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General overview  
• Agents situated in a world, receiving information and 

choosing actions  
•  Uncertainty about outcomes and sensors 
•  Sequential domains 
•  Cooperative multi-agent 
•  Decision-theoretic approach 

• Developing approaches to scale to real-world domains 
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Outline 
•  Background on decision-theoretic planning  
•  Models for cooperative sequential decision-making  

•  Dec-POMDPs and MTDPs  
•  Notable subclasses (Dec-MDPs, ND-POMDPs) 
•  Related competitive models (POSGs, I-POMDPs) 

•  Optimal algorithms 
•  Finite and infinite horizon 
•  Top down and bottom up 

•  Approximate algorithms  
•  Finite and infinite horizon 

•  Communication  
•  Applications being targeted  
•  Conclusion 
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Decision-theoretic planning 
•  Tackles uncertainty in sensing and acting in a principled 

way 
• Popular for single-agent planning under uncertainty (MDPs, 

POMDPs) 
• We need to model: 

•  Each agent's actions 
•  Their sensors 
•  Their environment 
•  Their task 
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Modeling assumptions 
• Sequential decisions: problems are formulated as a 

sequence of discrete “independent” decisions 
• Markovian environment: the state at time t depends only 

on the events at time t-1 
• Stochastic models: the uncertainty about the outcome of 

actions and sensing can be accurately captured 
• Objective encoding: the overall objective can be encoded 

using cumulative (discounted) rewards over time steps 
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Problem aspects 
• On-line vs. off-line 
• Centralized vs. distributed 

•  Planning 
•  Execution 

• Cooperative vs. self-interested 
• Observability 
• Communication 
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A toy example (decentralized tiger) 
•  2 agents with 2 doors 
•  A tiger is behind one and a treasure is 

behind the other 
•  Can listen for a noisy signal about the 

location of the tiger 
•  If either agent opens the door with the 

tiger, they both get mauled 
•  If the door with treasure is opened, 

they share the reward 
•  Don’t know each other’s actions and 

observations 
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Single agent/centralized models 
• Markov decision processes (MDPs) 

•  Stochastic actions, but fully observe state at each step 
•  P complexity 

 
 
 

• Maximize value 

• Can be multiagent, but centralized execution (and large 
size) 
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Single agent/centralized models 
• Partially observable Markov decision processes (POMDPs) 

•  Receive an observation rather than true state 
•  PSPACE complexity (for finite horizons) 

• Maximize value in a similar way (but over distributions over 
states or beliefs) 

• Can also be (centralized) multiagent 
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Decentralized domains 
• Cooperative multiagent problems 
• Each agent’s choice affects all others, but must be made 

using only local information  
• Properties 

•  Often a decentralized solution is required 
•  Multiple agents making choices independently of the others  
•  Does not require communication on each step (may be impossible 

or too costly) 
•  But now agents must also reason about the previous and future 

choices of the others (more difficult) 
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Example cooperative multiagent problems 
•  Multi-agent planning (examples below, reconnaissance, etc.)  
•  Human-robot coordination (combat, industry, etc.) 
•  Sensor networks (e.g. target tracking from multiple viewpoints) 
•  E-commerce (e.g. decentralized web agents, stock markets) 
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Sensor network problems 
• Sensor networks for 

•  Target tracking (Nair et al., 05, Kumar and Zilberstein 09-AAMAS)  

•  Weather phenomena (Kumar and Zilberstein 09-IJCAI)  

•  Two or more cooperating sensors 
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Other possible application domains 
• Multi-robot coordination 

•  Space exploration rovers (Zilberstein et al., 02) 

•  Helicopter flights (Pynadath and Tambe, 02) 

•  Navigation (Emery-Montemerlo et al., 05; Spaan and Melo 08) 

•  Load balancing for decentralized queues (Cogill et al., 04) 

• Multi-access broadcast channels (Ooi and Wornell, 96) 

• Network routing (Peshkin and Savova, 02) 

• Sensor network management (Nair et al., 05) 
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Multiple cooperating agents 
•  Decentralized partially observable Markov decision process (Dec-

POMDP) also called multiagent team decision problem (MTDP) 
•  Extension of the single agent POMDP 
•  Multiagent sequential decision-making under uncertainty 

•  At each stage, each agent takes an action and receives: 
•  A local observation 
•  A joint immediate reward 

Environment 
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Dec-POMDP definition 
• A Dec-POMDP can be defined with the tuple:  
M = <I, S, {Ai}, P, R, {Ωi}, O> 

•  I, a finite set of agents 
•  S, a finite set of states with designated initial state distribution b0 
•  Ai, each agent’s finite set of actions  
•  P, the state transition model:   
•  R, the reward model:  
•  Ωi, each agent’s finite set of observations 
•  O, the observation model: 

Note: Functions depend on all agents  
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Dec-POMDP solutions 
• A local policy for each agent is a mapping from its 

observation sequences to actions, Ω*  A  
•  State is unknown, so beneficial to remember history 

• A joint policy is a local policy for each agent  
• Goal is to maximize expected cumulative reward over a 

finite or infinite horizon 
•  For infinite-horizon cannot remember the full observation history  
•  In infinite case, a discount factor, γ, is used 
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Example: 2-Agent Navigation 

States: grid cell pairs  
   
Actions: move    ,   ,    ,    ,  
stay 
 
Transitions: noisy 
 
Observations: red lines 
 
Rewards: negative unless 
sharing the same square 
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Challenges in solving Dec-POMDPs 
• Partial observability makes the problem difficult to solve 
• No common state estimate (centralized belief state) 

•  Each agent depends on the others 
•  This requires a belief over the possible policies of the other agents 
•  Can’t transform Dec-POMDPs into a continuous state MDP (how 

POMDPs are typically solved) 

•  Therefore, Dec-POMDPs cannot be solved by centralized 
(POMDP) algorithms 
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General complexity results 

subclasses and finite horizon complexity results 

P PSPACE NEXP 

NEXP 
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Relationship with other models 

Ovals represent complexity, while colors represent number of agents and cooperative or 
competitive models 

Relationships among the models

 

M
M
D
P

DEC−
MDP

POSG

MDPI−POMDP
(finitely nested) POMDP

MTDP
DEC−POMDP
DEC−POMDP−COM

38/142
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POSGs 
• A partially observable stochastic game (POSG) is a tuple 

M = <I, S, {Ai}, P, {Ri}, {Ωi}, O> where 
•  All the components except the reward function are the same as in a 

DEC-POMDP 
•  Each agent has an individual reward function: 

•  Ri(s,ai) denotes the reward obtained after action ai was taken by agent i 
and a state transition to s’ occurred 

•  This is the self-interested version of the DEC-POMDP 
model 
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I-POMDPs 
•  Interactive POMDPs (I-POMDPs) extend state space with 

behavioral models of other agents (Gmytrasiewicz and Doshi 05) 

• Agents maintain beliefs over physical and models of 
others 

• Recursive modeling 
• When assuming a finite nesting, beliefs and value 

functions can be computed (approximately). 
•  Finitely nested I-POMDPs can be solved as a set of 

POMDPs 
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Dec-MDPs 
•  Joint full observability = collective observability 
• A Dec-POMDP is jointly fully observable if the n-tuple of 

observations made by all the agents uniquely determine 
the current global state.  
•  That is, if                       then  

• A decentralized Markov decision process (Dec-MDP) is a 
Dec-POMDP with joint full observability. 

• A stronger result: The problem is NEXP-hard even when 
the state is jointly observed!  
•  That is, two-agent finite-horizon DEC-MDPs are NEXP-hard. 
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Classes of Dec-POMDPs 
•  A factored n-agent Dec-MDP is a Dec-MDP for which the world 

state can be factored into n+1 components, S= S0 ×S1 ×…× Sn 
•  A factored, n-agent Dec-MDP is said to be locally fully 

observable if each agent observes its own state component 

•  Local state/observation/action                is referred to as the 
local state,            as the local action, and           as the local 
observation for agent I 

•  Full observability = individual observability 
•  A Dec-POMDP is fully observable if there exists a mapping for 

each agent i,                such that whenever               is non-zero 
then 
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Classes of Dec-POMDPs 
• A multi-agent Markov decision process (MMDP) is a Dec-

POMDP with full observability (Boutilier, 96) 

• A factored, n-agent Dec-MDP is said to be transition 
independent if there exists P0 through Pn such that 

• A factored, n-agent Dec-MDP is said to be observation 
independent if there exists O1 through On such that: 
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Classes of Dec-POMDPs 
• A factored, n-agent Dec-MDP is said to be reward 

independent if there exist ƒ and R1 through Rn such that 

and  
 
 
•  For example, additive rewards 
•  If a Dec-MDP has independent observations and 

transitions, then the Dec-MDP is locally fully observable. 

May 21, 2012 CTS Conference 2012 26 

R((s0,…, sn ),
a) = f (R1(s1,a1),...,Rn (sn,an ))

Ri (si,ai ) ≤ Ri (s 'i,a 'i )⇔
f (R1...Ri (si,ai )...Rn ) ≤ f (R1...Ri (s 'i,a 'i )...Rn )



Some complexity results 
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ND-POMDPs (Nair et al., 05) 

• A network distributed POMDP (ND-POMDP) is a factored 
n-agent Dec-POMDP with independent transitions and 
observations as well as a decomposable reward function 

•  That is,  

Where l is the subgroup of agents of size k  
•  Model locality of interaction 
•  Doesn’t make joint full observability assumption of Dec-MDPs 
•  Complexity depends on k (but still NEXP in worst case) 
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Factored Dec-POMDPs (Oliehoek et al., 08) 

• Motivation: exploit locality of 
interaction, but no strict 
independence assumptions 

• More general and powerful than 
ND-POMDPs 

•  Less scalable (non-stationary 
interaction graph) 
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Algorithms 
• How do we produce a solution for these models? 
• Will discuss 

•  Solution representations 
•  Optimal methods 
•  Approximate methods 
•  Subclasses 
•  Communication 
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Policy representations – finite horizon 
•  Policy trees, one for each agent 
•  Nodes define actions, links define observations 
•  One leaf for each history for the given horizon 

•  Evaluation: 
•  Starting from a node q, taking the associated action and transition 
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Policy representations – infinite horizon 

•  Designated initial node 
•  Nodes define actions 
•  Transitions based on 

observations seen 
•  Inherently infinite-horizon 
•  With fixed memory,  

randomness can help 
•  One controller for each agent 

•  Value for node    and state s:  
 

  
 

Actions: move in direction or stop 
Observations: wall left, wall right 
 

Action selection, P(a|q): Q  ΔA 
Transitions, P(q’|q,o): Q × O  ΔQ!

V (q, s) = P(a | q) R(s, a)+ γ P(s ' | s, a) O(o | s ', a) P(q ' | q,o)V (q ', s ')
q '
∑

o
∑

s '
∑

⎡

⎣
⎢

⎤

⎦
⎥

a
∑
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Optimal methods  
• Want to produce the optimal solution for a problem 
•  That is, optimal horizon h tree or ε-optimal controller 
• Do this in a bottom up or a top down manner 
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Bottom up methods 
• Build the policies up for each agent simultaneously 
• Begin on the last step (single action) and continue until 

the first 
• When done, choose highest value set of trees for any 

initial state 
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Exhaustive search 
• Construct all possible policies for the set of agents 
• Do this in a bottom up fashion 
• Stop when the desired horizon is reached 
•  Trivially includes an optimal set of trees when finished 
• Choose the set of policies with the highest value at the 

initial belief 
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Exhaustive search example (2 agents) 

a1 a2 a1 a2 
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Exhaustive search continued 
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Exhaustive search continued 
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Exhaustive search summary 
• Can find an optimal set of trees 
• Number of each agent's trees grows exponentially at each 

step 
• Many trees will not contribute to an optimal solution 
• Can we reduce the number of trees we consider? 
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Finite horizon dynamic programming (DP) 
•  Build policy tree sets simultaneously 
•  Returns optimal policy for any initial state 
•  Prune using a generalized belief space (with linear program) 
•  This becomes iterative elimination of dominated strategies in POSGs 
•  For two agents: 

s1 

s2 

× 

agent 2 state space 

× 

agent 1 state space 

a3 

a1 a1 

o1 o2 

a2 

a3 a1 

o1 o2 
p1 p2 

a2 

a2 a2 

o1 o2 

a3 

a1 a2 

o1 o2 
q1 q2 

q1 

q2 

€ 

Q× S
agent 1 value (4D) 

(Hansen et al. 2004) 
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DP for DEC-POMDPs example (2 agents) 

a1 a2 a1 a2 
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DP for DEC-POMDPs continued 
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DP for DEC-POMDPs continued 
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DP for DEC-POMDPs continued 
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DP for DEC-POMDPs continued 
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DP for DEC-POMDPs continued 
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DP for DEC-POMDPs continued 
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Infinite horizon version (Bernstein et al., 09) 

• Remember we need to define a controller for each agent 
• How many nodes do you need and what should the 

parameter values be for an optimal infinite-horizon policy? 
•  This may be infinite! 
•  First ε-optimal algorithm for infinite-horizon Dec-POMDPs: 

Policy Iteration 
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Optimal DP: Policy Iteration 
•  Start with a given controller 
•  Exhaustive backup (for all agents): 

generate all next step policies  
•  Evaluate: determine value of starting 

at each node at each state and for 
each policy for the other agents 

•  Prune: remove those that always 
have lower value (merge as needed)  

•  Continue with backups and pruning 
until error is below ε 

s1 s2 

(backup for action 1) 
Q × S

 o2 

 a1 
 o1 

a1 a2 

  o1 

  o1 

  o2 

  o2 

a1 a2 

  o1 

  o1 

  o2 

  o2 

 o1 
 a1 

 o2 

  
a1   o1,o2 

  a1   o1,o2 

=   Initial controller 
         for agent 1 
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Optimal DP: Policy Iteration 
•  Start with a given controller 
•  Exhaustive backup (for all agents): 

generate all next step policies  
•  Evaluate: determine value of starting 

at each node at each state and for 
each policy for the other agents 

•  Prune: remove those that always 
have lower value (merge as needed)  

•  Continue with backups and pruning 
until error is below ε 

Key: Prune over not just states, but 
possible policies of the other agents! s1 s2 

(backup for action 1) 
Q × S

 o2 
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a1 a2 
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a1 a2 
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  o2 

  o2 

  
a1   o1,o2 

=   Initial controller 
         for agent 1 
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DP for for Dec-POMDPs  
• What happens in infinite or large horizons? 

•  Number of trees is doubly exponential in the horizon 
•  Doesn’t consider start state 
•  Full backup wasteful (many trees pruned) 

• Need more efficient backups 
• Or approximate approaches to increase scalability 
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Incremental policy generation (Amato et al., 09) 

• Optimal dynamic programming for Dec-POMDPs requires 
a large amount of time and space 

•  In POMDPs, methods have been developed to make 
optimal DP more efficient (e.g., incremental pruning) 

•  These cannot be extended to Dec-POMDPs (due to the 
lack of a shared viewpoint by the agents) 

• Makes the optimal approaches for both finite and infinite-
horizon more efficient 
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Incremental policy generation (cont.) 
•  Can avoid exhaustively generating policies (backups) 
•  Can limit the number of states considered based on action and 

observation (see a wall, other agent, etc.)  
•  This allows policies for an agent to be built up incrementally 
•  Add only subtrees (or subcontrollers) that are not dominated 

Key: rune only over reachable subspaces 
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Benefits of IPG and results 

•  Solve larger problems optimally 
•  Can make use of start state information as well 
•  Can be used in other dynamic programming algorithms 

•  Optimal: Finite-, infinite- and indefinite horizon  
•  Approximate: PBDP, MBDP, IMBDP, MBDP-OC and PBIP 

Increases horizon in optimal DP (finite or infinite-hor) 
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Top down approaches 
• Perform a search starting from a known initial (belief) 

state 
• Continue until the desired horizon is reached 
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Multiagent A* (Szer et al., 05) 

•  Can build up policies for agents from the first step 
•  Use heuristic search over joint policies 

•  Actions:    and   , observations:    and   
•  History:     and joint policies for a single step: 
•  Heuristic value for remaining steps (e.g., MDP or POMDP) 
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ā1

o1o1

o1
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ō2ō2
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Multiagent A* continued  

• Requires an admissible heuristic function 
• A*-like search over partially specified joint policies: 

• Heuristic value: 

•  If              is admissible (overestimation), so is  

May 21, 2012 CTS Conference 2012 57 
Multiagent A*

• MAA∗: top-down heuristic policy search (Szer et al., 2005).
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Multiagent A* continued  
• Expand children by growing policy 

to the next horizon 
• Choose nodes with the highest F 

value 
• Continue until node with highest F 

is a full horizon policy 
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Multiagent A*

• MAA∗: top-down heuristic policy search (Szer et al., 2005).
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Heuristic functions 
•  Defined by solving simplified problem settings 
•  QMDP: assume the underlying state is fully observable by the 

agents from that step on 
•  Cheap to compute (solve an MDP) 
•  Often loose (strong assumptions: centralized and fully observable) 

•  QPOMDP: assume the observations of all agents are shared from 
that step on 
•  More difficult to solve (exponential in h to solve POMDP) 

•  QBG: assume the observations of all agents are shared on the 
next step on 
•  Still harder to solve 

•  Hierarchy of upper bounds 
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Q*≤QBG≤QPODP≤QMDP 



Heuristic functions: example tiger problem 
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Generalized MAA* (Oliehoek et al., 08) 

• Represent Dec-POMDPs as a series of Bayesian games 
• Also allowed different heuristic functions and solvers to be 

used 
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DEC-POMDPs as series of Bayesian Games

t = 0

t = 1

joint actions
joint observations
joint act.-obs. history〈a1, a2〉

〈ā1, a2〉

〈a1, ā2〉

〈ā1, ā2〉

〈o1, o2〉
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〈ō1, ō2〉
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Dec-POMDPs as a series of Bayesian games 
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DEC-POMDPs as series of Bayesian Games

!θ t=0
2

()

!θ t=0
1

a2 ā2

() a1 +2.75 −4.1

ā1 −0.9 +0.3

!θ t=1
2

(a2, o2) (a2, ō2) ...
!θ t=1
1

a2 ā2 a2 ā2

(a1, o1)
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Lossless clustering of histories (Oliehoek et al, 09) 

•  Idea: if two individual histories induce the same 
distribution over states and over other agents' histories, 
they are equivalent and can be clustered  

•  Lossless clustering, independent of heuristic, but problem 
dependent 

• Clustering is bootstrapped: algorithms only deal with 
clustered Bayesian games 

•  Large increase in scalability of optimal solvers 
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Incremental expansion (Spaan et al., 11) 

• Number of children expanded is doubly exponential in t 
• Many of these not useful for optimal policy 
• Use incremental expansion 

•  Find next step policies as a cooperative Bayesian game (CBG) 
•  Keep pointer to unexpanded nodes in open list 

May 21, 2012 CTS Conference 2012 64 

-Create new CBG
-Solution of CBG:

-Create new CBG
-Solution of CBG:
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Hybrid heuristic 
•  Two standard representations for heuristics 

•  Tree: values for all joint action-observation histories 
•  Vector: a potentially exponential number of vectors 

• Key insight: exponential growth of these representations 
is in opposite directions 
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Optimal results 

• Problem size (all 2 agent) 
•  Broadcast Channel S=4 A=2 Ω=2  
•  Box Pushing S=100 A=4 Ω=5 
•  Fire Fighting S=432 A=3 Ω=2  

• Performance a combination of better search and better 
heuristics 
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Approximate methods 
• Optimal methods are intractable for many problems 
• Want to produce the best solution possible with given 

resources 
• Quality bounds are usually not possible, but these 

approaches often perform well 
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Joint equilibrium search for policies (JESP) 
•  Instead of exhaustive search, find best response 
 
• Algorithm: 

 Start with (full) policy for each agent 
 while not converged do 
      for i=1 to n  
  Fix other agent policies 
  Find a best response policy for agent i 
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(Nair et al., 03) 



JESP summary 
•  Finds a locally optimal set of policies 
• Worst case complexity is the same as exhaustive search, 

but in practice is much faster 
• Can also incorporate dynamic programming to speed up 

finding best responses 
•  Fix policies of other agents 
•  Create a (augmented) POMDP using the fixed policies of others 
•  Generate reachable belief states from initial state b0 
•  Build up policies from last step to first 
•  At each step, choose subtrees that maximize value at reachable 

belief states 
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Memory bounded dynamic programming (MBDP) 

•  Do not keep all policies at each step of dynamic programming 
•  Keep a fixed number for each agent: maxTrees 
•  Select these by using heuristic solutions from initial state 
•  Combines top down and bottom up approaches 
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(Seuken and Zilberstein., 07) 



MBDP algorithm 
start with a one-step policy for each agent 
for  t=h to 1 do 
     backup each agent's policy 
     for k=1 to maxTrees do 

 compute heuristic policy and resulting belief state b 
 choose best set of trees starting at b 

select best set of trees for initial state b0 
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MBDP summary 
•  Linear complexity in problem horizon 
• Exponential in the number of observations 
• Performs well in practice (often with very small maxTrees) 
• Can be difficult to choose correct maxTrees 
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Extensions to MBDP 
•  IMBDP: Limit the number of observations used based on 
•  probability at each belief (Seuken and Zilberstein 07) 

• MBDP-OC: compress observations based on the value 
produced (Carlin and Zilberstein 08) 

• PBIP: heuristic search to find best trees rather than 
exhaustive (Dibangoye et al., 09)  

• Current state-of-the-art 
•  PBIP-IPG: extends PBIP by limiting the possible states (Amato et al., 

09-AAMAS) 
•  CBPB: uses constraint satisfaction solver for subtree selection 

(Kumar and Zilberstein, 10) 
•  PBPG: approximate, linear programming method for subtree 

selection (Wu et al, 10) – solves a problem with 3843 states and 11 obs to hor 20 
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Other finite-horizon approaches 
• Mixed integer linear programming (MILP) (Aras et al., 07) 

•  Represent each agent's policy in sequence form (instead of as a 
tree) 

•  Solve as a combinatorial optimization problem (MILP) 

• Sampling methods 
•  Direct Cross-Entropy policy search (DICE) (Oliehoek et al., 08) 

•  Randomized algorithm using combinatorial optimization 
•  Applies Cross-Entropy method to Dec-POMDPs 
•  Scales well wrt number of agents 

•  Goal-directed sampling (Amato and Zilberstein, 09) 
•  Discussed later 
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Approximate infinite-horizon approaches  
• A large enough horizon can be used to approximate an 

infinite-horizon solution, but this is neither efficient nor 
compact 

• Specialized infinite-horizon solutions have also been 
developed: 
•  Best-First Search (BFS) 
•  Bounded Policy Iteration for Dec-POMDPs (Dec-BPI)  
•  Nonlinear Programming (NLP) 

May 21, 2012 CTS Conference 2012 75 



Memory-bounded solutions 
• Optimal approaches may be intractable 
• Can use fixed-size finite-state controllers as policies for 

Dec-POMDPs 
• How do we set the parameters of these controllers to 

maximize their value? 
•  Deterministic controllers - discrete methods such as branch and 

bound and best-first search 
•  Stochastic controllers - continuous optimization 

 
a? q

o2 

o1 q? 

q? 

(deterministically) choosing an action and transitioning to the next node  
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Best-first search (Szer and Charpillet 05) 

• Search through space of deterministic action selection 
and node transition parameters 

• Produces optimal fixed-size deterministic controllers 
• High search time limits this to very small controllers (< 3 

nodes) 
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Bounded policy iteration (BPI) (Bernstein et al., 05) 

•  Improve the controller over a series of steps until value 
converges 

•  Alternate between improvement and evaluation 
•  Improvement 

•  Use a linear program to determine if a node's parameters can be 
changed, while fixing the rest of the controller and other agent policies 

•  Improved nodes must have better value for all states and nodes of the 
other agents (multiagent belief space) 

•  Evaluation: Update the value of all nodes in the agent's 
controller 

•  Can solve much larger controller than BFS, but value is low 
due to lack of start state info and LP 
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Nonlinear programming approach (Amato et al., 07, 09b)  

• Use a nonlinear program (NLP) to represent an 
optimal fixed-size set of controllers for Dec-POMDPs 

• Consider node value as well as action and transition 
parameters as variables  

• Maximize the value using a known start state 
• Constraints maintain valid values and probabilities 
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NLP formulation 
Variables:  

Objective:  Maximize  

Value Constraints: 

 
 
 
Probability constraints ensure all probabilities must sum to 1 and be 

greater than 0 

∀s∈S, q ∈Q

z(q, s) = x(qi,ai ) R(s,
a)+ γ P(s ' | s, a) O(o | s ', a) y(qi ',ai,qi,oi )
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x(qi,ai ) = P(ai | qi ), y(qi,ai,oi,qi ') = P(qi ' | qi,ai,oi ), z(
q, s) =V (q, s)



Mealy controllers (Amato et al, 10)  

•  Controllers currently used are Moore controllers 
•  Mealy controllers are more powerful than Moore controllers 

(can represent higher quality solutions with the same number 
of nodes) 

• Key difference: action depends on node and observation 

a1 
 

o2 

o1 

o2 o1 

a2 

,a1 

 
o2 

o1 ,a2 

o1 ,a2 

,a1 
 

o2 Moore= Mealy= 
Q A Q×O A 
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Mealy controllers continued   

• More powerful 
• Provides extra structure that algorithms can use 

•  Can automatically simplify representation based on informative 
observations  

•  Can be done in controller or solution method 
• Can be used in place of Moore controllers in all 

controller-based algorithms for POMDPs and DEC-
POMDPs (not just NLP) 
•  Optimal infinite-horizon DP  
•  Approximate algorithms 

o2 

o1 ,a2 

o1 ,a2 

,a1 
 

o2 

,a1 
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Some infinite-horizon results 
•  Optimal algorithm can only solve very small problems 
•  Approximate algorithms are more scalable 

•  GridSmall: 16 states, 4 actions, 2 obs 
•  Policy Iteration: 3.7 with 80 nodes in 821s before out of memory  
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Indefinite-horizon 
• Unclear how many steps are needed until termination 
• Many natural problems terminate after a goal is reached 

•  Meeting or catching a target 
•  Cooperatively completing a task 
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Indefinite-horizon Dec-POMDPs (Amato et al, 09a) 

• Extends indefinite-horizon POMDPs Patek 01 and Hansen 07 

• Our assumptions 
•  Each agent possesses a set of terminal actions  
•  Negative rewards for non-terminal actions 

• Can capture uncertainty about reaching goal  
• Many problems can be modeled this way  

An optimal solution to this problem can be found using 
dynamic programming 
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Goal-directed Dec-POMDPs 
•  Relax assumptions, but still have goal 
•  Problem terminates when 

•  A single agent or set of agents reach local or global goal states 
•  Any combination of actions and observations is taken or seen 

•  More problems fall into this class (can terminate without agent 
knowledge) 

•  Solve by sampling trajectories 
•  Produce only action and observation sequences that lead to goal 
•  This reduces the number of policies to consider 

Can bound the number of samples required to approach optimality 

g	
a1	
 a1	
a1	
 o1	
o3	
 o3	
b0	
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Infinite and indefinite-horizon results 

Algorithm Value Size Time
Meeting in a Grid: |S| = 16, |Ai| = 5, |Oi| = 2

Mealy 6.13 5 116
HPI w/ NLP 6.04 7 16,763
Moore 5.66 5 117

Goal-directed2 5.64 4 4

Box Pushing: |S| = 100, |Ai| = 4, |Oi| = 5

Mealy 143.14 4 774
HPI w/ NLP 95.63 10 6,545
Moore 50.64 4 5,176

Goal-directed2 149.85 5 199

Mars Rover: |S| = 256, |Ai| = 6, |Oi| = 8

Mealy 19.67 3 396
HPI w/ NLP 9.29 4 111
Moore 8.16 2 43

Goal-directed2 21.48 6 956

Table 3: Results for DEC-POMDP problems comparing Mealy
and Moore machines and other algorithms. The size refers to the
number of nodes in the controller and the time is in seconds.

Algorithm Value Size Time
Two Agent Tiger: |S| = 2, |Ai| = 3, |Oi| = 2
HPI w/ NLP 6.80 6 119
Goal-directed 5.04 12 75

Moore -1.09 19 6,173
Meeting in a Grid: |S| = 16, |Ai| = 5, |Oi| = 2

Mealy 6.13 5 116
HPI w/ NLP 6.04 7 16,763

Moore 5.66 5 117
Goal-directed 5.64 4 4

Box Pushing: |S| = 100, |Ai| = 4, |Oi| = 5
Goal-directed 149.85 5 199

Mealy 143.14 4 774
HPI w/ NLP 95.63 10 6,545

Moore 50.64 4 5,176
Mars Rover: |S| = 256, |Ai| = 6, |Oi| = 8

Goal-directed 21.48 6 956
Mealy 19.67 3 396

HPI w/ NLP 9.29 4 111
Moore 8.16 2 43

Table 4: Results for DEC-POMDP problems comparing Mealy
and Moore machines and other algorithms. The size refers to the
number of nodes in the controller and the time is in seconds.

Number of nodes
Type 1 2 3 4 5

Meeting in a grid: |S| = 16, |Ai| = 5, |Oi| = 2

Mealy 5.50 6.00 5.87 6.05 6.13
Moore 3.58 4.83 5.23 5.62 5.66

Box pushing: |S| = 100, |Ai| = 4, |Oi| = 5

Mealy 123.46 124.20 133.67 143.14
Moore -1.58 31.97 46.28 50.64

Mars rover: |S| = 256, |Ai| = 6, |Oi| = 8

Mealy 18.92 19.17 19.67
Moore 0.80 8.16

Table 5: Results for Mealy and Moore machines of different sizes
for DEC-POMDP benchmarks. A blank entry means that the con-
troller of that size could not been computed given the resource re-
strictions of the NEOS server.

§  Standard infinite-horizon 
benchmarks  

§  Approximate solutions 
§  Can provide a very high-

quality solution very quickly 
in each problem 
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Scalability to larger problems 
• Dec-MDP 

•  Collective observations fully determine state 

•  Independent transitions and observations 
•  P(s’| s, a)=P(s’| s, a1) P(s’| s, a2)  
•  O(o| s’, a) =P(o1| s’, a1) P(o2| s’, a2)  
•  Rewards still dependent 

• Complexity drops to NP (from NEXP) 
•  Policy: nonstationary map from local states to actions si

t  a 
• Many realistic problems have this type of independence 
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Sample-based heuristic search under submission 

• Observation: can share policies before execution 
•  With Dec-MDP assumptions, can now estimate system state 
•  Don’t need history, so can use this estimate and single local obs 

• Use branch and bound to search policy space 
•  Start from known initial state 

•  Incorporate constraint optimization to more efficiently 
expand children 
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Dec-MDP results 

•  2 agent problems 

 
•  Scalable to 6 agents for small problems and horizons 
•  Note:  ND-POMDP methods can scale to up to 15 agents by making 

reward decomposability assumptions 
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T �0(⌘0) ICE IPG BLP LMP
exh COP

Recylcing robot (|Z| = 4,|A| = 9)
50 154.94 1.27 - 8848.7 0.016 0.5
60 185.71 6.00 - - 0.090 0.555
70 216.47 28.6 - - 0.111 0.395
90 278.01 - - - 0.151 0.373
100 308.78 - - - 0.156 0.438
1000 3078.0 - - - 1.440 5.374

Meeting Grid (|Z| = 81,|A| = 25)
2 0.0 0.00 5 10.0 - 0.030
3 0.13 0.02 17 34.7 - 0.110
4 0.43 0.37 54 192.8 - 0.114
5 0.89 4.38 600 571.2 - 0.131
6 1.49 - - 1160.6 - 0.159
7 2.19 - - 2262.9 - 0.197

10 4.68 - - 3938.5 - 0.309
100 94.26 - - - - 13.12
1000 994.2 - - - - 33.59

T �0(⌘0) ICE IPG BLP COP
Meeting on a 8x8 Grid (|Z| = 4096,|A| = 25)

5 0.0 12.55 - - 5.051
6 0.0 - - - 6.20
7 0.71 - - - 13.16
8 1.67 - - - 13.76
9 2.68 - - - 16.94

10 3.68 - - - 18.66
20 13.68 - - - 38.37
30 23.68 - - - 52.39
40 33.68 - - - 59.70
50 43.68 - - - 74.28
100 93.68 - - - 214.73

Navigation (MIT) (|Z| = 7225,|A| = 16)
10 0.0 85.85 - - 47.322
20 0.0 - - - 321.26
40 34.97 - - - 400.48
50 54.92 - - - 1061.94
100 154.93 - - - 1236.11

T �0(⌘0) ICE IPG BLP COP
Navigation (ISR) (|Z| = 8100,|A| = 16)

2 0.0 0.71 - 3225.8 2.39
3 0.0 6.50 - - 3.19
4 0.0 - - - 4.31
5 0.38 - - - 13.43
10 6.47 - - - 54.16
50 83.02 - - - 194.66

100 182.54 - - - 1294.28
Navigation (PENTAGON) (|Z| = 9801,|A| = 16)

2 0.0 0.99 - 4915.1 1.31
3 0.0 6.01 - - 5.11
4 0.0 - - - 8.75
5 0.38 - - - 13.81
10 4.82 - - - 62.89
20 19.73 - - - 129.48
30 39.18 - - - 209.11
40 57.75 - - - 276.20
50 76.39 - - - 1033.70

Table 1: Experimental results of the COP and exh. variants of the LMP as well as GMAA⇤-ICE (termed just ICE here), IPG,
and BLP algorithms.

the best available version of the bilinear program approach
which was the iterative best response version with standard
parameters. We do not compare to the coverage set algo-
rithm because the bilinear programming method has been
shown to be more efficient than it for all available test prob-
lems.

We provide values for the exhaustive variant, exh, on
small problems and constraint optimization formulation,
COP, for all problems. We tested our algorithms on six
benchmarks: recycling robot, meeting grid 3x3 and 8x8;
and navigation problems2. These are the largest and hard-
est benchmarks we could find in the literature. We com-
pare our algorithms with: GMAA⇤-ICE, IPG, and BLP. The
GMAA⇤-ICE (Spaan, Oliehoek, and Amato 2011) heuristic
search consistently outperforms other generic exact solvers
such as MAA⇤, GMAA⇤ . The IPG (Amato, Dibangoye, and
Zilberstein 2009) algorithm is a competitive alternative to
the GMAA⇤ approach and performs well on problems with
reduced reachability.

In all benchmarks, the COP variant outperforms the other
algorithms. The results, illustrated in Table 1, show that the
COP variant produces the optimal policies in much less run-
time for all tested benchmarks. As an example consider the
meeting in a 3x3 grid for T = 5: the COP variant com-
puted the optimal policies in about 33, 4358 and 4580 times
faster than the GMAA⇤-ICE, BLP and IPG algorithms, re-
spectively. We also note that the COP variant is very useful
for the medium and large domains. For example all large do-
mains, the exh. variant ran out of memory while the COP
variant computed the optimal solutions over hundreds of
horizons. Yet, the exh. variant can compute the optimal so-
lution of small problem faster than the COP variant. For ex-
ample in the recycling robot at horizon T = 1000, the exh.
variant computed the optimal solution in about 5 times faster
than the COP variant the of LMP algorithm.

While preliminary, we also note that the constraint for-
mulation, allows us to deal with larger numbers of agents.
Indeed, we ran the COP variant of LMP on decentralized
MDPs with independent transitions and observations where

2All problem definitions are available at
http://users.isr.ist.utl.pt/⇠ mtjspaan/decpomdp/

each agent’s local MDP is based on the recycling-robot
problem. The COP variant was able to scale up to 6 agents at
horizon 10 in about 10, 000 seconds. Despite this high run-
ning time, LMP is the first generic algorithm that scales to
teams of more than two agents. For example the BLP algo-
rithm as it currently stands can only solve two-agent prob-
lems.

There are many different reasons that explain these re-
sults. The LMP outperforms GMAA⇤-ICE and IPG mainly
because they perform a policy search in the space of decen-
tralized history-dependent policies. Instead, the LMP algo-
rithm performs its policy search in the space of decentralized
Markov policies, which is exponentially smaller than that of
the decentralized history-dependent policies. The LMP out-
performs the BLP algorithm mainly because of the dimen-
sion of its sufficient statistic. Indeed, the BLP algorithm uses
a sufficient statistic that is T times larger. More specifically,
the number of bilinear terms in the BLP approach grows
polynomially in the horizon of the problem, causing it to
not perform well for large problems and large horizons with
tightly coupled reward values.

Conclusion and Future Work
This paper explores new theory and algorithms for solving
independent transition and observation Dec-MDPs. We pro-
vide a new proof that optimal policies do not depend on
agent histories in this subclass. We also describe a novel al-
gorithm that combines heuristic search and constraint opti-
mization to more efficiently produce solutions. This new al-
gorithm, termed learning Markov policy or LMP, was shown
to scale up to large problems and planning horizons, reduc-
ing computation time by multiple orders of magnitude over
previous approaches.

In the future, we plan to explore extending the LMP al-
gorithm to other classes of problems and larger teams of
agents. For instance, we may be able to produce an opti-
mal solution to more general classes of Dec-MDPs or pro-
vide approximate results for Dec-POMDPs. Furthermore,
the scalability of our approach to larger numbers of agents
is encouraging and we will pursue methods to increase this
even further.

State-of-the-art in IT-IO Dec-MDPs 



Communication 
• Communication can be implicitly represented in Dec-

POMDP model 
•  Free and instantaneous communication is equivalent to 

centralization 
• Otherwise, need to reason about what and when to 

communicate 
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Dec-POMDP-COM 
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• A DEC-POMDP-COM can be defined with the tuple:  
M = <I, S, {Ai}, P, R, {Ωi}, O, Σ,CΣ> 

•  The first parameters are the same as a Dec-POMDP 
•  Σ, the alphabet of atomic communication messages for each agent 

(including a null message) 
•  CΣ, the cost of transmitting an atomic message: 
•  R, the reward model integrates this cost for the set of agents 

sending message σ:  
• Explicitly models communication 
• Same complexity as Dec-POMDP 

CΣ :Σ→ℜ

R(s, a,

σ )



Algorithms using communication  
• Analysis of possible communication models and 

complexity (Pynadath et al., 02) 

• Myopic communication in transition independent Dec-
MDPs (Becker et al., 09) 

• Reasoning about run-time communication decisions (Nair et 
al., 04; Roth et al., 05) 

• Stochastically delayed communication (Spaan et al., 08) 
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Summary 
• Optimal algorithms for Dec-POMDPs give performance 

guarantees, but are often intractable 
•  Top down and bottom up methods provide similar performance 

• Approximate Dec-POMDP algorithms are much more 
scalable, but (often) lack quality bounds  
•  Bounding memory and sampling are dominant approaches 

• Using subclasses can significantly improve solution 
scalability (if assumptions hold) 

• Communication can be helpful, but difficult to decide when 
and how to communicate 
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Application: Personal assistant agents (Amato et al.,11) 

• People connected to many others and sources of info 
• Use software personal assistant agents to provide support 

(Dec-MDP, Shared-MDP) 
•  Agents collaborate on your behalf to find resources, teams, etc. 
•  Goal: work more efficiently with others and discover helpful info 
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Application: Unmanned system control  
• Planning for autonomous vehicles in a simulation 

•  Single or centralized team: factored POMDP 
•  Decentralized team: Dec-POMDP 
•  Team considering adaptive enemy: I-POMDP 
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Application: Mixed-initiative robotics  
•  Humans and robots collaborating for search and pursuit 
•  Determine what tasks robots should do (MMDP, Dec-POMDP) 

and what tasks humans should do 
•  Adjustable autonomy based on preferences and situation 
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Conclusion 
• What problems Dec-POMDPs are good for 

•  Sequential (not “one shot” or greedy) 
•  Cooperative (not single agent or competitive) 
•  Decentralized (not centralized execution or free, instantaneous 

communication) 
•  Decision-theoretic (probabilities and values) 

May 21, 2012 CTS Conference 2012 98 



Resources 
• My Dec-POMDP webpage 

•  Papers, talks, domains, code, results 
•  http://rbr.cs.umass.edu/~camato/decpomdp/ 

• Matthijs Spaan’s Dec-POMDP page 
•  Domains, code, results 
•  http://users.isr.ist.utl.pt/~mtjspaan/decpomdp/index_en.html 

• USC’s Distributed POMDP page 
•  Papers, some code and datasets 
•  http://teamcore.usc.edu/projects/dpomdp/ 

• Our full tutorial “Decision Making in Multiagent Systems” 
•  http://users.isr.ist.utl.pt/~mtjspaan/tutorialDMMS/ 
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