2KT) O(N |Z|2KT 2)

LB Ω(|Z|2
∑N
n=1 |An||On|) O(|Z|2

∑N
n=1 |An||On|)

ρ̂an,i = ρan,i +

K∑
k=1

Tk∑
t=0

t∑
τ=1

ν̂ kt
K
φn,kt,τ−1(i)Ia(a kτ) (10)

with ζi,jn,a,o=
∑K
k=1

∑Tk
t=0

∑t
τ=1

ν̂ kt
K ξ

n,k
t,τ−1(i, j)Ia,o(a kτ−1, o

k
τ),

where I(·) is the indicator function, and both ξn,kt,τ and φn,kt,τ
are marginals of qkt (zkn,0:t), i.e.

ξn,kt,τ (i, j)=p(zkn,τ = i, zkn,τ+1 = j|akn,0:t, o
k
n,1:t, Θ̃n) (11)

φn,kt,τ (i)=p(zkn,τ = i|akn,0:t, o
k
n,1:t, Θ̃n) (12)

The update equations in Theorem 3 constitute the VB al-
gorithm for learning a variable-size joint FSCs under SB pri-
ors with batch data. In particular, (9) is a policy-evaluation
step where the rewards are reweighted to reflect the improved
marginal value of the new policy posterior updated in the
previous iteration, and (10) is a policy-improvement step
where the reweighted rewards are used to further improve
the policy posterior. Both steps require (11), which are com-
puted based on αn,kτ (i) = p

(
zkn,τ = i|a kn,0:τ , o

k
n,1:τ , Θ̃n

)
and

βn,kt,τ (i)=
p(a kn,τ+1:t|z

k
n,τ=i,o kn,τ+1:t,Θ̃n)∏t

τ′=τ p(a
k
τ |h kn,τ′ ,Θ̃n)

, ∀n, k, t, τ . The (α, β)

are forward-backward messages. Their updating equations are
derived in the supplemental material [URL, b].

To determine the number of controller nodes {|Zn|}Nn=1,
the occupancy of a node is computed by checking if there is
a positive reward assigned to it. For example, for action a
and node i, ρ̂an,i − ρan,i is the reward being assigned. If this
quantity is greater than zero, then node i is visited. Summing
over all actions gives the value of node i. Hence |Zn| can be
computed based on the following formula

|Zn| =
∑∞
i=1 I

(∑|An|
a=1 (ρ̂an,i − ρan,i) > 0

)
. (13)

Algorithm 1 describes the complete approach, and after it has
converged, point estimates of the decentralized policies may
be obtained by calculating E[µ̂in], E[π̂an,i], and E[Ŵ i,j

n,a,o].

3.3 Computational complexity
The time complexity of Algorithm 1 for each iteration is sum-
marized in Table 1, assuming the length of an episode is on
the order of magnitude of T , and the number of nodes per
controller is on the order of magnitude of |Z|. In Table 1,
the worst case refers to when there is a nonzero reward at
every time step of an episode (dense rewards), while the best
case is when nonzero reward is received only at the terminal
step. Hence in general, the algorithm scales linearly with the
number of episodes and the number of agents. The time depen-
dency on T is between linear and quadratic. In any case, the
computational complexity of Algorithm 1 is independent of
the number of states, making it is scalable to large problems.

3.4 Exploration and Exploitation Tradeoff
Algorithm 1 assumes off-policy batch learning where trajec-
tories are collected using a separate behavior policy. This is
appropriate when data has been generated from real-world
or simulated experiences without any input from the learn-
ing algorithm (e.g., learning from demonstration). Off-policy
learning is efficient if the behavior policy is close to optimal,
as in the case when expert information is available to guide
the agents. With a random behavior policy, it may take a long
time for the policy to converge to optimality; in this case, the
agents may want to exploit the policies learned so far to speed
up the learning process.

An important issue concerns keeping a proper balance be-
tween exploration and exploitation to prevent premature con-
vergence to a suboptimal policy, but allow the algorithm to
learn quickly. Since the execution of Dec-POMDP policies is
decentralized, it is difficult to design an efficient exploration
strategy that guarantees optimality. [Wu et al., 2013] count the
visiting frequency of FSC nodes and apply upper-confidence-
bound style heuristic to select next controller nodes, and use
ε-greedy strategy to select actions. However ε-greedy might
be sample inefficient. [Banerjee et al., 2012] proposed a dis-
tributed learning approach where agents take turns to learn the
best response to each other’s policies. This framework applies
an R-max type of heuristic, using the counts of trajectories
to distinguish known and unknown histories, to tradeoff ex-
ploration and exploitation. However, this method is confined
to tree-based policies in finite-horizon problems, and requires
synchronized multi-agent learning.

To better accommodate our Bayesian policy learning frame-
work for RL in infinite-horizon Dec-POMDPs, we define an
auxiliary FSC, Ωn = 〈Y,On,Zn,Wn, µn, ϕn〉, to represent
the policy of each agent in balancing exploration and exploita-
tion. To avoid confusion, we refer to Θn as a primary FSC.
The only two components distinguishing Ψn from Θn are
Y and ϕn, where Y = {0, 1} encodes exploration (y = 1)
or exploitation (y = 0), and ϕn = {ϕn,zy } with ϕn,zy de-
noting the probability of agent n choosing y in z. One can
express p(yn,t|hn,t,Ψn) in the same way as one expresses
p(an,t|hn,t,Θn) (which is described in section 2.1). The be-
havior policy Πn of agent n is given as

pΠn(a|h,Θn,Ωn) =
∑
y=0,1

p(a|y, h)p(y|h,Ωn), (14)

where p(a|y = 0, h) ≡ p(a|h,Θn) is the primary FSC policy,
and p(a|y = 1, h) is the exploration policy of agent n, which
is usually a uniform distribution.

The behavior policy in (14) has achieved significant success
in the single-agent case [Cai et al., 2009; Liu et al., 2011;
2013]. Here we extend it to the multi-agent case (centralized
learning and decentralized exploration/execution) and provide
empirical evaluation in the next section.

4 Experiments
The performance of the proposed algorithms are evaluated on
five benchmark problems4 and a large-scale problem (traffic

4Downloaded from http://rbr.cs.umass.edu/
camato/decpomdp/download.html

Figure 1: Compares the variable-size controller learned by Dec-
SBPR and fixed-size controllers learned by EM. Left: testing value;
Right: averaged computation time. Although EM has lower compu-
tational complexity per iteration than our VB algorithm, empirically,
the VB algorithm takes less time to converge. Moreover, the value of
using the SB prior (also its special Dirichlet instance (DP)) is close
to the best result of EM (dotted sky-blue line), and is much better
than the average results of EM (solid back line). The added flexibility
of the SB prior leads to slightly better performance than the DP, as
discussed at the end of section 3.1.

control) [Wu et al., 2013]. The experimental procedure in
[Wu et al., 2013] was used for all the results reported here.
For Dec-SBPR, the hyperparameters in (8) are set to c = 0.1
and d = 10−6 to promote sparse usage of FSC nodes.5 The
policies are initialized as FSCs converted from the episodes
with the highest rewards using a method similar to [Amato
and Zilberstein, 2009].
Learning variable-size FSC vs learning fixed-size FSC
To demonstrate the advantage of learning variable-size FSCs,
Dec-SBPR is compared with an implementation of the pre-
vious EM algorithm [Wu et al., 2013]. The comparison is
for the Mars Rover problem using K = 300 episodes 6 to
learn the FSCs and evaluating the policy by the discounted
accumulated reward averaged over 100 test episodes of 1000
steps. Here, we consider off-policy learning and apply a semi-
random policy to collect samples. Specifically, the learning
agent is allowed access to episodes collected by taking actions
according to a POMDP algorithm (point-based value iteration
(PBVI) [Pineau et al., 2003]). Let ε be the probability that the
agents follow the PBVI policy and 1− ε be the probability that
the agents take random actions. This procedure mimics the
approach used in previous work [Wu et al., 2013]. The results
with η = 0.3 are reported in Figure 1, which shows the exact
value and computation time as a function of the number of
controller nodes |Z|. As expected, for the EM algorithm, when
|Z| is too small, the FSCs cannot represent the optimal policy
(under-fitting), and when the number of nodes is too large,
FSCs overfits a limited amount of data and perform poorly.
Even if |Z| is set to the number inferred by Dec-SBPR, EM
can still suffer severely from initialization and local maxima
issues, as can be seen from a large error-bar. By setting a high
truncation level (|Z| = 50), Dec-SBPR employs Algorithm 1
to integrate out the uncertainty of the policy representation
(under the SB prior). As a result, Dec-SBPR can infer both

5These values were chosen for testing, but our approach is robust
to other values of c and d.

6Using smaller training sample size K, our method can still per-
form robustly, as it is shown in the supplementals [URL, b].

Table 2: Performance of Dec-SBPR on benchmark problems compared to other state-of-art algorithms. Shows policy values (higher value
indicates better performance) and CPU times of all algorithms, and the average controller size |Z| inferred by Dec-SBPR.

POLICY LEARNING (UNKNOWN MODEL) PLANNING (KNOWN MODEL)

PROBLEMS (|S|, |A|, |O|) DEC-SBPR(FIXED ITERATION) DEC-SBPR(FIXED TIME) MCEM PERIEM FB-HSVI
VALUE |Z| TIME VALUE |Z| TIME VALUE |Z| TIME VALUE |Z| TIME VALUE |Z| TIME

DEC-TIGER (2, 3, 3) -18.63 6 96S -19.42 8 20S -32.31 3 20S 9.42 7× 10 6540S 13.45 52 6.0S
BROADCAST (4, 2, 5) 9.20 2 7S 9.27 2 24S 9.15 3 24S – 9.27 102 19.8S
RECYCLING ROBOTS (3, 3, 2) 31.26 3 147S 25.16 2 19S 30.78 3 19S 31.80 6× 10 272S 31.93 108 0S
BOX PUSHING (100, 4, 5) 77.65 14 290S 58.27 9 32S 59.95 3 32S 106.68 4× 10 7164S 224.43 331 1715.1S
MARS ROVERS (256, 6, 8) 20.62 5 1286S 15.2 6 160S 8.16 3 160S 18.13 3× 10 7132S 26.94 136 74.31S

Figure 2: Performance comparison on traffic control problem (1020

states and 100 agents). Test reward (left) and inferred controller size
(right) of Dec-SBPR, as a function of algorithmic iteration.

the number of nodes that is needed (≈ 5) and optimal con-
troller parameters simultaneously. Furthermore, this inference
is done with less computation time and with a higher value
and improved robustness (low variance of test value) than EM.

Comparison with other methods The performance of Dec-
SBPR is also compared to several state-of-art methods, includ-
ing: Monte Carlo EM (MCEM) [Wu et al., 2013]. Similar
to Dec-SBPR, MCEM is a policy-based RL approach. We
apply the exploration-exploitation strategy described in sec-
tion 3.4 and follow the same experimental procedure in [Wu
et al., 2013] to report the results. The rewards after running
a fixed number of iterations and a fixed amount of time are
summarized (respectively) in Table 2 (the first column under
policy-learning category). Dec-SBPR is shown to achieve
better policy values than MCEM on all problems 7. These
results can be explained by the fact that EM is (more) sensi-
tive to initialization and (more) prone to local optima. More-
over, by fixing the size of the controllers, the optimal policy
from EM algorithms might be over/under fitted . By using
a Bayesian nonparametric prior, Dec-SBPR learns the pol-
icy with variable-size controllers, allowing more flexibility
for representing the optimal policy. We also show the re-
sult of Dec-SBPR running the same amount of clock time
as MCEM (Dec-SBPR (fixed time)), which indicates Dec-
SBPR can achieve a better trade-off between policy value and
learning time than MCEM.

Finally, Dec-SBPR is compared to Periodic EM
(PeriEM) [Pajarinen and Peltonen, 2011] and feature based
heuristic search value iteration (FB-HSVI) [Dibangoye et al.,
2014], two state-of-art planing methods (with known models)
for generating controllers. Because having a Dec-POMDP
model allows more accurate value function calculations than
a finite number of trajectories, the value of PeriEM and FB-
HSVI are treated as upper-bounds for the policy-based meth-

7The results are provided by personal communication with its
authors and run on the same benchmarks that are available online.

ods. Our Dec-SBPR approach can sometimes outperform
PeriEM, but produces lower value than FB-HSVI. FB-HSVI
is a boundedly-optimal method, showing that Dec-SBPR can
produce near optimal solutions in some of these problems
and produces solutions that are much closer to the optimal
than previous RL methods. It is also worth noting that neither
PeriEM nor FB-HSVI can scale to large problems (such as
the one discussed below), while by using a policy-based RL
approach, Dec-SBPR can scale well.

Scaling up to larger domains To demonstrate scalability
to both large problem sizes and large numbers of agents, we
test our algorithm on a traffic problem [Wu et al., 2013], with
1020 states. Here, there are 100 agents controlling the traffic
flow at 10 × 10 intersections with one agent located at each
intersection. Except for MCEM, no previous Dec-POMDPs
algorithms are able to solve such large problems.

Since Wu et al. use a hand-coded policy (comparing the
traffic flow between two directions) as a heuristic for gener-
ating training trajectories, we also use such a heuristic for a
fair comparison. In addition, to examine the effectiveness of
the exploration-exploitation strategy described in Section 3.4,
we also consider the case where the initial behavior policy is
random and then it is optimized as discussed. From Figure
2, we can see that, with the help of the heuristic, Dec-SBPR
can achieve the best performance. Without using the heuristic
(by just using our exploration-exploitation strategy), in a few
iterations, Dec-SBPR is able to produce a higher quality policy
than MCEM. Moreover, the inferred number of FSC nodes
(averaged over all agents) is smaller than the number prese-
lected by MCEM. This shows that not only can Dec-SBPR
scale to large problems, but it can also produce higher-quality
solutions than other methods for those large problems.

5 Conclusions

The paper presented a scalable Bayesian nonparametric policy
representation and an associated learning framework (Dec-
SBPR) for generating decentralized policies in Dec-POMDPs.
An new exploration-exploitation method, which extends the
popular ε-greedy method, was also provided for reinforce-
ment learning in Dec-POMDPs. Experimental results show
Dec-SBPR produces higher-quality solutions than the state-
of-art policy-based method, and has the additional benefit of
inferring the number of nodes needed to represent the optimal
policy. The resulting method is also scalable to large domains
(in terms of both the number of agents and the problem size),
allowing high-quality policies for large Dec-POMDPs to be
learned efficiently from data.

Acknowledgments
Research supported by US Office of Naval Research under
MURI program award #N000141110688 and NSF award
#1463945.

References
[Amato and Zilberstein, 2009] C. Amato and S. Zilberstein. Achiev-

ing goals in decentralized POMDPs. In Proc. of the 8th Int’l Conf.
on Autonomous Agents and Multiagent Systems, 2009.

[Amato et al., 2010] C. Amato, D. S. Bernstein, and S. Zilberstein.
Optimizing fixed-size stochastic controllers for POMDPs and
decentralized POMDPs. J. Autonomous Agents and Multi-Agent
Systems, 2(3):293–320, 2010.

[Amato et al., 2013] C. Amato, G. Chowdhary, A. Geramifard, N. K.
Ure, and M. J. Kochenderfer. Decentralized control of partially
observable Markov decision processes. In Proc. of the Conf. on
Decision and Control, 2013.

[Amato et al., 2015] Christopher Amato, George D. Konidaris,
Gabriel Cruz, Christopher A. Maynor, Jonathan P. How, and
Leslie P. Kaelbling. Planning for decentralized control of multiple
robots under uncertainty. In ICRA, 2015.

[Banerjee et al., 2012] B. Banerjee, J. Lyle, L. Kraemer, and R. Yel-
lamraju. Sample bounded distributed reinforcement learning for
decentralized POMDPs. In Proc. of the 26th AAAI Conf. on Artifi-
cial Intelligence, 2012.

[Beal, 2003] Matthew James Beal. Variational algorithms for ap-
proximate Bayesian inference. PhD thesis, University of London,
2003.

[Bernstein et al., 2001] D. Bernstein, S. Zilberstein, R. Washington,
and J. Bresina. Planetary rover control as a Markov decision
process. In 6th Int’l Symposium on Artificial Intelligence, Robotics,
and Automation in Space, 2001.

[Bernstein et al., 2002] D. S. Bernstein, R. Givan, N. Immerman,
and S. Zilberstein. The complexity of decentralized control of
Markov decision processes. Mathematics of Operations Research,
27(4):819–840, 2002.

[Bernstein et al., 2009] D. S. Bernstein, C. Amato, E. A. Hansen,
and S. Zilberstein. Policy iteration for decentralized control of
Markov decision processes. J. Artificial Intelligence Research,
34:89–132, 2009.

[Bryant and Sudderth, 2012] Michael Bryant and Erik B Sudderth.
Truly nonparametric online variational inference for hierarchical
dirichlet processes. In Advances in Neural Information Processing
Systems, 2012.

[Cai et al., 2009] C. Cai, X. Liao, and L. Carin. Learning to explore
and exploit in POMDPs. In Proc. of the 23th Annual Conf. on
Neural Information Processing Systems, 2009.

[Dempster et al., 1977] A. Dempster, N. Laird, and D. Rubin. Max-
imum likelihood from incomplete data via the EM algorithm. J.
Royal Statistical Society B, 39:1–38, 1977.

[Dibangoye et al., 2014] J. S. Dibangoye, O. Buffet, and F. Charpil-
let. Error-bounded approximations for infinite-horizon discounted
decentralized POMDPs. In Machine Learning and Knowledge
Discovery in Databases. Springer, 2014.

[Doshi-Velez et al., 2010] F. Doshi-Velez, D. Wingate, N. Roy, and
J. B. Tenenbaum. Nonparametric Bayesian policy priors for rein-
forcement learning. In Advances in Neural Information Processing
Systems, 2010.

[Ferguson, 1973] T. S. Ferguson. A Bayesian analysis of some non-
parametric problems. Annals of Statistics, 1:209–230, 1973.

[Ishwaran and James, 2001] H. Ishwaran and L. F. James. Gibbs
sampling methods for stick-breaking priors. J. Am. Statist. Assoc.,
96(453), 2001.

[Kumar and Zilberstein, 2010] A. Kumar and S. Zilberstein. Any-
time planning for decentralized POMDPs using expectation. In
Proc. of the 26th Conf. on Uncertainty in Artificial Intelligence,
2010.

[Li et al., 2009] H. Li, X. Liao, and L. Carin. Multi-task reinforce-
ment learning in partially observable stochastic environment. J.
Machine Learning Research, 10(1):1131–1186, 2009.

[Liu et al., 2011] M. Liu, X. Liao, and L. Carin and. Infinite region-
alized policy representation. In Proc. of the 28th Int’l Conf. on
Machine Learning, 2011.

[Liu et al., 2013] Miao Liu, Xuejun Liao, and Lawrence Carin.
Online expectation maximization for reinforcement learning in
POMDPs. In Proc. of 23rd Int Joint Conf. on Artificial Intelligence,
2013.

[Liu et al., 2015] Miao Liu, Christopher Amato, Xuejun Liao,
Lawrence Carin, and Jonathan P. How. Stick-Breaking Policy
Learning in Dec-POMDPs. arXiv:submit/1244756 [cs.AI], 2015.

[Martins and Demiris, 2010] Murilo Fernandes Martins and Yiannis
Demiris. Learning multirobot joint action plans from simultaneous
task execution demonstrations. In Proc. of the 9th Int’l Conf. on
Autonomous Agents and Multiagent Systems, 2010.

[Messias et al., 2010] J. Messias, M. Spaan, and P. Lima. Multi-
robot planning under uncertainty with communication: a case
study. In Fifth Workshop on Multi-agent Sequential Decision
Making in Uncertain Domains (MSDM), 2010.

[Oliehoek, 2012] F. A. Oliehoek. Decentralized POMDPs. In Rein-
forcement Learning: State of the Art, Adaptation, Learning, and
Optimization, pages 471–503. Springer Berlin Heidelberg, Berlin,
Germany, 2012.

[Paisley and Carin, 2009] J. Paisley and L. Carin. Hidden Markov
models with stick-breaking priors. Signal Processing, IEEE Trans.
on, 57(10):3905–3917, 2009.

[Pajarinen and Peltonen, 2011] J. Pajarinen and J. Peltonen. Pe-
riodic finite state controllers for efficient POMDP and DEC-
POMDP planning. In Proc. of the 25th Annual Conf. on Neural
Information Processing Systems, 2011.

[Papaspiliopoulos and Roberts, 2008] O. Papaspiliopoulos and
G. O. Roberts. Retrospective Markov chain Monte Carlo
methods for Dirichlet process hierarchical models. Biometrika,
95(1):169–186, 2008.

[Pineau et al., 2003] J. Pineau, G. Gordon, and S. Thrun. Point-
based value iteration: an anytime algorithm for POMDPs. In Proc.
of the 18th Int Joint Conf. on Artificial Intelligence, 2003.

[Robert and Casella, 2004] Christian P Robert and George Casella.
Monte Carlo statistical methods, volume 319. Citeseer, 2004.

[Wu et al., 2013] F. Wu, S. Zilberstein, and N. R. Jennings. Monte-
carlo expectation maximization for decentralized POMDPs. In
Proc. 23rd Int’l. Joint Conf. on Artificial Intelligence, 2013.

