Optimally Solving Dec-POMDPs as Continuous-State MDPs

Jilles Dibangoye ⁽¹⁾, Chris Amato ⁽²⁾, Olivier Buffet ⁽¹⁾ and François Charpillet ⁽¹⁾

⁽¹⁾Inria, Université de Lorraine — France

⁽²⁾MIT, CSAIL — USA

IJCAI — August 8, 2013

Outline

- Overview
- Decentralized POMDPs
- Existing methods
- Dec-POMDPs as continuous-state MDPs
 - Overview
 - Solving the occupancy MDP
 - Exploiting multiagent structure
- 3 Experiments

General overview

- Agents situated in a world, receiving information and choosing actions
 - Uncertainty about outcomes and sensors
 - Sequential domains
 - Cooperative multi-agent
 - Decision-theoretic approach
- Developing approaches that scale to real-world domains

Cooperative multiagent problems

- Each agent's choice affects all others, but must be made using only local information
- Communication may be costly, slow or noisy

Domains of interest — robotics, disaster response, networks, ...

Multi-Agent Decision Making Under Uncertainty

Decentralized partially observable Markov decision process (Dec-POMDP)

• Sequential decision-making

- At each stage, each agent takes an action and receives:
 - A local observation
 - A joint immediate reward

Multi-Agent Decision Making Under Uncertainty Dec-POMDP definition

<u>Dec-POMDP</u> — $\langle I, S, \{A_i\}, \{Z_i\}, p, r, o, b_0, T \rangle$

- I, a finite set of agents
- S, a finite set of states
- A_i, each agent's finite set of actions
- Z_i, each agent's finite set of observations
- p, the state transition model: $\Pr(s'|s, \vec{a})$
- *o*, the observation model: $Pr(\vec{o}|s', \vec{a})$
- r, the reward model: $R(s, \vec{a})$
- b_0 , initial state distribution
- T, planning horizon

Dec-POMDP solutions

- History $\theta_i^t = \langle a_i^0, o_i^1, \dots, a_i^{t-1}, o_i^t \rangle$
- Local policy: each agent maps histories to actions, $\pi_i: \Theta_i \to A_i$
 - State is unknown, so beneficial to remember history
- π_i, a sequence of decision rules π_i = π⁰_i,..., π^{T-1}_i mapping histories to actions, π^t_i(θ^t_i) = a_i
- Joint policy $\pi = \langle \pi_1, \dots, \pi_n \rangle$ with individual (local) agent policies π_i
- Goal is to maximize expected cumulative reward over a finite horizon

POMDPs

- Subclass of Dec-POMDPs with only one agent
- Agent maintain's belief state (distributions over states)
- Policy = mapping from histories or belief states

$$\pi: B \to A$$

• Can solve a POMDP as a continuous-state "belief" MDP

•
$$V^{\pi}(b) = R(b, a) + \sum_{o} \Pr(b'|b, a, o) \Pr(o|b', a) V^{\pi}(b')$$

• Structure: piecewise linear convex (PWLC) value function

Example: 2-Agent Navigation Meeting in a grid

- States: grid cell pairs
- Actions: move \uparrow , \downarrow , \leftarrow , \rightarrow , stay
- Transitions: noisy
- Observations: red lines
- Rewards: negative unless sharing the same square

Challenges in solving Dec-POMDPs

- Partial observability makes the problem difficult to solve
- No common state estimate (centralized belief state) or concise sufficient statistic
 - Each agent depends on the others
 - Can't directly transform Dec-POMDPs into a continuous-state MDP from a single agent's perspective
- Therefore, Dec-POMDPs are fundamentally different and more complex (NEXP instead of PSPACE)

Current methods

- Assume an offline planning phase that is centralized
- Generate explicit policy representations (trees) for each agent
- Search bottom up (DP) or top down (heuristic search)
- Often use game-theoretic ideas from the perspective of a single agent
- Search in the space of policies for the optimal set

Overview of our approach

Current methods don't take full advantage of centralized planning phase

Overview

- Push common information into an occupancy state
- Move local information into action selection as decision rules
- Formalize Dec-POMDPs as **continuous-state MDPs** with a **PWLC** value function
- Exploit multiagent structure in representation, making it scalable

This **doesn't use explicit policy representations** or construct policies from a single agent's perspective

12 / 20

August 8, 2013

Centralized Sufficient Statistic

- Policy π , sequence of decentralized decision rules, $\pi = \langle \pi^0, \dots, \pi^{T-1} \rangle$
- Joint history $\theta^t = \langle \theta_1^t, \dots, \theta_n^t \rangle$, with $\pi^t(\theta^t) = \langle a_1, \dots, a_n \rangle$

- An occupancy state is a distribution $\eta(s, \theta^t) = \Pr(s, \theta^t | \pi^{0:t-1}, b_0)$
- The occupancy state is a sufficient statistic: Can optimize *future* policy π^{t:T} over η rather than initial belief and past joint policies

Dec-POMDPs as continuous-state MDPs

- Occupancy state $\eta^t(s, \theta^t) = \Pr(s, \theta^t | \pi^{0:t-1}, \eta_0)$ with $\eta_0 = b_0$
- Transform Dec-POMDP into a continuous-state MDP
 - *s*_{MDP} : η
 - a_{MDP} : π^t (decentralized decision rules)
 - T_{MDP} : $\Pr(\eta^t | \pi^{t-1}, \eta^{t-1})$ Deterministic with $\mathbf{P}(\eta^t, \pi^t) = \eta^{t+1}$

•
$$R_{MDP}$$
 : $\sum_{s,\theta^t} \eta^t(s,\theta^t) R(s,\pi^t(\theta^t))$

- Centralized sufficient statistic (the occupancy state)
- Decision rules ensure decentralization

Piecewise linear convexity

• Bellman optimality operator:

$$V_t^*(\eta^t) = \max_{\pi^t \in D} R_{MDP}(\eta^t, \pi^t) + V_{t+1}^*(\mathbf{P}(\eta^t, \pi^t))$$

 ● 1- Operator preserves PWLC property (piecewise linearity and convexity)
2- R_{MDP}(η^t, π^t) is linear
⇒ PWLC value function

• POMDP algorithms can be used!

Solving the occupancy MDP

Feature-based heuristic search value iteration (FB-HSVI)

- Based on heuristic search value iteration (Smith and Simmons, UAI 04)
- Sample occupancy distributions starting from the initial occupancy
- Update upper bounds based on decision rules (on the way down)
- Update lower bounds (on the way back up)
- Stop when bounds converge for initial occupancy

Scaling up

The occupancy MDP has very large action and state spaces

Two key ideas to deal with these combinatorial explosions:

State reduction through history compression

- Compress histories of the same length (Oliehoek et al., JAIR 13)
- Reduce history length without loss
- Ø More efficient action selection
 - Generating a greedy decision rule for an occupancy state as a weighted constraint satisfaction problem

17 / 20

August 8, 2013

Experiments

Tested 3 versions of our algorithm

Algorithm 0: HSVI with occupancy MDP Algorithm 1: HSVI with efficient action selection Algorithm 2: HSVI with efficient action selection + feature-based state space

Comparison algorithms

Forward search: GMAA*-ICE (Spaan et al., IJCAI 2011) Dynamic programming: IPG (Amato et al., ICAPS 2009), LPC (Boularias and Chaib-draa, ICAPS 2008) Optimization: MILP (Aras and Dutech, JAIR 2010)

Experiments

Experiments

Optimal v within $\varepsilon = 0.01$

	The multi-agent tiger problem $(S = 2, Z = 4, A = 9, K = 3)$							
T	MILP	LPC	IPG	ICE	FB-HSVI (ρ)			$v_{\epsilon}(\pmb{\eta}^0)$
					0	1	2	
2	_	0.17	0.32	0.01	0.05	0.03	0.03	-4.00
3	4.9	1.79	55.4	0.01	2.17	0.06	0.40	5.1908
4	72	534	2286	108	9164	2.66	1.36	4.8027
5				347		22.2	9.65	7.0264
6						171.3	24.42	10.381
7							33.11	9.9935
8							41.21	12.217
9							58.51	15.572
10							65.57	15.184
-	The recycling-robot problem $(S = 4, Z = 4, A = 9, K = 1)$							
2	_	_	0.30	36	0.03	0.02	0.01	7.000
3	_	_	1.07	36	0.05	0.47	0.10	10.660
4	_	_	42.0	72	0.85	0.65	0.30	13.380
5	_	_	1812	72	1.52	0.87	0.34	16.486
10					5.06	2.83	0.52	31.863
30					62.8	37.9	1.13	93.402
70						78.1	2.13	216.47
100						259	2.93	308.78
	The mars-rovers problem $(S = 256, Z = 81, A = 36, K = 3)$							
2	_	_	83	1.0	0.21	0.09	0.10	5.80
3	_	_	389	1.0	2.84	0.21	0.23	9.38
4				103	104.2	1.73	0.47	10.18
5						6.38	0.82	13.26
6						8.16	3.97	18.62
7						11.13	5.81	20.90
8						35.49	22.8	22.47
9						57.47	26.5	24.31
10						316.2	62.7	26.31

- Time and value on benchmarks
- Blank space = algorithm over time (200s)
- Red for fastest and previously unsolvable horizons
- K is the largest history window used

Dibangoye, Amato, Buffet and Charpillet Optimally Solving Dec-POMDPs as MDPs

Conclusion

Summary

- Dec-POMDPs are powerful multiagent models
- Formulated Dec-POMDPs as continuous-state MDPs with PWLC value function
- POMDP (and continuous MDP) methods can now be applied
- Can also take advantage of multiagent structure in the problem
- Our approach shows significantly improved scalability

Future work

- Approximate solutions (bounds on the solution quality)
- More concise statistics
 - Subclasses like TI Dec-MDPs in our AAMAS-13 paper
 - Just observation histories as in Oliehoek, IJCAI 13

