
Scalable Accelerated Decentralized Multi-Robot Policy Search
in Continuous Observation Spaces

Shayegan Omidshafiei1, Christopher Amato2, Miao Liu3, Michael Everett1, Jonathan P. How1, John Vian4

Abstract— This paper presents the first ever approach for
solving continuous-observation Decentralized Partially Observ-
able Markov Decision Processes (Dec-POMDPs) and their semi-
Markovian counterparts, Dec-POSMDPs. This contribution is
especially important in robotics, where a vast number of sensors
provide continuous observation data. A continuous-observation
policy representation is introduced using Stochastic Kernel-
based Finite State Automata (SK-FSAs). An SK-FSA search
algorithm titled Entropy-based Policy Search using Contin-
uous Kernel Observations (EPSCKO) is introduced and ap-
plied to the first ever continuous-observation Dec-POMDP/Dec-
POSMDP domain, where it significantly outperforms state-
of-the-art discrete approaches. This methodology is equally
applicable to Dec-POMDPs and Dec-POSMDPs, though the
empirical analysis presented focuses on Dec-POSMDPs due to
their higher scalability. To improve convergence, an entropy in-
jection policy search acceleration approach for both continuous
and discrete observation cases is also developed and shown to
improve convergence rates without degrading policy quality.

I. INTRODUCTION

Decision-making under uncertainty is a ubiquitous robotics
problem wherein a robot collects data from its environment
and decides subsequent tasks to execute. While low-cost
robotics platforms and sensors have increased the affordability
of multi-robot systems, derivation of policies dictating robot
decisions remains a challenge. This decision-making problem
is even more complex in noisy settings with imperfect com-
munication, requiring a formal framework for its treatment.

A general representation of the multi-agent planning under
uncertainty problem is the Decentralized Partially Observable
Markov Decision Process (Dec-POMDP) [1], which extends
single-agent POMDPs to decentralized domains. Due to
Dec-POMDPs’ usage of primitive actions (atomic actions
assumed to each take a single time unit to execute) they have
exceedingly large policy spaces which severely limits planning
scalability. Recent efforts have extended Dec-POMDPs to use
macro-actions (temporally extended actions), resulting in the
Decentralized Partially Observable Semi-Markov Decision
Process (Dec-POSMDP) [2], [3]. The result is a scalable
asynchronous multi-robot decision-making framework which
plans over the space of high-level robot tasks (e.g., Open-the-
valve or Find-the-key) with non-deterministic durations.

*This work was supported by The Boeing Company.
1Laboratory for Information and Decision Systems (LIDS), MIT, Cam-

bridge, MA 02139, USA {shayegan,jhow}@mit.edu
2College of Computer and Information Science (CCIS), Northeastern

University, Boston, MA 02115, USA camato@ccs.neu.edu
3IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598,

USA miao.liu1@ibm.com
4Boeing Research & Technology, Seattle, WA 98108, USA

john.vian@boeing.com

Despite the increased action-space scalability offered by
Dec-POSMDPs, they have so far been limited to planning over
the space of discrete observations. To date, no algorithms exist
for continuous-observation Dec-POSMDPs (or Dec-POMDPs
[4]). This is a major research gap, especially important in the
context of robotics where a vast number of real-world sensors
provide continuous observation data. Application of Dec-
POSMDPs to continuous problems such as robot navigation
currently mandates observation space discretization, resulting
in loss of valuable sensor information which could otherwise
be used to better inform the decision-making policy. Several
approaches have targeted single-agent continuous-observation
POMDPs. These include partitioning of continuous spaces
into lossless discrete spaces [5], Gaussian mixtures for belief
representation [6], use of continuous-observation classifiers
[7], and learned discrete representations for continuous state
spaces [8]. This paper expands this body of work beyond the
single-agent case, targeting scalable treatment of continuous-
observation Dec-POSMDPs. The methods presented are
applicable to domains with continuous underlying state spaces,
as shown in some of the experiments used for evaluation.

In order to develop solvers for continuous-observation Dec-
POSMDPs, we build on current state-of-the-art discrete policy
search methods [2], [3], [9]. Unfortunately, these algorithms
suffer from convergence speed limitations—an issue which
was identified in prior work but remains untreated [9]. A
major gap exists in addressing these issues before extending
the foundations of these discrete algorithms to the continuous
case, where such convergence issues are exacerbated. To
resolve this, we first introduce a maximal entropy injection
approach targeting convergence acceleration for both discrete
and continuous algorithms, without degrading overall policy
quality. The approach is shown to significantly outperform
existing search acceleration methods.

The paper’s key contribution is a stochastic kernel-based
policy representation and search algorithm, allowing direct
mapping of continuous observations to robot decisions (with
no discretization necessary). This algorithm leverages the pro-
posed entropy injection acceleration method and is evaluated
on a multi-robot nuclear contamination domain—the first ever
continuous-observation Dec-POMDP/Dec-POSMDP domain—
in which discrete policy search algorithms perform extremely
poorly. Failure modes of discrete methods are analyzed and
compared to the superior continuous policy behavior. The
contributions introduced in this paper can be readily applied to
Dec-POMDPs and Dec-POSMDPs. However, as we are mo-
tivated by applications to extremely large action-observation
spaces, the notation used and experiments conducted focus
on the more scalable Dec-POSMDP framework.

II. BACKGROUND

A. Decentralized Planning using Macro-Actions

This section summarizes the Dec-POSMDP, a multi-robot
decentralized decision-making under uncertainty framework
targeting action-space scalability. For a more detailed intro-
duction to Dec-POSMDPs, we refer readers to [2], [3], [9].

The Dec-POSMDP is a belief-space framework in which
agents execute macro-actions (temporally-extended actions)
with non-deterministic completion times, and receive noisy
high-level observations of their post-MA state. Macro-actions
(MAs) are abstractions of low-level POMDPs involving prim-
itive actions u(i)

t and observations o(i)
t , allowing execution of

high-level tasks (e.g., Park-the-car)1. Each MA executes until
an ε-neighborhood of its belief milestone b̌goal is reached.
This neighborhood defines the MA termination condition or
goal belief node, denoted Bgoal={b : ‖b− b̌goal‖ ≤ ε} [3].

Upon completion of an MA, each robot makes a macro
(or high-level) observation oe(i) of the underlying high-
level system state xe ∈ Xe. It also calculates its own
final belief state, bf(i). Thus far, both Dec-POMDPs and
Dec-POSMDPs have only seen limited applications to finite
discrete observation spaces. Due to its action-space scalability,
let us focus on the Dec-POSMDP, defined as follows:

• I = {1, 2, . . . , n} is the set of heterogeneous robots.
• B(1) × B(2) × . . .× B(n) × Xe is the belief space, with

local belief milestones B(i) and joint environment (or
high-level) space Xe.

• T̄ = T(1)×T(2) . . .×T(n) is the joint MA space, where
T(i) is the finite set of MAs for the i-th robot.

•
¯̆Oe = {¯̆oe} is the space of all joint MA-observations.

• P (b̄′, xe
′
, k|b̄, xe; π̄) is the high-level transition proba-

bility model under MAs π̄ from (b̄, xe) to (b̄′, xe
′
).

• R̄τ(b̄, xe; π̄) is the high-level reward of taking a joint
MA π̄ at (b̄, xe).

• P (¯̆oe|b̄, xe) is the joint observation likelihood model,
with joint observation ¯̆oe = {ŏe(1), ŏe(2), . . . , ŏe(n)}.

• γ ∈ [0, 1) is the reward discount factor.

Macro-observations and final beliefs are jointly denoted
as MA-observation ŏe(i) = (oe(i), bf(i)). Trajectories of MAs
and received MA-observations are denoted as the MA-history,

ξ
(i)
k = {ŏe(i)0 , π

(i)
0 , ŏ

e(i)
1 , π

(i)
1 , . . . , ŏ

e(i)
k−1, π

(i)
k−1, ŏ

e(i)
k }. (1)

Transition probability P (b̄′, xe
′
, k|b̄, xe;π̄) from (b̄, xe) to

(b̄′, xe
′
) under joint MA π̄={π(1),. . ., π(n)} in k timesteps is,

P (b̄′, xe
′
, k|b̄0, xe0, oek; π̄) = P (xek, b̄k|b̄0, xe0, oek; π̄)

=
∑

xe
k−1,b̄k−1

[
P (xek|xek−1, o

e
k; π̄(b̄k−1))× (2)

P (b̄k|xek−1, b̄k−1; π̄(b̄k−1))P (xek−1, b̄k−1|xe0, b̄0; π̄(b̄0))
]
.

The generalized high-level team reward for a discrete-time

1We denote a generic parameter p of the i-th robot as p(i), a joint team
parameter as p̄, and a joint team parameter at timestep k as p̄k .

Dec-POSMDP during execution of joint MA π̄ is defined [9],

R̄τ(b̄, xe; π̄)=E

[
τ−1∑
t=0

γtR̄(x̄t, x
e
t, ūt)|P (x̄0)= b̄, xe0 =xe; π̄

]
(3)

where τ = mini mint{t : b
(i)
t ∈ B(i),goal} is the first

timestep at which any robot completes its current MA.
The joint high-level policy, φ̄ = {φ(1), . . . , φ(n)}, dictates

MA selection. High-level policy φ(i) maps the i-th robot’s
MA-history ξ

(i)
k to the next MA π(i) to be executed. Joint

Dec-POSMDP value under policy φ̄ is then [9],

V̄ φ̄(b̄, xe) = E

[∞∑
k=0

γtkR̄τ (b̄tk , x
e
tk

; π̄tk)|b̄0, xe0; φ̄

]
(4)

= R̄τ(b̄, xe; π̄)+
∞∑
k=1

γtk
∑

b̄′,xe′ ,oe′

P (b̄′, xe
′
, oe
′
, k|b̄, xe; π̄)V̄ φ̄(b̄′, xe

′
). (5)

The optimal joint high-level policy is,

φ̄∗ = argmax
φ̄

V̄ φ̄(b̄, xe). (6)

Solving the Dec-POSMDP results in joint high-level
decision-making policy φ̄ dictating the MA π(i) executed
by each robot based on its MA-history. Each MA is, itself, a
policy over low-level actions u(i)

t and observations o(i)
t . Thus,

decision-making using the Dec-POSMDP allows abstraction
of task-level actions from low-level actions, leading to sig-
nificantly improved planning scalability over Dec-POMDPs.

B. Dec-POSMDP Policy Search Algorithms
So far, research efforts have focused on Dec-POSMDP

policy search for discrete observation spaces, resulting in
several algorithms: Masked Monte Carlo Search (MMCS)
[3], MacDec-POMDP Heuristic Search (MDHS) [2], and
Graph-based Direct Cross Entropy method (G-DICE) [9].
These algorithms use Finite State Automata (FSAs) for policy
representation. FSA-based policy φ(i) for robot i consists of
Nn FSA nodes, {q(i)

1 , . . . , q
(i)
Nn
}. FSA-based decision-making

is two-fold: each robot begins execution in FSA node q(i),
where MA output function π(i) = λ(i)(q(i)) assigns it an MA,
π(i). Following MA execution, the robot receives a high-level
observation and selects its next FSA node using transition
function q′(i) = δ(i)(q(i), ŏe(i)). The graph-based nature of
FSAs allows their application to infinite-horizon domains.

Though Dec-POSMDPs have increased the size of solvable
planning domains beyond Dec-POMDP counterparts, major
algorithm limitations still exist. MMCS is a greedy algorithm
which succumbs to local optimality issues [3]. MDHS uses
lower and upper bound value heuristics to bias search towards
promising policy regions, by initiating an empty (partial) FSA
and incrementally assigning nodes actions λ(i) and transitions
δ(i). Partial policies with high upper bounds are expanded
incrementally. Yet, each expansion involves |T|N |

¯̆O|
n child

policies, severely limiting usage for large observation spaces.
G-DICE is a cross entropy-based algorithm which iter-

atively updates policies using two sampling distributions
at each FSA node: MA distribution f(π(i)|q(i); θ(i)(π|q))

and node transition distribution f(q(i)′ |q(i), ŏe(i); θ(i)(q′|q,ŏe)),
where θ(i) are parameter vectors. Each iteration samples the
distributions Ns times, resulting in Ns deterministic FSA
policies. Maximum likelihood estimates (MLE) of parameters
θ(i) are calculated using the Nb≤Ns best policies. To prevent
convergence to local optima, smooth parameter updates,

θk+1 ← αθk+1 + (1− α)θk, (7)

are used, with iteration number k and learning rate α ∈ (0, 1].
For sufficiently small values of α, this process minimizes
cross entropy between each sampling distribution and a unit
mass centered at the optimal policy [10]. G-DICE is executed
until convergence, after which the best deterministic policy
from the history of samples is returned.

Using smooth parameter updates and sampling distributions
initiating from a uniform distribution allows G-DICE to
tradeoff exploration and exploitation in the policy space,
outperforming other Dec-POSMDP search approaches given
a fixed computational budget. Yet, G-DICE suffers from
sample degeneracy and convergence issues related to the
sampling distributions, and in its current form only applies to
discrete observation settings. The following sections resolve
these issues, resulting in a scalable, accelerated continuous-
observation search algorithm.

III. ACCELERATED POLICY SEARCH

Prior to extending to continuous observations, this section
treats the sampling distribution degeneracy issue in sampling-
based Dec-POSMDP approaches. It also introduces a maximal
entropy injection scheme which is then embedded in the
proposed continuous-observation Dec-POSMDP algorithm.

A. Sampling Distribution Degeneracy Problem
A major issue with sampling distribution-based approaches,

such as G-DICE, occurs when a low enough learning rate α is
not used, causing underlying sampling distributions to rapidly
converge to degenerate distributions far from the optimum
[11]. All subsequent search iterations return identical samples
of the policy space, stifling exploration altogether. Yet, one
benefit of a high learning rate is fast convergence, especially
useful for complex Dec-POSMDPs with large observation
spaces and computationally expensive trajectory sampling
and evaluation. Sampling distribution-based approaches such
as G-DICE often require hand-tuned selection of α for good
performance, even after which convergence may be exces-
sively slow and can hinder experimentation and analysis. This
trade-off was noted in [9], where it was left as future work.
Recall the motivation behind the Dec-POSMDP framework is
scalability to very large multi-robot planning domains. Despite
the fact that policy search is conducted offline, hindrance
of human-in-the-loop analysis due to slow convergence is
undesirable. A naı̈ve solution is to set α arbitrarily low, but
this implies arbitrarily high convergence time (on the order of
many days for complex domains). These foundational issues
must first be resolved before extending these algorithms to
treat the more complex continuous observation case.

Several works have targeted this degeneracy problem. One
approach uses dynamic smoothing of learning rates [12],

αk = α0 − α0(1− k−1)β , (8)

where α0 is the baseline rate (typically close to 1) and β is
the drop-off rate (typically between 5 to 10). The result is a
monotonically decreasing αk which initially starts high.

Another approach involves the addition of a noise term
ωk to the sampling distribution at each iteration k to prevent
degeneration. Linearly decreasing noise injection,

ωk = max(ωmax − rk, 0), (9)

was investigated in [13]. In the above, ωmax is the maximum
allowable noise and r is the noise drop-off rate.

These approaches are not ideal as they are agnostic to
Dec-POSMDP value function convergence, meaning they do
not adapt to domain-specific behaviors. Thus, sub-parameters
(α0, β, ωmax, r) typically need significant tuning to alleviate
convergence issues for individual domains.

B. Maximal Entropy Injection

A principled approach combining policy exploration with
fast convergence is desired, without reliance on sensitive dy-
namic smoothing or noise terms. As degenerate distributions
have minimal entropy [14], an intuitive idea is to simulta-
neously monitor policy value convergence and underlying
sampling distribution entropy to alleviate degeneracy issues.

In the proposed acceleration approach, search is conducted
as usual for iterations where policy value has not converged,
allowing policy space exploration. Once convergence occurs,
entropies of sampling distributions f(π(i)|q(i); θ(i)(π|q)) and
f(q(i)′ |q(i), ŏe(i); θ(i)(q′|q,ŏe)) are calculated. If a distribu-
tion’s entropy is significantly below the max entropy for
its distribution family, degeneracy has likely occurred [14].
Max entropy distributions are well-studied and closed form
results for many families and constraint sets are known [15].
For Dec-POSMDPs, these entropy calculations are computa-
tionally cheap as sampling distributions are categorical, with
corresponding discrete uniform maximal entropy distributions.

In post-degeneracy iterations, each sampling distribution’s
entropy is increased by incrementally combining its parame-
ters θ(i) with the max entropy distribution parameters θME ,

θk+1 ← (1− αEI)[αθk+1 + (1− α)θk] + αEIθME , (10)

where αEI is the entropy injection rate. This encourages
policy space exploration while still allowing usage of high
learning rates (e.g., α > 0.5) for fast convergence. In practice,
entropy injection rate αEI has a low value (between 1%
- 3% per iteration). As this process is repeated only in
post-convergence iterations, there is low sensitivity to αEI
as entropy is incrementally increased whenever necessary.
Injection stops as soon as the policy value diverges, allowing
unhindered exploration. This acceleration approach is eval-
uated in Section V-A and also integrated into the proposed
continuous-observation search algorithm in the next section.

IV. CONTINUOUS-OBSERVATION DEC-POSMDP SEARCH

This section focuses on multi-robot policy search in
continuous observation spaces. It first presents an extension
of traditional discrete, deterministic FSAs to allow repre-
sentation of continuous policies. A continuous-observation
Dec-POSMDP search algorithm is then introduced.

SK-FSA Node 𝑞 = 3

MA Distribution

𝑃(𝜋)

𝜋1

𝜋2

𝜋3

𝜋4

𝜋5

𝑃(𝑞′ = 2|𝑜𝑒)

𝑃(𝑞′ = 3|𝑜𝑒)

𝑃(𝑞′ = 4|𝑜𝑒)

𝑃(𝑞′ = 1|𝑜𝑒)

Node Transition Function

𝑞′ = 1

𝑞′ = 4

𝑞′ = 2

𝑞′ = 3

Node Transition

Distribution

(a) The robot
samples an MA
using its node’s
MA distribution.

(b) Given a high-level continuous observation made following MA
execution (e.g., oe = (2.5, 1.5) above), the transition function
outputs a categorical transition distribution over next-nodes q′.
The robot samples this distribution to select its next node, q′.

(c) The robot repeats this decision-making pro-
cess at the next SK-FSA node q′ (one of the 4
nodes above), conducting the stochastic MA and
transition selection process indefinitely.

Fig. 1: Overview of continuous-observation decision-making using SK-FSAs. A given robot’s policy is represented by a set
of stochastic FSA nodes, each containing an MA sampling distribution and node transition function. A 4 node SK-FSA
(Nn = 4) is illustrated above, with the robot starting policy execution at SK-FSA node q = 3 (on the left).

A. Stochastic Kernel-Based Finite State Automata
We first extend the notion of deterministic policies used in

existing Dec-POSMDP algorithms to stochastic policies. In a
stochastic FSA, MA output function λ(i) and node transition
function δ(i) provide robots with a probability distribution
over MAs and next-nodes q′ during policy execution, rather
than deterministic MA and transition assignments. The result-
ing stochastic decision-making scheme allows robots to escape
cycles of incorrect decisions which may otherwise occur in
deterministic FSAs [16]. While it has been shown that finite-
horizon Dec-POMDPs have at least one optimal deterministic
policy (i.e., guaranteed to at least equal performance of the
optimal stochastic policy) [17], in approximate searches,
stochastic FSAs often result in a higher joint value [16],
[18]. One can readily modify cross entropy-based search
to provide such a stochastic policy by simply using the
underlying sampling distributions f(π(i)|q(i); θ(i)(π|q)) and
f(q(i)′ |q(i), ŏe(i); θ(i)(q′|q,ŏe)) to define the policy, rather than
the best sampled deterministic policy (as done in G-DICE).

A second issue is extension of FSAs to support continuous
observations, a formidable task as continuous observation
spaces are uncountably infinite. Existing Dec-POSMDP
algorithms are, thus, inapplicable. To resolve this, we assume
policy smoothness over the observation space, a characteristic
which occurs naturally in many robotics domains. In other
words, the controller structure should induce similar decisions
from similar observation chains. This typical assumption is
also made by the continuous state-action MDP and POMDP
literature [7], [8], [19].

We exploit this smoothness assumption and introduce
Stochastic Kernel-based Finite State Automata (SK-FSAs) for
policy representation (Fig. 1), which have similar structure
to the controllers used in [7]. Policy execution in SK-
FSAs is similar to traditional FSAs. Each robot’s SK-
FSA node (e.g., node q = 3 in Fig. 1) outputs cat-
egorical MA distribution f(π(i)|q(i); θ(i)(π|q)), which the
robot samples to select its next MA (Fig. 1a). Following

MA execution, the robot receives a continuous high-level
observation, which the SK-FSA node transition function δ(i)

uses to output a corresponding node transition distribution
f(q(i)′ |q(i), ŏe(i); θ(i)(q′|q,ŏe)). Note the distinction between
transition function and transition distribution—the transition
function maps continuous observations to the Nn-dimensional
simplex. Given an observation, δ(i) outputs an infinitesimal
‘slice’ representing a categorical transition distribution over
next-nodes q′. Fig. 1b illustrates such a slice, evaluated at
high-level observation oe = (2.5, 1.5). The robot samples
this categorical distribution, transitions to its next SK-FSA
node q′, and repeats this process indefinitely.

We propose use of kernel logistic regression (KLR) to
represent node transition functions. KLR is a non-parametric
multi-class classification model (i.e., model complexity grows
with the number of kernel points). In SK-FSAs, node
transition functions use KLR with high-level observation
inputs, oe, and output probabilities over next-nodes q′. KLR
is a natural model for stochastic policies as it is a probabilistic
classifier (i.e., SK-FSA transition distributions correspond to
KLR probabilities) [20]. Our approach uses KLR with radial
basis function (RBF) kernels over the observation space,

K(oe, oe
′
) = exp(−0.5σ−2||oe − oe

′
||2), (11)

where σ is the kernel radius. RBF kernels are preferred as
they provide smooth classification outputs while allowing non-
linear decision boundaries [20], in contrast to linear kernels.
The next section discusses SK-FSA policy search, including
details on kernel basis selection and kernel weight training.

B. Entropy-based Policy Search over SK-FSAs

This section introduces an SK-FSA search algorithm
titled Entropy-based Policy Search using Continuous Kernel
Observations (EPSCKO). EPSCKO consists of 3 steps: cross
entropy search for MA distributions (as done in G-DICE),
memory-bounded KLR training for SK-FSA node transition
functions, and entropy injection for search acceleration (as in

Section III-B). In each EPSCKO iteration, decision trajectories
are sampled from the SK-FSA policy. The Nb best trajectories
(evaluated using (4)) are used for policy update.

We first detail the KLR training approach and then present
the overall algorithm. As transition function δ(i) uses a
kernel-based representation over the observation space, it
requires a set of observation kernel basis points and weights.
In EPSCKO, kernel weights constitute the node transition
parameter vector θ(i)(q′|q,ŏe). To simplify notation, references
to θ(i)

q′ in this section refer to this transition parameter vector.
The computational cost of training KLR models is O(N3

d)
[20], where Nd is the training input size. For a sustainable
training time, EPSCKO uses a memory-bounded kernel
basis consisting of continuous observations received during
evaluation of the Nb best policies in each of the latest NKLR
iterations. In each iteration, the bundle of observations in the
Nb best decision trajectories is pushed to a first-in, first-out
(FIFO) circular queue of length NKLR. KLR training outputs
are the corresponding sampled node transitions taken along
these same trajectories. The non-parametric nature of KLR
ensures that node transition function complexity increases in
regions with high observation density, so the policy naturally
focuses on prominent observation space regions. The result
is a compact yet informative policy representation.

To counter convergence to locally optimal SK-FSAs,
EPSKCO uses a weighted log-likelihood function to train the
KLR model. Weights are discounted such that observations
sampled in earlier algorithm iterations are given higher value.
Given learning rate α, the following weight set is used,

wb =

{
(1− α)NKLR−1 b = 1

α(1− α)NKLR−b b ∈ {2, · · · , NKLR}
(12)

where wb is the training weight for the b-th observation bundle
in the FIFO kernel queue. This weighting is derived from
recursive application of (7), and is analogous to the smoothing
step used in G-DICE. For each robot i, the weighted log-
likelihood function is maximized over θ(i)

q′ for KLR training,

l(i)(θ(i)) =

NKLR∑
b=1

wb log
exp(θ

(i)T
q′b

o
e(i)
b)∑Nn

k=1 exp(θ
(i)T
qk o

e(i)
b)

, (13)

where oe(i)b , q′b
(i), and θ

(i)
q′b

are transition function training
inputs, outputs, and kernel weights for the b-th observation
bundle. The partial derivative with respect to the j-th
component of each parameter is,

∂

∂θ
(i)
q′,j

l(θ(i))=

NKLR∑
b=1

wbo
e(i)
b,j

[
I(q′b=q′)−

exp(θ
(i)T
q′ o

e(i)
b)∑Nn

k=1 exp(θ
(i)T
qk o

e(i)
b)

]
,

(14)
where I(·) is the indicator function. The log-likelihood can be
maximized using a quasi-Newton method (our implementation
uses the Broyden-Fletcher-Goldfarb-Shanno algorithm). To
improve the generalization of the learned model, L2 regular-
ization is used during weight training.

EPSCKO is outlined in Alg. 1. It begins by specifying
an empty SK-FSA policy and NKLR-length FIFO circular
kernel basis queue for each robot (Alg. 1, Lines 2-3). The

Algorithm 1: EPSCKO

1 Procedure: φ̄b =

EPSCKO(T̄, ¯̆Oe, I, Nn, Nk, Ns, Nb, NKLR, α, αEI)
2 For each robot, initialize SK-FSA policy with Nn nodes;
3 Q̄KLR ← initFIFOQueue(NKLR);
4 V̄b, V̄w,0 ← −∞;
5 for i = 1 to n do
6 Initialize θ(i)(π|q)

0 ∀q and θ(i)(q′|q,ŏ)
0 ∀q, ŏ;

7 for k = 0 to Nk − 1 do
8 allowEntropyInject, entropyInjected ← False;
9 π̄list,KLRlist, V̄list ← ∅;

10 for s = 1 to Ns do
11 V̄ φ̄, {π̄}s, {¯̆oe, q̄′}s ← Evaluate(φ̄);
12 if V̄ φ̄ ≥ V̄w,k then
13 π̄list ← π̄list ∪ {π̄}s;
14 KLRlist ← KLRlist ∪ {¯̆oe, q̄′}s;
15 V̄list ← V̄list ∪ V̄ φ̄;

16 if V̄ φ̄ > V̄b then
17 V̄b, φ̄b ← V̄ φ̄, φ̄;

18 π̄b,list,KLRb,list, V̄b,list← best Nb policies in V̄list;
19 Q̄KLR.push(KLRb,list);
20 V̄w,k+1 ← min(V̄b,list);
21 if ValueConverged() then
22 allowEntropyInject ← True;

23 for i = 1 to n do
24 θ

(i)(π|q)
k+1 ← MLE of θ(i)(π|q) using π̄b,list ∀q;

25 θ
(i)(π|q)
k+1 ← αθ

(i)(π|q)
k+1 + (1− α)θ

(i)(π|q)
k ;

26 θ
(i)(q′|q,ŏ)
k+1 ← trainWeightedKLR(Q

(i)
KLR, α);

27 if allowEntropyInject then
28 entropyInjected←tryInject(θ(i)(π|q)

k+1 , θ
(i)(q′|q,ŏ)
k+1);

29 if entropyInjected then
30 V̄w,k+1 ← −∞;;

31 return φ̄b;

best-value-so-far, V̄b, and worst-joint-value, V̄w,0, are set to
−∞ (Alg. 1, Line 4). To encourage policy space exploration,
SK-FSA parameter vectors are initialized such that associated
distributions are uniform (Alg. 1, Line 6).

The main algorithm loop updates the SK-FSA policy
over Nk iterations, using the maximal entropy injection
scheme detailed in Section III-B to accelerate search. Entropy
injection is initially disabled and a flag indicating successful
entropy injection in the current iteration is set to False (Alg. 1,
Line 8). The team’s SK-FSA policies are evaluated Ns times,
with perceived continuous observation and node transition
trajectories saved for KLR training (Alg. 1, Line 11). MA
selections and node transitions from policies exceeding the
previous iteration’s worst joint value are tracked in KLRlist
(Alg. 1, Lines 13-15). The best-value-so-far, V̄b, is saved
(Alg. 1, Line 17). Trajectory lists are pruned to retain only the
best Nb trajectories (Alg. 1, Line 18). Continuous observations
and node transitions from this list are pushed to the FIFO
queue, causing old trajectories to be popped (Alg. 1, Line 19).

The iteration’s worst joint value, V̄w,k+1, is then updated.
At this point, the algorithm checks if the Dec-POSMDP

joint value has converged. If so, entropy injection is enabled
to counter convergence to a local optima (Alg. 1, Line 22).
This does not imply entropy injection will occur, only that
it is allowed to occur. Each robot subsequently updates its
MA distribution parameter vector, θ(i)(π|q), using a smoothed
MLE approach (Alg. 1, Lines 24-25). As discussed earlier,
weighted log-likelihood maximization is used to train the KLR
model for each node transition function (Alg. 1, Line 26).

Next, if maximal entropy injection is allowed, entropies
of sampling distributions are calculated and (if necessary)
injection occurs (Alg. 1, Line 28). As transition function δ(i)

is continuous and non-linear, an approximate measure of its
entropy is calculated using transition distributions sampled at
its underlying set of observation kernels. This approximation
was found to work well in practice (Section V-B) and is
computationally efficient as it avoids domain re-sampling. To
increase entropy of the node transition function, a continuous
uniform distribution injection is done using update rule (10).
If entropy injection is conducted for any robot, the current
iteration’s worst joint value, V̄w,k+1, is set to −∞ (Alg. 1,
Line. 30). This critical step ensures trajectories sampled in
the next iteration can actually be used for policy exploration.

EPSKCO is an anytime algorithm applicable to continuous-
observation Dec-POMDPs and Dec-POSMDPs. This approach
also offers memory advantages to discretization as SK-
FSA memory usage is O(NKLRNbNn| ¯̆O|), in contrast to
O(d|

¯̆O|N2
n) for FSAs with discretization resolution d.

V. EXPERIMENTS

This section first validates maximal entropy search acceler-
ation, which resolves a long-standing convergence issue for
sampling-based Dec-POSMDP algorithms. Then, EPSCKO
is evaluated against discrete approaches in the first ever
continuous-observation Dec-POMDP/Dec-POSMDP domain.

A. Accelerated Policy Search

We evaluate policy search acceleration approaches dis-
cussed in Section III on the benchmark Navigation Among
Movable Obstacles (NAMO) domain [21] with horizon h =
25 and a 6× 6 grid. Fig. 2 shows convergence trends for all
approaches. A low learning rate of 0.15 is needed in G-DICE
[9] to find the optimal policy (taking k = 200 iterations).
50 policies are sampled per iteration, with 1000 trajectories
used to approximate policy value in each iteration, so 1e7
total policy evaluations are conducted. This computationally
expensive evaluation becomes prohibitively large as domain
complexity grows. Increasing learning rate to α = 0.5
causes fast convergence to a sub-optimal solution, after which
exploration stops due to sampling distribution degeneration.

Existing search acceleration approaches are also evaluated.
Dynamic smoothing with a moderate baseline rate (α0 =
0.5, β = 15) slightly improves value. However, decay rate
β is static with no closed-loop feedback from underlying
sampling distributions. The result is a sub-optimal policy
(found around iteration k = 35) which then quickly converges
to the same value as the baseline approach with α = 0.5.

Fig. 2: Comparison of search acceleration approaches for
NAMO domain, using a Nn = 5 node policy.

Linearly decreasing noise injection with ωmax = 0.02 and
r = 2000−1 performs similarly, with fast initial increase in
value and subsequent degeneration to a sub-optimal policy.

The proposed entropy injection method significantly out-
performs the above approaches. The same baseline learning
rate as previous methods (α = 0.5) is used with a 3% entropy
injection rate, resulting in much faster convergence (around
k = 20). Sensitivity to α and injection rate is low as value
convergence monitoring is conducted in all iterations. While
some initial tuning of entropy injection rate is necessary,
the key insight is that post-tuning results converge much
faster and are more conducive to additional experimentation
and analysis (e.g., with domain/policy structure). Oscillations
in plots are due to post-convergence injections, which reset
underlying sampling distributions and forces further policy
space exploration. In practice, the best policy found in a fixed
number of iterations would be returned by the algorithm.

B. Continuous Observation Domain
To evaluate EPSCKO, a multi-robot continuous-observation

nuclear contamination domain is considered (Fig. 4a). This
first-ever continuous-observation Dec-POMDP/POSMDP do-
main involves 3 robots cleaning up nuclear waste. MAs are
Navigate to base, Navigate to waste zone, Correct position,
and Collect nuclear contaminant. Following MA execution,
each robot receives a noisy high-level observation oe of its 2D
(x, y) state. The above MAs have non-deterministic durations
and a 30% failure probability (due to nuclear contaminant
degrading the robots). This causes poor performance of
observation-agnostic policies which memorize chains of MAs,
rather than make informed decisions using the observations.

Robots are initially at the base and must first navigate
to the waste zone prior to collection attempt. Robots which
execute the Navigate to base MA terminate with a random
continuous state in a region centered on the base (brown
region marked ‘B’ in Fig. 4c). The Navigate to waste zone
MA results in a random terminal state within two large
regions surrounding the nuclear zone (everything interior
of gray regions marked ‘L’ in Fig. 4c, including the green
regions marked ‘S’). Collection attempts are only possible
if the robot is within the waste zone (green regions marked
‘S’ in Fig. 4c). Collections attempted outside these small
contamination regions result in wasted time, which further
discounts the team’s future joint rewards. Robot can attempt
a Correct position MA, which re-samples their state to be

within these smaller regions. However, repeated attempts may
be necessary due to the 30% MA failure probabilities.

After successful collection, each robot must return to the
base to deposit the waste before attempting another collection.
Each collection results in +1 joint team reward (with discount
factor γ = 0.9). This domain is particularly challenging due to
the high failure rate of MAs, and the presence of a continuous,
non-linear decision boundary in the nuclear zone center, where
the trade-off between the correction and collection MAs must
be considered by robots given their noisy observations.

Fig. 3 compares best values obtained using continuous-
observation and discrete-observation policy search (EPSCKO,
G-DICE with maximal entropy injection, and MDHS). Time
horizon h = 40 was used for evaluation, with each MA taking
an average of 1-4 time units to complete. Nn = 6 nodes
were used for both discrete and continuous policies. G-DICE
and MDHS results are shown for observation discretization
factors d ∈ {2, . . . , 10}, with uniform discretization in each
observation dimension. EPSCKO significantly outperforms
the discrete approaches, more than doubling the mean policy
value of the best discrete-observation case (d = 4). MDHS
faces the policy expansion issues discussed in Section II-B.

G-DICE policy values initially increase with higher dis-
cretization resolutions (d = 2 to d = 4), yet a drop-off occurs
beyond d = 5. While initially counterintuitive, as higher
discretization factors imply increased precision regarding
important decision boundaries in the continuous domain,
Figs. 4b and 4d reveal the underlying problem. These plots
show the normalized count of observation samples used to
compute Nn = 5 node discrete policies for the d = 10 and
d = 5 cases, with discounting of old observation samples
using (7). In other words, they provide a measure of discrete
observation bins which have informed each G-DICE policy
throughout its iterations. The core issue for discrete policies
is that no correlation exists between decisions at nearby
observation bins. Fine discretization meshes, as in Fig. 4b,
result in cyclic processes where observation bins with no
previous samples are encountered, therefore causing the robot
to make a poor MA selection. Nearby observation bins do not
inform the robot during this process, leading it to repeatedly
make incorrect decisions. This issue is especially compounded
in this domain due to delays caused by high MA failure
probabilities, which reduce the overall number of observations
received by robots. The result is a highly uninformative policy
with no observations made in many bins, in contrast to policies
with lower discretization factor (Fig. 4d).

To build intuition on continuous-policy decision-making,
Fig. 5 plots transition functions for a 6-node EPSCKO
policy. For each node q, colored 3D manifolds represent
probabilities of transitioning to next-nodes, q′, given a
continuous observation. Circles plotted beneath transition
functions indicate base and nuclear zone locations. Colorbars
indicate the transition manifold color associated with each
node and the highest-probability MA, πmax, executed in it.

Consider a robot policy starting at node q = 1 (far
left in Fig. 5) which has two major manifolds (beige and
green). Observations under a prominent green manifold region
indicate high probability of transitioning to node q′ = 3 (as

Discretization Factor d
2 4 6 8 10

V
a
lu

e

0

2

4

6

8

10

12

EPSCKO

G-DICE

MDHS

Fig. 3: Comparison of discrete and continuous policy search
approaches for nuclear contamination domain.

its colorbar is green), which has πmax = Navigate to waste
zone. For q = 1, this green manifold is centered on the
base, which makes intuitive sense as the Navigate to waste
zone MA should only be executed if the robot is confident
it is at the base. Thus, the robot most likely transitions to
node q = 3, and a complex transition function manifold
is encountered. Two beige peaks are centered on the small
inner regions of the nuclear zone, indicating transition to
node q′ = 5, which has πmax = Collect nuclear contaminant.
Thus, when the robot is in q = 3 and confident that it is in
the center of the nuclear zone, it attempts a collection MA.
Yet, for observations outside the inner nuclear zone, the red
and blue manifolds are most prominent. These indicate high
probabilities of transitioning to q′ = 1 and q′ = 2, which have
πmax = Correct position. Thus, the robot most likely performs
a heading correction before continuing policy execution
and attempting waste collection. This process continues
indefinitely or until the time horizon is reached. Recall that
SK-FSA policies are stochastic, so these discussions provide
an intuition of the ‘most likely’ continuous-policy behaviors.

VI. CONCLUSION

This paper presented an approach for solving continuous-
observation multi-robot planning under uncertainty problems.
Entropy injection for policy search acceleration was presented,
targeting convergence issues of existing algorithms, which
are exacerbated in the continuous case. Stochastic Kernel-
based Finite State Automata (SK-FSAs) were introduced
for policy representation in continuous domains, with the
Entropy-based Policy Search using Continuous Kernel Ob-
servations (EPSCKO) algorithm for continuous policy search.
EPSCKO was shown to significantly outperform discrete
search approaches for a complex multi-robot continuous-
observation nuclear contamination mission—the first ever
Dec-POMDP/Dec-POSMDP domain. Future work includes
extending the framework to continuous-time planning.

REFERENCES

[1] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The
complexity of decentralized control of Markov decision processes,”
Math. of Oper. Research, vol. 27, no. 4, pp. 819–840, 2002.

[2] C. Amato, G. Konidaris, A. Anders, G. Cruz, J. How, and L. Kaelbling,
“Policy search for multi-robot coordination under uncertainty,” in
Robotics: Science and Systems XI (RSS), 2015.

[3] S. Omidshafiei, A.-A. Agha-Mohammadi, C. Amato, and J. P. How,
“Decentralized control of partially observable markov decision processes
using belief space macro-actions,” in Robotics and Automation (ICRA),
2015 IEEE International Conference on. IEEE, 2015, pp. 5962–5969.

[4] F. A. Oliehoek and C. Amato, A Concise Introduction to Decentralized
POMDPs. Springer, 2016.

(a) Domain overview
(artist’s conception).

oe
1

0 1 2 3 4 5
oe 2

0

1

2

3

4

5
q = 1

oe
1

0 1 2 3 4 5

oe 2

0

1

2

3

4

5
q = 2

oe
1

0 1 2 3 4 5

oe 2

0

1

2

3

4

5
q = 3

oe
1

0 1 2 3 4 5

oe 2

0

1

2

3

4

5
q = 4

oe
1

0 1 2 3 4 5

oe 2

0

1

2

3

4

5
q = 5

0 0.2 0.4 0.6 0.8 1

Density of Observations used for Policy Update

(b) Density of observations used to update discrete Dec-POSMDP policy. Nn = 5 node policy case with
discretization factor d = 10. Numerous low density bins present due to fine discretization.

(c) Domain overview (key
continuous regions).

oe
1

0 1 2 3 4 5

oe 2

0

1

2

3

4

5
q = 1

oe
1

0 1 2 3 4 5

oe 2

0

1

2

3

4

5
q = 2

oe
1

0 1 2 3 4 5

oe 2

0

1

2

3

4

5
q = 3

oe
1

0 1 2 3 4 5

oe 2

0

1

2

3

4

5
q = 4

oe
1

0 1 2 3 4 5

oe 2

0

1

2

3

4

5
q = 5

(d) Density of observations used to update a discrete Dec-POSMDP policy. Nn = 5 node policy case with
discretization factor d = 5. Observation density increases in the low discretization resolution case.

Fig. 4: Continuous-observation nuclear contamination domain overview and corresponding discrete policy results.

Fig. 5: Visualization of an Nn = 6 node SK-FSA policy transition functions for nuclear contamination domain. For each
node q and observation oe, colored 3D manifolds represent probabilities of transitioning to next-nodes q′. Colorbars indicate
the color associated with each node, as well highest-probability MA, πmax, executed in it.

[5] J. Hoey and P. Poupart, “Solving POMDPs with continuous or large
discrete observation spaces,” in IJCAI, 2005, pp. 1332–1338.

[6] J. M. Porta, N. Vlassis, M. T. Spaan, and P. Poupart, “Point-based
value iteration for continuous POMDPs,” Journal of Machine Learning
Research, vol. 7, no. Nov, pp. 2329–2367, 2006.

[7] H. Bai, D. Hsu, and W. S. Lee, “Integrated perception and planning in
the continuous space: A POMDP approach,” The International Journal
of Robotics Research, vol. 33, no. 9, pp. 1288–1302, 2014.

[8] S. Brechtel, T. Gindele, and R. Dillmann, “Solving continuous
POMDPs: Value iteration with incremental learning of an efficient
space representation.” in ICML (3), 2013, pp. 370–378.

[9] S. Omidshafiei, A.-A. Agha-Mohammadi, C. Amato, S.-Y. Liu, J. P.
How, and J. Vian, “Graph-based cross entropy method for solving multi-
robot decentralized pomdps,” in Robotics and Automation (ICRA), 2016
IEEE International Conference on. IEEE, 2016, pp. 5395–5402.

[10] A. Costa, O. D. Jones, and D. P. Kroese, “Convergence properties of
the cross-entropy method for discrete optimization.” Oper. Res. Lett.,
vol. 35, no. 5, pp. 573–580, 2007.

[11] Z. I. Botev and D. P. Kroese, “Global likelihood optimization via
the cross-entropy method, with an application to mixture models.” in
Winter Simulation Conference. WSC, 2004, pp. 529–535.

[12] D. P. Kroese, S. Porotsky, and R. Y. Rubinstein, “The cross-entropy
method for continuous multi-extremal optimization,” Methodology and
Computing in Applied Probability, vol. 8, no. 3, pp. 383–407, 2006.

[13] C. Thiery and B. Scherrer, “Improvements on learning tetris with cross
entropy.” ICGA Journal, vol. 32, no. 1, pp. 23–33, 2009.

[14] L. Devroye, L. Györfi, and G. Lugosi, A probabilistic theory of pattern
recognition. Springer Science & Business Media, 2013, vol. 31.

[15] C. E. Shannon, “A mathematical theory of communication,” ACM
SIGMOBILE Mob. Comp. and Comm. Rev., vol. 5, no. 1, 2001.

[16] C. Amato, D. S. Bernstein, and S. Zilberstein, “Optimizing fixed-size
stochastic controllers for POMDPs and decentralized POMDPs,” Auton.
Agents and Multi-Agent Sys., vol. 21, no. 3, pp. 293–320, 2010.

[17] F. Oliehoek, Value-based planning for teams of agents in stochastic
partially observable environments. Amsterdam University Press, 2010.

[18] D. S. Bernstein, C. Amato, E. A. Hansen, and S. Zilberstein, “Policy
iteration for decentralized control of markov decision processes,” J. of
Artif. Intell. Res., vol. 34, no. 1, p. 89, 2009.

[19] S. W. Carden, “Convergence of a Q-learning variant for continuous
states and actions,” J. of Artif. Intell. Res., vol. 49, pp. 705–731, 2014.

[20] J. Zhu and T. Hastie, “Kernel logistic regression and the import vector
machine,” Journal of Computational and Graphical Statistics, 2012.

[21] M. Stilman and J. J. Kuffner, “Navigation among movable obstacles:
Real-time reasoning in complex environments,” International Journal
of Humanoid Robotics, vol. 2, no. 04, pp. 479–503, 2005.

	Introduction
	Background
	Decentralized Planning using Macro-Actions
	Dec-POSMDP Policy Search Algorithms

	Accelerated Policy Search
	Sampling Distribution Degeneracy Problem
	Maximal Entropy Injection

	Continuous-Observation Dec-POSMDP Search
	Stochastic Kernel-Based Finite State Automata
	Entropy-based Policy Search over SK-FSAs

	Experiments
	Accelerated Policy Search
	Continuous Observation Domain

	Conclusion
	References

