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Abstract—We introduce a principled method for multi-robot
coordination based on a generic model (termed a MacDec-
POMDP) of multi-robot cooperative planning in the presence of
stochasticity, uncertain sensing and communication limitations.
We present a new MacDec-POMDP planning algorithm that
searches over policies represented as finite-state controllers,
rather than the existing policy tree representation. Finite-state
controllers can be much more concise than trees, are much
easier to interpret, and can operate over an infinite horizon.
The resulting policy search algorithm requires a substantially
simpler simulator that models only the outcomes of executing a
given set of motor controllers, not the details of the executions
themselves and can to solve significantly larger problems than
existing MacDec-POMDP planners. We demonstrate significantly
improved performance over previous methods and application
to a cooperative multi-robot bartending task, showing that our
method can be used for actual multi-robot systems.

I. INTRODUCTION

In order to fulfill the potential of increasingly capable and
affordable robot hardware, effective methods for controlling
robot teams must be developed. Although many algorithms
have been proposed for multi-robot problems, the vast majority
are specialized methods engineered to match specific team
or problem characteristics. Progress in more general settings
requires the specification of a model class that captures the
core challenges of controlling multi-robot teams in a generic
fashion. Such general models—in particular, the Markov de-
cision process [22] and partially observable Markov decision
process [11]—have led to significant progress in single-robot
settings through standardized models that enable empirical
comparisons between very general planners that optimize a
common metric.

Decentralized partially observable Markov decision pro-
cesses (or Dec-POMDPs [8]) are the natural extension of such
frameworks to the multi-robot case—modeling multi-agent co-
ordination problems in the presence of stochasticity, uncertain
sensing and action, and communication limitations. Unfortu-
nately, Dec-POMDPs are exactly solvable only for very small
problems. The search for tractable approximations led to the
recent introduction of the MacDec-POMDP model [4], which
includes temporally extended macro-actions that naturally
model robot motor controllers which may require multiple
time-steps to execute (e.g., navigating to a waypoint, lifting
an object, or waiting for another robot). Planning now takes

Fig. 1. The bartender and waiters domain

place at the level of selecting controllers to execute, rather than
sequencing low-level motions, and MacDec-POMDP solution
methods can scale up to reasonably realistic robotics problems;
for example, solving a multi-robot warehousing problem that
was orders of magnitude larger than those solvable by previous
methods [5]. General-purpose planners based on MacDec-
POMDPs have the potential to replace the abundance of ad-hoc
multi-robot algorithms for specific task scenarios with a single
precise and generic formulation of cooperative multi-robot
problems that is powerful enough to include (and naturally
combine) all existing cooperative scenarios.

Unfortunately existing MacDec-POMDP planners have two
critical flaws. First, even though using macro-actions dras-
tically increases the size of problems that can be solved,
planning still scales poorly with the horizon. Second, they
assume that the underlying (primitive) problem is discrete, and
that a low-level model of that problem is completely specified
and available to all agents. These difficulties significantly limit
the applicability of existing MacDec-POMDP planners.

This paper introduces a new MacDec-POMDP planning
algorithm that searches over policies represented as finite-state
controllers, rather than the currently used policy trees. Finite-
state controllers are often much more concise than trees, are
easier to interpret, and can operate for an infinite horizon.
The resulting policy-search algorithms only require a model
of the problem at the macro-action level—at the level of
modeling the outcome of executing given motor controllers,



not the details of execution itself—substantially reducing the
knowledge required for planning. We show that the new
planner can solve significantly larger problems than existing
MacDec-POMDP planners (and by extension, all existing
Dec-POMDP planners), and demonstrate its application to
a cooperative multi-robot bartending task, showing that our
method can automatically optimize solutions to multi-robot
problems from a high-level specification.

II. MOTIVATING PROBLEM

As a motivating experimental domain we consider a het-
erogenous multi-robot problem, shown in Figure 1. The robot
team consists of a PR2 bartender and two TurtleBot waiters.
There are also three rooms in which people can order drinks
from the waiters. Our goal is to bring drinks to the rooms with
orders efficiently. We impose communication limitations so the
robots cannot communicate unless they are in close range. As
a result, the robots must make decisions based on their own
information, reasoning about the status and behavior of the
other robots. This is a challenging task with stochasticity in
ordering, navigation, picking, and placing objects as well as
partial observability in the orders and the location and status
of the other robots.

We model this domain as a MacDec-POMDP and introduce
a planning algorithm capable of automatically generating
controllers for the robots (in the form of finite-state machines)
that collectively maximize team utility. This problem involves
aspects of communication, task allocation, and cooperative
navigation—tasks for which specialized algorithms exists—but
modeling it as a MacDec-POMDP allows us to automatically
generate controllers that express and combine aspects of these
behaviors, without specifying them in advance, while trading
off their costs in a principled way.

III. BACKGROUND

Decentralized Partially Observable Markov Decision Pro-
cesses (Dec-POMDPs) generalize POMDPs to the multiagent,
decentralized setting [8]. Multiple agents operate under un-
certainty based on partial views of the world, with execution
unfolding over a bounded or unbounded number of steps. At
each step, every agent chooses an action (in parallel) based
purely on locally observable information and then receives an
observation. The agents share a single reward function based
on the actions of all agents, making the problem cooperative,
but their local views mean that execution is decentralized.

Formally, a Dec-POMDP is defined by tuple
〈I, S, {Ai}, T,R, {Zi}, O, h〉, where I is a finite set of
agents; S is a finite set of states with designated initial
state distribution b0; Ai is a finite set of actions for each
agent i with A = ×iAi the set of joint actions; T is a state
transition probability function, T : S × A × S → [0, 1], that
specifies the probability of transitioning from state s ∈ S
to s′ ∈ S when the actions a ∈ A are taken by the agents
(i.e., T (s, a, s′) = Pr(s′|a, s)); R is a reward function:
R : S × A → R, the immediate reward for being in state
s ∈ S and taking the actions a ∈ A; Zi is a finite set of

observations for each agent, i, with Z = ×iZi the set of
joint observations; O is an observation probability function:
O : Z×A×S → [0, 1], the probability of seeing observations
o ∈ Z given actions a ∈ A were taken which results in state
s′ ∈ S (i.e., O(o, a, s′) = Pr(o|a, s′)); and h is the number of
(possibly infinite) steps until termination, called the horizon.

A solution to a Dec-POMDP is a joint policy—a set of
policies, one for each agent. Because the full state is not
directly observed, it is often beneficial for each agent to
remember a history of its observations. A local policy for agent
i is a mapping from local observation histories to actions,
HO
i → Ai. Because the system state depends on the behavior

of all agents, it is typically not possible to estimate the system
state (i.e., calculate a belief state) from the history of a single
agent, as is often done in the POMDP case. Since a policy
is a function of history, rather than of a directly observed
state (or a calculated belief state), it is typically represented
explicitly. The most common representation is a policy tree,
where the vertices indicate actions to execute and the edges
indicate transitions conditioned on an observation (with the
history represented as the current path in the tree).

The value of a joint policy, π, from state s is V π(s) =

E
[∑h−1

t=0 γ
tR(at, st)|s, π

]
, which is the expected sum of

rewards for the agents given the action prescribed by the
policy at each step until the horizon is reached. In the finite-
horizon case, the discount factor, γ, is typically set to 1. In the
infinite-horizon case, the discount factor γ ∈ [0, 1) is included
to maintain a finite sum and h = ∞. An optimal policy
beginning at state s is π∗(s) = argmaxπ V

π(s). Dec-POMDP
solution methods typically assume that the set of policies is
generated in a centralized manner, but they are executed in a
decentralized manner based on each agent’s histories.

Although Dec-POMDPs have been widely studied [3, 18,
23], optimal (and boundedly optimal) methods do not scale
to large problems, while approximate methods do not scale
or perform poorly as problem size (including horizon) grows.
Subclasses of the full Dec-POMDP model have been explored,
but they make strong assumptions about the domain (e.g.,
assuming a large amount of independence between agents).

Macro-Actions for Dec-POMDPs: Dec-POMDPs typically
require synchronous decision-making: every agent chooses an
action to execute, and then executes it in a single time step.
This restriction is problematic for two reasons. First, many
systems use a set of controllers (e.g, for waypoint navigation,
grasping an object, waiting for a signal), and planning con-
sists of sequencing the execution of those controllers. These
controllers often require different amounts of time to execute,
so synchronous decision-making requires waiting until all
agents have completed their controller execution (and achieved
common knowledge of this fact). This is inefficient and may
not even be possible in some domains (e.g., when controlling
airplanes or underwater vehicles that cannot stay in place).
Second, the planning complexity of a Dec-POMDP is doubly
exponential in the horizon. A planner that reasons about all
agents’ possible policies at every time step will only ever be



able to make very short plans.
The Dec-POMDP model was recently extended to plan

using macro-actions, or temporally extended actions [4] (hence
the MacDec-POMDP model). This formulation uses higher-
level planning to compute near-optimal solutions for problems
with significantly longer horizons by extending the MDP-
based options framework [26] to Dec-POMDPs by using
macro-actions, mi, that execute a policy in a low-level Dec-
POMDP from states that satisfy a the initial conditions until
some terminal condition is met. Policies for each agent, µi,
can be defined for choosing macro-actions that depend on
high-level observations. Because macro-action policies are
built from primitive actions, we can evaluate the high-level
policies in a way that is similar to other Dec-POMDP-
based approaches. Given a joint policy, the primitive ac-
tion at each step is determined by the (high-level) policy,
which chooses the macro-action, and the macro-action policy,
which chooses the (primitive) action. The joint policy and
macro-action policies can then be evaluated as: V µ(s) =

E

[
h−1∑
t=0

γtR(at, st)|s, π, µ

]
. The goal is to obtain a hierarchi-

cally optimal policy: µ∗(s) = argmaxµV
µ(s), which produces

the highest expected value that can be obtained by sequencing
the agents’ given macro-actions.

Two Dec-POMDP algorithms have been extended to the
MacDec-POMDP case [4], but other extensions are possible.
The key difference is that nodes in a policy tree now select
macro-actions (rather than primitive actions) and edges corre-
spond to terminal conditions (or high-level observations).

IV. FINITE-STATE CONTROLLERS FOR MACDEC-POMDPS

A tree-based representation of a policy requires the agent
to remember its entire history to determine its next action. In
finite-horizon problems, the memory requirement is exponen-
tial in the horizon and for infinite-horizon problems an agent
would need infinite memory. Clearly, this is not feasible. As an
alternative, we introduce a finite-state controller representation
and provide algorithms for generating these controllers.

Finite-state controllers (FSCs) can be used to represent
policies in a manner similar to policy trees. There is a
designated initial node and after action selection at a node,
the controller transitions to the next node depending on the
resulting observation. This continues for the infinite steps of
the problem. Nodes in an agent’s controller represent internal
states, which prescribe actions based on that agent’s finite
memory.

A set of controllers, one per agent, provides the joint policy
of the agents. FSCs are a widely used as solution representa-
tions for POMDPs and Dec-POMDPs [2, 6, 9, 15, 21, 27, 28].

A. Mealy Controllers

There are two main types of controllers, Moore and Mealy,
that have been used for POMDP and Dec-POMDP solutions.
Moore controllers associate actions with nodes and Mealy
controllers associate actions with controller transitions (i.e.,
nodes and observations). We use the Mealy representation.

A Mealy controller is a tuple m = 〈Qi, Ai, Zi, δi, λi, q0i 〉:
• Qi is the set of nodes
• Ai and Zi are the output and input alphabets (i.e., the

action chosen and the observation seen)
• δi : Qi × Zi → Qi is the node transition function
• λi : Qi×Zi → Ai is the output function for nodes 6= q0i

that associates output symbols with transitions
• λ0i : Qi → Ai is the output function for node q0i
• q0i ∈ Qi is the initial node

Because action selection depends on the observation as well
as the current node, for the first node (where no observations
have yet been seen), the action only depends on the node. For
all other nodes, the action output depends on the node and
observation with λm(q, o).

Mealy controllers are a natural policy representation for
MacDec-POMDPs because the initial conditions of macro-
actions can be easily checked. That is, since the (macro-)action
is chosen after an observation is seen, MacDec-POMDPs
in which initial conditions depend solely on agent’s local
observations can be verified directly. As such, algorithms
that use Mealy controllers can ensure that valid macro-action
policies are generated for each agent in a simple manner.

For a set of Mealy controllers, m, when the initial state is
s, the joint observation is o and the current nodes of m are q,
the value is denoted Vm(q, o, s) and satisfies:

Vm(q, o, s) =

R(s, λ(q, o))+γ
∑
s′,o′

Pr(s′|s, a) Pr(o′|s′, a)Vm(δ(q, o), o′, s′).

where λ(q) = {λ1(q1, o1), . . . , λn(qn, on)} are the ac-
tions selected by each agent given the current node of
its controller and the observation seen while δ(q, o) =
{δ1(q1, o1), . . . , δn(qn, on)} are the next nodes for each agent
given that agent’s current node and observation. Because the
first nodes do not depend on observations, the value of the
controllers m at b is Vm(b) =

∑
s b(s)Vm(q0, s), where q0 is

the set of initial nodes for all agents.1

B. Macro-action controllers

Representing policies in MacDec-POMDPs with the finite-
state controllers discussed above is trivial since we can replace
the primitive actions with macro-actions. The output function
becomes λi : Qi × Zi → Mi where Zi are now the obser-
vations resulting from macro-actions and Mi are the macro-
actions for agent i. Unfortunately, evaluation of these macro-
action controllers is non-trivial due to the fact that macro-
actions may require different amounts of time. Therefore, we
must explicitly consider time when performing evaluation.

To perform this evaluation, we can build on recent work
for modeling decentralized partially observable semi-Markov
decision processes (Dec-POSMDPs) [19]. The Dec-POSMDP
model explicitly considers actions with different durations,
using a reward model that accumulates value until any agent

1The value can also be represented as Vm(b) =
∑

s b(s)Vm(q0, o∗, s),
where o∗ are dummy observations that are only received on the first step.



terminates a (macro-)action and a transition model that consid-
ers how many time steps take place until termination. These
lengths of time may be different (e.g., when all agents are
executing macro-actions that require a large amount of time
to terminate the time for any agent terminating will be long).

We propose a more general Dec-POSMDP model as fol-
lows. We can model the state as S ×i Smi , which includes
the world state and a state of each of the agents’ currently
executing macro-actions. In our experimental domain, Smi will
be the amount of time that agent’s macro-action has been
executing (since this is sufficient information to determine
how much more time will be required in that problem), but
Sm could correspond to a node in a lower-level finite-state
controller or other relevant information. The actions are the
macro-actions, Ai = Mi. The transition probability function,
T , now includes the number of discrete time steps until com-
pletion as Pr(s′, k|s,m), where k is this number of steps and
m is the joint set of macro-actions being executed. The reward
function, R(s,m), is the value until any agent terminates,
E{rt+ . . .+γk−1rt+k|s,m, t}, starting at time t. Zi is now a
finite set of high-level observations that are only observed after
an agent’s macro-action has been completed. The observation
probability function, Pr(o|s′,m), generates an observation for
each agent based on the resulting state and the macro-action
that was executed. The horizon h is the number of (low-level,
not macro-action) steps until termination.

Using this model, we can evaluate a joint policy that
is represented as a set of Mealy controllers, µ, using the
following Bellman equation:

V µ(q, o, s) = R(s, λ(q, o))+

∞∑
k

γk
∑
s′

Pr(s′, k|s, λ(q, o))×∑
o′

Pr(o′|s′, λ(q, o))V µ(δ(q, o′), o′, s′).

Note that, in the Dec-POSMDP, observations are only gen-
erated for agents that complete their macro-actions. As such,
the observation, oi, and the current controller node, qi, do not
update until agent i terminates its macro-action execution.

C. Exploiting domain structure

The Bellman equation provides a formal framework for
evaluating policies in MacDec-POMDPs directly if we have
a model (or simulator) of the system. It is often difficult to
construct a full model in complex domains, but many domains
possess structure that allows efficient evaluation.

For example, in our bartender domain, we perform a
sample-based evaluation of policies using a high-level simula-
tor. This simulator uses distributions for each macro-action de-
scribing the completion time at each terminal condition given
each possible initial condition. Having this time information is
a much less restrictive assumption than knowing the full policy
of each macro-action. We will also assume that the reward
only depends on the state, and the observations only depend
on the state and terminal condition of the macro-action. This
simulator allows us to evaluate policies while keeping track of
the relevant state information and execution of macro-actions.

Algorithm 1 MacDec-POMDP Sample-Based Evaluation
function SAMPLEEVAL(µ,s0,numSims,maxTime)

totalReturn= 0
for sim 0 to numSims do

s = s0, q = q0, o = o∗
t = 0, tAg = ~0
minTime=minAgents=termConds=null
while t < maxTime do

for all agents i ∈ I do
for all terminal conditions βi of λi(qi) do

t← SampleFromDist(s, λi(qi), βi)
if t− tAgi = minTime then

minAgents ← minAgents ∪ i
termConds ←termConds ∪ β

else if t− tAgi < minTime then
minAgents ← {i}
termConds ← {β}

t+ =minTime
s′ ← sampledStateUpdate(s, λ(q),termConds)
r ← R(s′)
for all agents i ∈minAgents do

oi ← sampleObs(s′,termConds)
qi ← δ(qi, oi)
tAgi = 0

for all agents i /∈minAgents do
tAgi + =minTime

totalReturn + = r

return totalReturn/numSims

Pseudocode for sample-based evaluation is given in Algo-
rithm 1. The simulator keeps track of the world state, the
current node and last seen observation of each agent, the
current time in the system and the amount of time each agent
has been executing its macro-action. At each iteration, the
simulator determines the set of agents which terminate their
macro-actions in the least amount of time. The system state
updates based on the termination of these completed macro-
actions and the corresponding agents observe new observations
and transition in their controllers. These iterations continue
until the system time reaches a limit. This sample-based
evaluation can calculate the value of policies in problems with
very large state spaces using a small number of simulations.

V. POLICY SEARCH

Policy evaluation is an important step, but we must also
determine the policies of each agent. We propose a heuris-
tic search method that seeks to optimize the parameters of
each agent’s controller. Such methods have been able to
generate high-quality controllers in the (primitive-action) Dec-
POMDP case [1, 27]. Our new method, termed MacDec-
POMDP heuristic search (or MDHS), integrates our sample-
based evaluation and searches for a policy that is optimal
with respect to a given controller size. Our heuristic search
method constructs a search tree of possible controllers for each



Algorithm 2 MacDec-POMDP Heuristic Search (MDHS)
function HEURSEARCH(s0,n)

V ← V init
polSet← ∅
repeat

θ ←selectBest(polSet)
Θ′ ←expandNextStep(θ)
for θ′ ∈ Θ′ do

if isFulPol(θ’,n) then
v ← valueOf(θ’,s0)
if v > V then

µ∗ ← θ
V ← v
prune(polSet,V )

else
v̄ ← valueUpperOf(θ’,s0)
if v̄ > V then

polSet← polSet ∪ θ′

polSet← polSet \ θ
until polSet is empty
return µ∗

agent, and searches through this space of policies by fixing
the parameters (of all agents) for one node at a time, using
heuristic upper bound values to direct the search.

Pseudocode of our policy search approach is in Algorithm 2.
A lower bound value, V is initialized with the value of the best
known joint policy (e.g., a random or hand-coded policy). An
open list, polSet, which represents the set of partial policies
that are available to be expanded is initialized to be the empty
set. At each step, the partial joint policy (node in the search
tree) with the highest estimated value is selected. Then, this
partial policy is expanded, generating policies with the action
selection and node transition parameters for an additional node
specified (all children in the search tree). This set is called
Θ′. These expanded policies are examined to determine if
they are fully specified. If they are, their value is compared
with the value of the best known policy, which is updated
accordingly (allowing for pruning of policies with value less
than the new V ). If a policy is not fully specified, its upper
bound is calculated and it is added to the candidate set for
expansion as long as that bound is greater than the value of
the current best policy. The partial policy that was expanded is
removed from the candidate set (the open list) and this process
continues until the optimal policy (of size n) is found.

While this approach will generate a set of optimal con-
trollers of a fixed size when it completes, it can also be stopped
at any time to return the best solution found so far. In our
implementation, we set the initial lower bound to be the value
of a random policy and the upper bound as the highest-valued
single trajectory which uses random actions for controller
nodes that have not been specified (rather than the expected
value). These are relatively loose values, but performed well in
our experiments. In the future, we can explore tighter bounds.

MDHS Controller Tree

5× 5 25× 25 5× 5 25× 25

Value −5.33 −9.91 −5.30 −9.87
Time 180 180 388 4959
Size 5 5 10049 10044

TABLE I
VALUES, TIMES (IN S) AND POLICY SIZES ON NAMO BENCHMARKS OF

SIZE 5× 5 AND 25× 25.

VI. EXPERIMENTS

We perform comparisons with previous work on existing
benchmark domains and demonstrate the effectiveness of
our MDHS policy search in the bartender scenario. For all
comparisons, we report the best solution found by our method
after a time cut-off of 180 seconds. In the first two problems,
controller sizes are fixed to be 5 nodes, but in the future,
sizes could be generated from trajectories in the simulator
(similar to previous methods [1]). Experiments were run on a
single core of a 2.2 GHz Intel i7 with a maximum of 8GB of
memory. The benchmark and simulation experiments provide
a rigorous quantitative analysis on the efficacy of the MacDec-
POMDP planner, while the real world experiments show that
our method can be used for actual multi-robot systems.

A. A benchmark problem

For comparison with previous methods, we consider robots
navigating among movable obstacles [24]. This domain was
designed as a finite-horizon problem [4] so we add a discount
factor (of 0.9) for the infinite-horizon case. Previous MacDec-
POMDP methods were only designed for finite-horizon prob-
lems [4], but can produce policies that have a high value in
infinite-horizon problems by using a large planning horizon.
We compare against an optimal (finite-horizon) method for
horizon 50, which can produce a solution within 0.046 of
the optimal (infinite-horizon) value in both instances of the
problem we consider. As mentioned above, our MDHS method
used a random lower bound and the best single trajectory that
was sampled as an upper bound. No other parameters are
needed except for the desired controller size for each agent
(which balances off time with computational complexity).

As seen in Table I, our method (“MDHS Controller”),
produces solutions that are near optimal (as given by the finite-
horizon “Tree” method) in much less time and with a much
more concise representation. The previous tree-based dynamic
programming method can produce a (near) optimal solution,
but requires a representation exponential in the problem hori-
zon and must search through many more possible policies
before generating a solution.

B. A small warehousing problem

A small warehousing problem has also been modeled and
solved as a MacDec-POMDP [5]. Previous solution methods
(which are based on the policy tree methods [4]) were able to
automatically generate a set of policies for a team of iRobot
Creates, but were unable to exceed a problem horizon of 9.



MDHS Controller Tree

NoCom ComLimit NoCom ComLimit

Value 11.38 12.41 - -
Time 180 180 - -
Size 5 5 - -

TABLE II
VALUES, TIMES (IN S) AND POLICY SIZES ON TWO WAREHOUSING

PROBLEMS (WITH NO AND LIMITED COMMUNICATION). THE TREE-BASED
METHOD IS UNABLE TO SOLVE THESE PROBLEMS.

As seen in Table II, MDHS can produce concise solutions
very quickly on these problems. A direct comparison with
previous work is not possible (due to the existing method’s
lack of scalability to a large enough horizon and lack of bounds
on the solution quality). Nevertheless, our method is able to
solve these problems, while previous methods could not. We
omit the results for the other (signaling) problem discussed in
the previous paper, but the results are similar.

As an additional comparison, we also evaluate the con-
trollers generated by our MDHS algorithm for the same
number of steps that the previous algorithm used (9) without
a discount factor. In this case, the previous tree based method
produced solutions with values of 1.16 and 1.6 while our
method produces solutions with values 1.12 and 1.14. Note
that our solution was not optimized for this particular horizon,
but it shows that both methods have similar solution quality
when executed for only 9 steps.

C. Bartender and waiters problem

The bartender and waiters problem is a multi-robot problem
modeled after waiters gathering drinks and delivering them to
different rooms. The waiters can go to different rooms to find
out about and deliver drink orders. The waiters can go to the
bar to obtain drinks from the bartender. The bartender can
serve at most one waiter at a time and the rooms can have
at most one order at a time. Any waiter can fulfill an order
(even if that waiter did not have previous knowledge about the
order). Drink orders are created stochastically: a new order will
be created in a room with 1% probability at each (low-level)
time step when one does not currently exist. The reward for
delivering a drink is 100 − (tnow − torder)/10, where tnow
is the current time step and torder is the time step at which
the order was created. The domain consists of three types of
macro-actions for the waiters, as shown in Table III. The state
variables each waiter can observe are shown in Table IV.

To develop a simulator that is similar to the robot imple-
mentation, we estimated the macro-action times by measuring
them in the actual domain over a number of trials (starting the
macro-actions at each possible initial condition and executing
until each possible terminal condition, generating a distribution
for the results). There is a large amount of uncertainty in
the problem in terms of the time required to complete a
macro-action and outcomes such as receiving orders. We
did not explicitly model failures in the navigation or PR2
picking/placing, but these could be easily modeled.

ROOM N Go to room n, observe orders and deliver drinks.
BAR Go to the bar and observe current status of the bartender.
GET DRINK Obtain a drink from the bartender.

TABLE III
MACRO-ACTIONS FOR THE WAITERS.

Variable Values Description

loc {room n, bar} waiter’s location
orders {True, False} drink order for current room
holding {True, False} waiter holding drink status

bartender

not serving
ready to serve
serving waiter
no obs

not serving and not ready to serve
not serving and is ready to serve
serving a drink
cannot observe bartender

TABLE IV
OBSERVATIONS FOR THE WAITERS.

Our instance of the bartender and waiters problem consisted
of one bartender and two waiters. The domain had four rooms:
the bar and rooms 1-3. We had a total of 5 macro-actions
since there is a macro-action for each room as well as one
for requesting a drink. No communication was used except
between the bartender and waiters in the bar area. There were
also 64 observations (from Table IV) and the underlying state
space consists of the continuous locations of the TurtleBots
and the status of the PR2 (which we abstract into execution
time in macro-actions) and discrete variables for orders in each
room and whether each TurtleBot is holding a beverage.

D. Robot implementation

As shown in Figure 1, we used two TurtleBots (we will call
the blue one Leonardo and the red one Raphael) as waiters and
the PR2 as a bartender. The TurtleBots had 2 types of macro-
actions: navigation and obtaining a drink from the bartender.
The navigation actions were created using a given map, shown
in Figure 2, with simple collision avoidance. For picking
and placing drinks, we combined several ROS controllers for
grasping and manipulation. The GET DRINK macro-action
implemented a queueing system to serve multiple TurtleBots
in the order they arrived.

For the observations, we used state action deduction and
communication. That is, the GET DRINK action was assumed
to always succeed (but may require different amounts of time);
the TurtleBot asserted it was holding a drink after this action.
When the TurtleBot entered a room it would prompt the
user to take the drink it was holding or to place an order.
The user could give a boolean response by toggling a red
button on top of the TurtleBot. After a user picked up the
drink, the waiter observed not holding until it completed the
next GET DRINK action. The location observations were set
with the localization functionality of the TurtleBot navigation
stack. To obtain information about the bartender, the PR2
would broadcast its current state (serving, not serving, or
ready to serve). The TurtleBots were only able to listen to
the message in the bar location.



Fig. 2. Navigation map generated by the TurtleBots.

E. Bartender and waiter problem results

Our MDHS planner automatically generated the bartender
and waiter solution based on the macro-action definitions and
our high-level problem description (discussed above). The so-
lution is a Mealy controller that maps nodes and observations
to actions. To easily examine the results, we generated policies
with 1 and 5 nodes. In the 1 node case, the action selections are
memoryless and depend solely on the current state observation.
For the 5 node case, the node transitions allow each robot to
remember some relevant information.

Figures 3(a)–3(c) show parts of the generated 1-node poli-
cies. Analysis of the solution is naturally segmented into three
phases: bar, delivery, and ordering, which correspond to 1) the
waiter being located in the bar, 2) holding a drink, and 3) not
holding a drink. In general, the solution spread out the serving
and delivery behaviors of the TurtleBots between the three
rooms: Leonardo only visited rooms 1 and 3, whereas Raphael
focused on rooms 2 and 1. Additionally, the TurtleBot’s
controllers selected the BAR macro-action even when drinks
were not ordered. This allowed the TurtleBots to have drinks
that were ready to deliver, even if they did not previously know
about an order.

Figure 3(a) shows the macro-actions for each TurtleBot
when it is located in the bar. BAR is a navigation macro-
action that takes the TurtleBot to the bar from any location.
Once in the bar, the TurtleBot can observe the bartender’s
status. If the bartender is ready to serve, either agent will
execute the GET DRINK action. Following the GET DRINK
action, Raphael and Leonardo will execute ROOM 2 and
ROOM 3 macro-actions, respectively. If the bartender is not
ready to serve the waiter will execute ROOM 1 or ROOM 2
macro-actions, depending on the observation. The distance is
farthest to ROOM 3 so it requires less time visit the other
rooms when the bartender is not ready to serve.

Once a TurtleBot is holding a drink, it is in the deliv-
ery phase. Figure 3(b) shows the sequence of macro-actions
executed in this case. Raphael receives a drink from the

bartender and tries to complete deliveries in the following
order: ROOM 2, ROOM 1, ROOM 3. That is, it continues
looping through all rooms while holding a drink. Leonardo
executes the ROOM 3 macro-action after receiving a drink
from the bartender. If the drink is not delivered then it chooses
the ROOM 1 macro-action. It continues looping between
ROOM 1 and ROOM 3 actions until a delivery is made.

It is important to note that the one-node controllers cannot
contain a more complex solution that would let the waiters go
to different rooms after receiving a drink. This controller is an
elegant solution given the constraint: Raphael serves room 2
then room 1, whereas Leonardo room serves room 3 followed
by room 1. This resultant behavior shows clear cooperation
between the two robots to efficiently cover the rooms.

After a TurtleBot has delivered a drink, it enters the ordering
phase. Figure 3(c) shows the macro-action sequence for the
case when the waiters are not holding any drinks. The dashed
and dotted lines show the two cases when the waiters do not go
to the bar. This happens when there is no order placed in rooms
2 and 3; the waiters go to the bar for all other observations.
This behavior balances off having a drink ready for unknown
orders and the time used to visit other rooms.

An example execution of our generated controllers (for the
1-node case) is shown in Figure 4. Initially, the TurtleBots
start in the bar next to the PR2. The PR2 immediately starts
picking up a can (Figure 4(a)) and the two TurtleBots navigate
to different rooms (Figure 4(b)). Then Leonardo successfully
receives a drink from the PR2 (Figure 4(c)) and starts the
delivery phase by going to room 2 (Figure 4(e)). There is no
drink order in room 2 so Leonardo continues to room 1 and
successfully delivers the drink to a thirsty graduate student
(Figure 4(f)). While Leonardo is served by the PR2, Raphael
goes to the bar and observes the PR2 is busy (Figure 4(d)).
Since the PR2 is busy, Raphael continues the ordering phase
by navigating to room 1 (Figure 4(e)).

We also tested a 5-node controller on the robots. The
solutions for the 1-node and 5-node cases deviate since the
5-node controller can keep track of more information. For
example, the waiter can choose a different room based on
information such as the other rooms the waiter has been in
previously or whether orders have been placed in the other
rooms recently. These solutions quickly become complex and
non-obvious to specify by hand. Both controller sizes allow for
high-quality solutions, but having 5 nodes permits improved
cooperation. For instance, the 5-node solutions were able to
select different rooms to visit after receiving a drink from the
PR2 based on memory of orders in those locations as well
as observing the other waiter. These improvements are seen
in the simulator where solution value (over 50 macro-action
steps or approximately 1000 low-level steps) was 1231 (an
average of 13.98 drinks delivered) for the 1-node controller
and 1296 (14.56 drinks delivered) for the 5-node controller.
For comparison, a hand-coded controller that assigns one robot
(Leonardo) to room 3 (since it is farthest from the kitchen) and
one robot (Raphael) to rooms 1 and 2, produces a solution with
value 917 (11.13 drinks delivered).



(a) Bar phase while located in the bar. (b) Delivery phase while holding a drink. (c) Ordering phase while not holding a drink.

Fig. 3. Controller phases for each waiter.

(a) PR2 picking up a drink. (b) TurtleBots go to first rooms.

(c) Leonardo sees the PR2 ready and
gets a drink.

(d) Raphael sees the PR2 serving
Leonardo.

(e) TurtleBots go to rooms 1 and 2. (f) Leonardo delivers to room 1.

Fig. 4. Images from the bartender and waiter experiments.

These results demonstrate that the MDHS planner is able
to effectively generate a solution to a cooperative multi-robot
problem, given a declarative MacDec-POMDP planner. Note
that the same planner solved all these experimental problems
based on a high-level domain description.

VII. RELATED WORK

Other frameworks exist for multi-robot decision making.
For instance, behavioral methods have been studied for per-
forming task allocation over time with loosely-coupled [20]
or tightly-coupled [25] tasks. These are heuristic in nature
and make strong assumptions about the type of tasks that
will be completed. Market-based approaches use traded value

to establish an optimization framework for task allocation
[12, 14]. These approaches have been used to solve real multi-
robot problems [16, 10], but are largely aimed at tasks where
the robots can communicate through a bidding mechanism.

One important related class of methods is based on linear
temporal logic (LTL) [7, 17] to specify behavior for a robot;
reactive controllers that are guaranteed to satisfy the resulting
specification are then derived. These methods are appropriate
when the world dynamics can be effectively described non-
probabilistically and when there is a useful characterization
of the robot’s desired behavior in terms of a set of discrete
constraints. When applied to multiple robots, it is necessary
to give each robot its own behavior specification. By contrast,
our approach (probabilistically) models the domain and allows
the planner to automatically optimize the robots’ behavior.

There has been less work on scaling Dec-POMDPs to real
robotics scenarios, Emery-Montemerlo et al. [13] introduced
a (cooperative) game-theoretic formalization of multi-robot
systems which resulted in solving a Dec-POMDP. An approxi-
mate forward search algorithm was used to generate solutions,
but because a (relatively) low-level Dec-POMDP was used,
scalability was limited, and their system required synchronized
execution by the robots. The introduction of MacDec-POMDP
methods has largely eliminated these two concerns.

VIII. SUMMARY AND CONCLUSION

We introduced an extended MacDec-POMDP model for rep-
resenting cooperative multi-robot systems under uncertainty
using a high-level problem description. We also developed
MDHS, a new MacDec-POMDP planning algorithm that
searches over policies represented as finite-state controllers.
In the bartender and waiters problem, MDHS was able to
automatically generate controllers for a heterogenous robot
team that collectively maximized team utility, using only a
high-level model of the task. For this problem, an accurate low-
level simulator would have been hard to build, and generating
a solution is beyond the reach of existing planners. MDHS
is therefore a significant step forward in the development of
general-purpose planners for cooperative multi-robot systems.
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