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ABSTRACT
Peer-to-peer (p2p) technology can potentially be used to build
highly reliable applications without a single point of failure.
However, most of the existing applications, such as file shar-
ing or web caching, have only moderate reliability demands.
Without a challenging proving ground, it remains unclear
whether the full potential of p2p systems can be realized.

To provide such a proving ground, we have designed, de-
ployed and operated a p2p-based email system. We chose
email because users depend on it for their daily work and
therefore place high demands on the availability and reliabil-
ity of the service, as well as the durability, integrity, authen-
ticity and privacy of their email. Our system, ePOST, has
been actively used by a small group of participants for over
two years.

In this paper, we report the problems and pitfalls we en-
countered in this process. We were able to address some of
them by applying known principles of system design, while
others turned out to be novel and fundamental, requiring us
to devise new solutions. Our findings can be used to guide
the design of future reliable p2p systems and provide inter-
esting new directions for future research.

Categories and Subject Descriptors
C.2.4 [Computer-Communications networks]: Distributed
Systems—Peer-to-peer applications; H.4.3 [Information Sys-
tems]: Communications Applications—Electronic mail ; D.4.5
[Operating Systems]: Reliability—Fault-tolerance; D.0
[Software]: General—Peer-to-peer systems

General Terms
Algorithms, Design, Measurement, Reliability, Experimen-
tation
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1. INTRODUCTION
Decentralized, cooperative systems (also known as p2p

systems) have received much attention in recent years be-
cause they promise robustness to a wide range of work-
loads and failures, are highly scalable with respect to nodes,
users, and data, and enable cooperative sharing of otherwise
underutilized resources. The technology was first adopted
for use in file sharing and content distribution systems like
KaZaA, Gnutella, eDonkey and BitTorrent [3, 20, 29, 40],
which now enjoy widespread popular use. While these sys-
tems have grown to a considerable scale, they have only very
modest reliability demands. In general, their users seem to
tolerate slow downloads, repeated failures, and even cor-
rupted data, as long as they get the content eventually.

Prototypes of more reliable p2p systems, including con-
tent distribution [3, 10, 16, 55], information retrieval [24, 52,
53,56], and name resolution [41,54], have mostly focused on
availability, scalability, and resilience to overload. Coopera-
tive storage systems [5,12,30] additionally require durability
and consistency, but to our knowledge, these systems have
not yet been developed and deployed for production use.
Thus, it remains unclear whether the full reliability poten-
tial of p2p systems can be realized in practice.

In an effort to address this question, we have designed,
deployed and operated ePOST, a serverless email system.
We have chosen email not because it is a killer application
for p2p (it isn’t). Rather, we chose it as a proving ground
because it is well understood, widely used, and has strin-
gent reliability requirements. Many users depend on email
for their daily work and therefore place high demands on the
availability of the service, as well as the durability, integrity,
authenticity, and privacy of their email. Hence, by demon-
strating that users can rely on a p2p-based email system as
their primary email service, we believe that we have taken a
major step towards establishing p2p technology as a viable
platform for applications with high reliability demands.

As an additional benefit, the basic elements of an email
system — event notification, durable storage of mostly im-
mutable data, and some per-user mutable metadata — are
characteristic of many collaborative applications. Demon-
strating that highly reliable email services can be provided
using p2p technology suggests that the technology can sup-



port other collaborative applications and even enable new
applications.

In this paper, we report on our experience in designing,
deploying, and operating ePOST. Since ePOST users ex-
pect the system to perform equally well or better than a
conventional server-based system, our challenge was to pro-
vide an acceptable user experience from a system built upon
unreliable machines and networks. Surprisingly, the prob-
lems we encountered were generally the result of incorrect
assumptions made in the design of underlying component
technologies like the structured overlay and the distributed
hash table (DHT) used by ePOST. Seemingly unrelated
user-perceivable errors and inconsistencies in ePOST oper-
ation often led us to discover fundamental problems with
these components.

We describe in some detail the challenges we encountered
in providing users with an acceptable service. This means
providing strong data durability, high availability, and a
mostly consistent view of the user’s email folders despite
correlated node failures, network partitions, network anoma-
lies, and node churn. In some cases, we were able to address
problems by applying known principles of system design;
other issues turned out to be novel and fundamental, re-
quiring us to devise new solutions. After a partial re-design
to address initial problems, ePOST has supported a small
user base, including the authors, who have relied on the
system as their primary email service for over two years.

Overall, this paper makes four contributions: (i) We re-
port on our experiences in designing and operating a co-
operative, serverless email service that supports real users.
(ii) We identify two problems, routing anomalies and non-
transitivity, that emerged during our use of the system, and
we describe and evaluate our solutions for them. (iii) We
note some pitfalls we encountered that are of interest to de-
signers of similar systems, though we were able to address
them using known principles of system design. Finally, (iv)
we demonstrate that it is possible to support applications
with high availability, data durability, and consistency using
p2p technology.

The rest of this paper is structured as follows: Section 2
describes related work, and Section 3 presents background
on the design and deployment of ePOST. Section 4 describes
four general lessons we distilled from our experience build-
ing and operating ePOST, and we present and evaluate solu-
tions for several problems we had to solve. Section 5 details
some pitfalls we encountered, and Section 6 describes inter-
esting directions for future research. Section 7 presents our
conclusions.

2. RELATED WORK
In this section, we present a general overview of related

work. More related work is discussed in the context of spe-
cific problems and solutions later in the paper.

The most visible type of deployed peer-to-peer systems are
file sharing systems such as eDonkey2000, KaZaA, Gnutella,
and BitTorrent [3,15,20,29,31]. Since users of these systems
are usually downloading media content, they tend not to
have high expectations about system performance or data
integrity (e.g., they will commonly tolerate slow downloads
or having to redownload content).

Skype [21] is a popular p2p system providing voice-over-IP
(VoIP) services. To provide a satisfactory user experience,
Skype must focus on service availability and timely delivery

of streaming data, while ePOST’s focus is on availability,
durability and consistency.

End System Multicast (ESM) [10, 25, 49] is a deployed
system used to broadcast streaming video using cooperating
end hosts to disseminate the data. ESM, like VoIP, is used
for streaming media data, which has high requirements of
timeliness but not reliability or durability. This makes the
challenges it faces very different, though no less significant,
from those addressed in ePOST.

OpenHash [28, 45] is an publicly open DHT system that
provides a public hashtable interface allowing users to store
and retrieve data. OpenHash is a public service infrastruc-
ture for others to build applications and therefore does not
emphasize data durability and consistency to the extent re-
quired for running ePOST.

CoDoNS and CoDNS [41, 44] are decentralized systems
that seek to replace or augment the existing DNS infras-
tructure to improve its reliability, availability, and perfor-
mance. Since DNS entries are infrequently updated, con-
sistency problems are not likely to be visible to the user.
Coral [11,16] is a cooperative web cache, which is centrally
administered on the PlanetLab [43] network and does not al-
low untrusted nodes to join the network. Coral-CDN forms
a cache of data that can be found on the Internet, and as
such all data contained can be recovered from the source.

The Resilient Overlay Networks (RON) [1] project has
deployed a network of nodes that can be used to increase
the reliability of routing in the Internet. It augments the
service traditionally provided by the Internet and does not
store data on behalf of users.

3. BACKGROUND
In this section, we give a brief overview of the ePOST

system, and we describe our current deployment. The initial
design of ePOST was previously sketched in [35].

3.1 Overview
ePOST provides secure, decentralized email services to

its users. Each user runs the ePOST software on her lo-
cal machine and contributes some of that machine’s CPU,
storage and network bandwidth to the system. Users’ email
messages and metadata are stored cooperatively and redun-
dantly in a DHT backed by the participants’ disks. All data
is signed for authenticity and encrypted for confidentiality
before it is inserted into the cooperative storage.

In order to deliver an email in ePOST, the sender inserts
the email and a special delivery request into the cooperative
store. Nodes that store such a delivery request subscribe to
a multicast group under the recipient’s identifier. When the
recipient’s node is online, it periodically sends a notification
to this group, causing any pending emails to be delivered to
it.
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Figure 1: Log structure in ePOST.



Every ePOST user maintains a single-writer log represent-
ing the user’s view of the data in the system, i.e., her mailbox
hierarchy and contents. Each user has a mutable log head
which points to the most recent entry in the log, shown in
Figure 1. When an email is inserted, deleted, moved, or oth-
erwise altered, a log entry is inserted into the log, and the
log head is updated to point to this entry, thus updating
the status of her mailbox. More details, including several
optimizations, can be found in [33,35].

3.2 Components
ePOST is built upon several known decentralized compo-

nents. We provide just enough detail about these compo-
nents to make the paper self-contained. The choice of these
components is largely irrelevant to the issues described in
this paper. That is, we could have built ePOST using sim-
ilar components like Chord [50] without affecting the expe-
riences, problems, or solutions described in this paper.

Pastry [46] is a structured p2p overlay network; it pro-
vides the foundation on which ePOST is built. In Pastry,
every node and every object is assigned a unique identifier
randomly chosen from a 160-bit identifier space, referred to
as a nodeId and key, respectively. Given a message and a
key, Pastry can route the message to the live node whose
nodeId is numerically closest to the key, within an expected
log N forwarding hops, where N is the number of participat-
ing nodes. To do this, Pastry contains two sets of pointers
to other overlay nodes called a routing table and a leaf set.
The leaf set contains the nearest neighboring nodes in the
identifier space and is used to determine which node is re-
sponsible for a given key. Since node identifier assignment
is random, each leaf set represents a random sample of the
Pastry overlay membership. The routing table exists solely
to improve routing efficiency; it refers to additional overlay
nodes in specific locations around the identifier space. To
join the ring, a Pastry node contacts one of a set of well-
known bootstrap nodes. These nodes are ordinary Pastry
nodes that were selected, for instance, because they have
proved to be highly available.

Multi-ring support [34] for Pastry provides a hierar-
chy of logically independent organizational overlays (’rings’),
which are seamlessly connected via a global ring. By setting
up its own subring, an organization can ensure that its email
data is stored only on machines under its control. Using mul-
tiple rings also improves performance in the common case,
since most overlay traffic stays within the same subring. Ad-
ditionally, the hierarchy ensures that each organization has
control over its own ring, and that any malicious partici-
pants can be tracked down and punished.

Scribe [8] is a scalable group communication system built
on top of Pastry; ePOST uses it to multicast the notifica-
tion messages mentioned earlier. Each Scribe group has a
groupId, which serves as the address of the group. The nodes
subscribed to each group form a tree, consisting of the union
of Pastry routes from all group members to the node with
nodeId numerically closest to the groupId.

PAST [47] provides a storage service on top of Pastry,
which is organized as a DHT. ePOST uses it to keep persis-
tent state such as emails, logs, and delivery requests. When
an object is stored in PAST, it is assigned a key; PAST then
stores copies of the object at the k live nodes whose nodeIds
are numerically closest to the object’s key. When one of
these copies is lost, e.g., because of a node failure, PAST

creates another copy to replace it.

3.3 Implementation
To use ePOST, a new user visits www.epostmail.org and

chooses her ePOST email address. She then downloads the
latest version of the software and a certificate, which links
her new email address to her public key. After installing
these on her computer, her ePOST node is ready for use.

The ePOST software running on the user’s node acts both
as an overlay participant and as a local email server, or
proxy, for the user. It supports common protocols (SMTP,
IMAP, POP3, SSL), so the user can use existing email clients,
like Mozilla Thunderbird, Microsoft Outlook, Apple Mail,
and pine. All ePOST communication is encrypted and au-
thenticated, and the user’s local proxy is the only node that
is required to hold the user’s key material.

All data stored and replicated in the DHT is self-authent-
icating, either via Merkle hash trees [32] (immutable log el-
ements and email data) or signed data (mutable log head).
This prevents emails from being read by unauthorized users,
and it makes forged or corrupted message and metadata
replicas evident. Participating nodes hold certified nodeIds [7],
preventing users from selecting their own nodeId and mount-
ing Sybil attacks [14].

3.4 Deployment
ePOST has been under development since early 2003 and

in production use since January 2004, so we have more than
two years of experience with the system. The authors have
used the system as their primary email service for over two
years.

At the time of this writing, there are several ePOST rings
in operation: An open ring is open to individuals from the
general public, while an organizational ring spanning both
Rice University and the Max Planck Institute for Software
Systems (MPI-SWS) is limited to members of these organi-
zations. A global ring provides seamless connectivity among
all the other rings. The ePOST deployment currently con-
sists of 295 nodes overall, most of which are from Planet-
Lab [43] and form the base of the open ring. In the Rice and
MPI-SWS ring, there are 9 users who use ePOST as their
primary email system, and 8 users who use their ePOST
account as a secondary email account into which they for-
ward a copy of all their email. Since ePOST is a research
project, we have not tried to acquire a large user base. This
allowed us to quickly respond to problems and minimize user
support overhead.

ePOST imposes little overhead on participating nodes.
Nodes in the Rice and MPI-SWS ring transmit an aver-
age of 8.52 messages per node per minute, resulting in an
overall bandwidth usage of 634 bytes per second on each
node. The total amount of data stored on disk averaged
approximately 1, 112 MB per node, which is actually some-
what inflated since a number of our users never delete their
mail in ePOST. The memory footprint of the ePOST Java
Virtual Machines averaged 132 MB. We also found the avail-
ability of ePOST to be high – on a number of occasions,
our department mail servers were unavailable, while ePOST
users never noticed the outage. Additionally, even after a
disastrous 89% correlated failure over the course of a day
in the PlanetLab ring, the system automatically recovered
and nodes rejoined as soon as they were rebooted. In fact,
during this failure, the majority of the email data was still



available, as the DHT replication was able to migrate data
to working nodes faster than the node failures occurred.

4. EXPERIENCE: PROBLEMS, SOLUTIONS
AND LESSONS

In this section, we report on our experiences in operating
ePOST while it was in active use by a small group of partic-
ipants. Since initially deploying the system, we encountered
several challenges not foreseen in the original design. We
had to go through a round of redesigns to improve the reli-
ability and data durability of the underlying components in
order to provide a satisfactory user experience in ePOST.

The section is structured around four general lessons we
distilled from this experience. Each lesson states the initial
assumptions and design, describes the problem we encoun-
tered, devises a solution and evaluates the resulting improve-
ments. The first three lessons deal with providing users with
an acceptable degree of consistency despite the possibility of
network partitions, Internet routing anomalies, and churn
in the overlay membership. The final lesson deals with pro-
viding data durability despite the possibility of correlated
failures. It is not surprising that consistency and correlated
failures figure prominently in these lessons, since they are
among the most important challenges in distributed, and
especially decentralized, systems.

4.1 Network partitions
Lesson 1: A reliable decentralized system must tolerate net-
work partitions.

The Pastry overlay relies on the underlying physical net-
work to transmit messages between nodes. A partition in
the underlying network can cause the overlay to split into
more than one connected component. The original design
of ePOST and Pastry had no specific provisions for network
partitions. This resulted in four consequences for ePOST
under a network partition:

• The nodes in each partition perceived the nodes in
the other partitions as having failed, and they formed
separate rings.

• Mutable data with replicas in different rings poten-
tially diverged.

• In small partitions, insufficient redundancy caused data
to be unavailable.

• After the physical network partition healed, there was
no guarantee that the multiple rings would eventually
reintegrate; if they did, modifications to mutable data
were potentially be lost.

In this section, we first report on the frequency and nature
of the partitions we observed in our deployment and show
that partitions cannot be ignored. Then, we present mech-
anisms that allow ePOST to tolerate and gracefully recover
from partitions. Other proposed systems, e.g., [38,48], have
provisions for detecting network partitions, however, lever-
aging the properties of ePOST allows us to recover from
partitions in an efficient manner.
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Figure 2: Number of connected components ob-
served over a 85 day period.

4.1.1 Partitions in PlanetLab
Each node in our PlanetLab ePOST deployment period-

ically records the contents of its Pastry leafset in its log.
We combined these logs and counted the number of con-
nected components, i.e., the number of separate rings. Fig-
ure 2 shows our results. During 3 months with an average
of about 280 nodes, the overlay was partitioned 110 times.
These partitions would only heal when either the partitioned
nodes restarted or we noticed the problem and manually in-
tervened. Often, the unhealed partitions would last for days,
as there were many more nodes than users in the PlanetLab
ring, and the partitions were small enough to not cause any
data loss in the main partition.

We also gathered statistics on the size of the components.
Almost all partitions created one large component, which
contained the majority of the nodes, and one or more small
components. The average size of the small component was
12.4 nodes, representing 4.4% of the network. This is not
surprising, since link failures in the Internet core can usually
be routed around and masked. Link failures closer to end
hosts, on the other hand, generally result in an group of
machines becoming partitioned.

The data clearly shows that network partitions occur fre-
quently in PlanetLab. Our initial ePOST design had no
specific provisions to handle partitions, which lead to incon-
sistencies when the system was operated in PlanetLab.

4.1.2 Operating under a partition
It is well known that in a system where partitions can oc-

cur, there is a fundamental tradeoff between availability and
consistency [19]. In the context of ePOST, this tradeoff was
resolved in favor of availability. This makes sense because
the data structures used in ePOST are mostly immutable
with the exception of the log heads, and each log head is
modified by a single writer only. Hence, inconsistencies can
arise only when a user attaches to one partition and then to
another, and makes changes in both.

ePOST can still provide useful services even in minority
partitions: It can deliver email between users in that par-
tition, and it can store other messages for later delivery.
However, if the partition is small, it can offer only limited
access to previously stored email data, since some objects
are likely to be missing. In Section 4.4, we describe a tech-



nique that can mitigate this problem.
Operating under a partition thus required no changes to

ePOST’s design. The surviving rings on each side of a parti-
tion continue to operate, oblivious of each others’ existence.

4.1.3 Overlay reintegration
In order to reconnect multiple disjoint overlays, the sys-

tem must solve two problems: It must first establish at least
one overlay link between nodes in different components, and
then form a consistent topology without destabilizing the
system. The original ePOST design did neither.

We solved these problems in the following way: Each node
sends a join message every TR seconds to either a random
bootstrap node or a leaf set node that it has observed fail re-
cently. It checks whether the resulting leafset is identical to
its own. If this is not the case, the other node is in a differ-
ent partition, and the node merges the two leaf sets. Since
leaf sets are periodically exchanged among neighbors, this
causes a cascading effect that eventually merges the two par-
titions. The routing table invariants are then re-established
lazily by Pastry’s built-in maintenance mechanism.

This mechanism slowly heals the overlay partition by in-
tegrating more nodes during each leafset exchange period.
Thus, the overlay grows very quickly while the partition is
being healed, but it remains stable. In fact, the process may
start at multiple locations throughout the overlay, as more
nodes detect that the partition has healed and rejoin a single
ring.

To test this mechanism under controlled conditions, we set
up a simple overlay ring consisting of 22 nodes. The nodes
were configured with TR = 5 minutes. We first let the entire
network boot and stabilize, and then simulated a network
partition by adding a firewall rule on 15 of the machines
disallowing any traffic from the other 7 nodes. As expected,
the nodes split into two separate overlays, one with 15 nodes
and the other with 7. Once these two overlays stabilized, we
deleted the firewall rule, removing the simulated partition.
Within 4.7 minutes of fixing the firewall, the overlay had
healed and all of the leafsets were consistent.

The overhead of this mechanism is rather low: just one ex-
tra overlay-routed message per node every TR. Additionally,
the mechanism does not cause an increase in messages dur-
ing partition heals, as the Pastry leafset consistency mech-
anism in FreePastry 1.4.1 [18] is periodic and not reactive.

4.1.4 Log reconciliation
Once the overlay has been reconnected, ePOST needs to

resolve any inconsistencies that resulted from the partition.
The original ePOST was not designed to do this. We opted
for an automatic reconciliation mechanism, similar to one
found in LOCUS [37], as manual conflict resolution is too
inconvenient for users.

Since log heads are the only mutable data objects in ePOST,
inconsistencies in logs can only occur at the log heads, when
a user moves from one partition to another. In practice this
happened rarely, yet the annoyance to users was too great
to ignore. To detect that a conflict has occurred, PAST
notifies ePOST whenever it encounters different versions of
a replica log head, so ePOST can check the log entries for
consistency. If ePOST detects that a fork in the logs has
occurred, it first determines the last common log entry in
the two divergent logs. Then, ePOST merges the newer log
entries from both logs using a temporal ordering on the log

entries, taking special care to reassign UIDs of newly in-
serted messages. Merging the logs, however, may result in
conflicting entries when destructive operations occur in one
of the divergent logs (e.g., moving an email in one partition
to a folder that was deleted in the other partition). These
conflicts are resolved conservatively by ignoring the destruc-
tive operation (e.g., the folder delete is ignored). While this
policy may mildly inconvenience users, it is guaranteed to
not lose any email.

4.2 Routing anomalies
Lesson 2: Reliable decentralized systems must be designed
to tolerate partial network connectivity.

Handling network partitions alone, as is described above, is
not sufficient to ensure that nodes have a consistent view of
the overlay. The initial design of Pastry assumed that the
underlying physical network would provide full connectiv-
ity among all pairs of overlay nodes. Consistent with this
assumption, the failure of a TCP connection attempt to a
remote node was interpreted as an indication that the re-
mote node had failed. This assumption held for the most
part within a LAN.

However, when we deployed ePOST on PlanetLab, we ob-
served frequent routing anomalies, or instances where live
nodes were unable to route packets to each other. Others
have noted similar behavior on the general Internet [1,22,42].
The main consequence for ePOST was that some objects
would become inaccessible during routing anomalies. To see
why, assume that a routing anomaly has caused the path
from node A to node B to fail. Now, if B wants to retrieve
an object (e.g., an e-mail or a log entry) from PAST that is
currently stored on A, it uses overlay routing to send a re-
quest to A, which includes B’s network address. When the
request is delivered, A attempts to open a direct connection
to B to deliver the object, which fails. For example, a user
would try to open an email message she had received earlier,
but ePOST could not display the content of the message.

A simple workaround would have been to fall back on
using overlay routes when such a routing problem occurs.
However, this approach is inefficient, since it is known that
most connectivity problems can be circumvented with one
forwarding hop, while overlay routes are typically longer [1,
22]. Thus, using overlay routes would inflate network uti-
lization, congest overlay links with bulk data traffic, and
place unnecessary forwarding burden on overlay nodes.

We instead chose a different solution, which is described
below. Its implementation in FreePastry 1.4.1 was, to the
best of our knowledge, the first comprehensive solution to
the partial connectivity problem in a decentralized system.
Freedman et al. [17] have since proposed an alternate ap-
proach, which solves the problem at the application layer.

4.2.1 Anomaly frequency
We examined a subset of the all-pairs ping dataset [51]

from PlanetLab, which covered September 1 through Septem-
ber 10, 2004. At the time, PlanetLab consisted of 435 nodes
spread over 201 sites, including nodes in the Americas, Eu-
rope, the Middle East, Asia, and Australia. The data we
examined consisted of node-to-node pings collected every 15
minutes over the course of the run.

In order to investigate the impact of routing anomalies,
we limited our evaluation to nodes which were online and



Figure 3: Transient (left) and permanent (right)
path failures in PlanetLab during 10 days in Septem-
ber 2004
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Figure 4: CDF of routing anomaly durations for 192
PlanetLab nodes for September 1 to September 10,
2004.

reachable by at least one other node. This left us with 192
distinct nodes. Figure 3 shows the results of site-to-site
pings for the 192 considered nodes. The left graph shows
transient failures, where the pixel at the location (x, y) rep-
resents the number of times a node x was able to successfully
ping node y. White pixels indicate no failures, while darker
pixels indicate an increasing frequency of ping failures. The
right graph shows permanent failures, or pairs of nodes that
were never successful in pinging each other.

These results clearly show that routing anomalies are a
common problem in PlanetLab. All of the 192 nodes we
examined experienced at least one routing anomaly during
the experiment; many of them experienced several. Some of
the permanent failures were due to Internet2 nodes, which
did not have IP connectivity with some of the others. The
average duration of a transient anomaly was 8.8 hours, but
the distribution was heavy-tailed; a full 35% of the outages
were present for less than one hour, while 9% were longer
than a day. Figure 4 shows the cumulative distribution of
anomaly duration.

4.2.2 Virtual links
To ensure that all pairs of overlay nodes can efficiently

communicate despite routing anomalies, we modified Pas-
try to allow bulk data connections via intermediate nodes.
We view all node connections as virtual links, rather than
physical links. For example, assume that a link A → B

has failed. If there is another node C that can still reach
B, A can replace its direct link A → B with a virtual link
A → C → B. In the common case where no path failure has
occurred, the virtual link is identical to the actual physical
link and thus requires no extra overhead. The use of virtual
links is a well-known technique that is widely used in mobile
ad-hoc networks [26], where path failures are common. On
the general Internet virtual links have been used by several
systems to route around an increasing number of observed
routing anomalies [1,22].

We use source routing to forward packets over virtual
links. Messages sent via source routes are not subject to
normal overlay routing—they are either transmitted along
the specified path or dropped if an error occurs. This is im-
portant to prevent routing loops, as source routing may not
observe the normal Pastry routing invariants (i.e., always
routing to a node with nodeId closer to the key). Moreover,
such source routed virtual links use dedicated TCP connec-
tions coupled at the application layer to ensure flow control
along the entire virtual link.

We limit our system to using only a node’s leaf set mem-
bers as intermediary hops, which ensures scalability and is
sufficient in practice. Every node periodically advertises its
best virtual links to its leafset members, who use them to
derive virtual links for themselves. For example, if A ad-
vertises a link A → B to C, and C’s best link to A is cur-
rently C → A, then C concludes that B may be reached via
C → A → B. Nodes maintain a set of fresh links for each
destination, but during normal operation, only the shortest
virtual link is used.

When the shortest virtual link to a destination X is not
a direct link, the node occasionally sends a probe packet
directly to X, using exponential back-off. If the probe is
answered, the physical link to X is re-enabled, and all other
virtual links are updated accordingly. This ensures that
after a transient path failure, the system eventually returns
to using physical links.

When a virtual link fails, the sender starts using another
link, if one is available. If not, the sender can broadcast a
route request to all of its leafset members, who attempt to
forward it to the destination. The destination responds with
a route reply. This mechanism was inspired by the DSR ad
hoc routing protocol [26] and does not require connectiv-
ity to be symmetric. Thus, asymmetric path failures are
naturally handled, and nodes behind NATs, firewalls, and
advanced traffic shapers, whose connectivity may be asym-
metric as well, can be incorporated into the overlay.

Many deployed p2p systems, such as Skype, have built-
in mechanisms to enable nodes behind NATs and firewalls
to join the systems. These mechanisms serve a different
purpose and are less general than our virtual links. They
assume that a node behind a NAT or firewall can open a
connection to any node in the open Internet, and that a
connection, once established, allows two-way traffic for its
entire duration.

4.2.3 Improvement
We incorporated virtual links and source routing into our

ePOST implementation. As a result, routing anomalies no
longer visibly affect the users of ePOST. In a deployment in
PlanetLab, the redesigned system communicated between
59, 104 distinct pairs of machines and found that 9.1% of
these pairs were unable to establish a direct connection. We
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Figure 5: Percentage of indirect routes over a period
of three days, March 17 to March 20, 2005.

monitored all of the routes in the network for a period of
three days, and found that the percentage of indirect routes
varied between 8% and 11%. The results of this experiment
are shown in Figure 5. Source routes and virtual links al-
lowed the system to route around network anomalies in all
cases, as expected.

4.3 Overlay consistency
Lesson 3: Reliable decentralized systems should ensure rout-
ing consistency in the absence of overlay partitions.

Our experience showed that even in the absence of network
partitions and with virtual links in place to handle routing
anomalies, a user would still experience inconsistency. The
reason is that due to network churn, nodes temporarily dis-
agreed on the overlay membership and direct data lookups
for the same key to different nodes. Although this effect is
different from the routing anomalies described in the previ-
ous section, the symptoms are similar: For example, users
in the PlanetLab-based ring would sometimes see headers
of newly arrived messages, but were temporarily unable to
retrieve the message bodies. Another problem is that log
head updates could be directed to different nodes, creating
the possibility of diverging logs. Thus, for ePOST to provide
an acceptable user experience, we had to enhance Pastry to
maintain a consistent view of the overlay in the presence of
node churn.

To do this, we first define routing in overlays as consistent
if, in the absence of network partitions, there is at most one
node at any given time t that will accept messages for a key
k. We then decided to redesign Pastry’s leafset stabiliza-
tion protocol to guarantee, with high probability, that only
one node considers itself responsible for a given time at any
time, thus providing routing consistency with high proba-
bility. MSPastry [6] provides the same property, but only
in the absence of routing anomalies. An analytic framework
for defining two levels of routing consistency has recently
been proposed [9].

4.3.1 Consistency requirements
The mechanism for providing consistency must ensure the
following two properties:

• When a new node N joins, the current members must

stop accepting messages for the region of key space N

is going to take over before N starts accepting mes-
sages.

• When a node N fails or leaves, N ’s neighbors may
take over N ’s region of key space only after they have
established that N no longer accepts messages.

Since the region of key space for which a node is respon-
sible is determined by its two closest neighbors in identifier
space, or more generally by its leafset, a consistency protocol
must ensure that a node is in its neighbors’ leafsets while it
accepts messages. Our protocol is based on the assumption
that leafsets are always connected, i.e., that for each pair of
leafset members A and B, there exists a path of leafset nodes
A → N1 → . . . → Nk → B (where Ni is in the leafset) such
that each is directly connected to the next, and A is there-
fore able to send messages to B along this path. Note that
this assumption is stronger than the no-partitions assump-
tion that is part of our definition of consistency; we will show
in Section 4.3.4 that this stronger assumption is reasonable.
Under this assumption, the source routing mechanism de-
scribed in Section 4.2.2 discovers a route if one exists.

4.3.2 Key ownership
To prevent overlaps between the responsible region of a

newly joined node and that of its neighbors, we introduce
the concept of key ownership. Each node has a range of keys
that it owns, and it is not allowed to accept messages for keys
outside of this range. When the first node N1 with nodeId
k1 in the network starts up, it automatically has ownership
of the entire key range. As nodes join, they request range
transfers from existing nodes. For example, when the next
node N2 with nodeId k2 joins, it will ask N1 to transfer
ownership of the range

»

k1 + k2

2
mod 2160

,
k1 + k2 + 2160

2
mod 2160

«

Note that once a node releases ownership over a range of
keys, it is no longer able to accept messages for those keys.
Additionally, each node must obtain ownership transfers
from both of its neighbors before accepting any messages.
During the interim time period messages may be dropped
in the interest of preserving consistency. In practice, this is
not a concern, since requests can be retried.

If we assume for the moment that no nodes ever leave the
overlay (i.e., all nodes stay forever), it is clear that routing
consistency is maintained. Since the key space is repeatedly
partitioned up, nodes never conflict in their owned ranges.
However, as churn is common, we must show that reclaiming
transferred key space does not break routing consistency. In
order to do so, we impose the rule that a node may reclaim
its neighbor’s owned keys only if the node is declared dead
(as discussed in Section 4.3.3). If a neighbor is declared
dead, then, by the assumption that leafsets are connected,
we know that no leafset member is able to reach the neigh-
bor, and we can therefore assert that the neighbor is dead.
In this case, the surviving node may reclaim its portion of
the neighbor’s key space.



4.3.3 Liveness checks
Direct neighbors in the key space monitor each other’s

liveness. For this purpose, they make sure that they receive
at least one message from each other within a configurable
time period TP , on the order of 30 seconds. When there is
no overlay traffic to send, they may send a Ping message
instead. Each Ping must be answered immediately by a
Pong, which also must include the source route used in the
corresponding Ping as a payload.

Should a node A not receive any traffic from B after TP ,
A starts sending periodic Pings to B over the best known
virtual link. Should A still not receive any messages after
time 2TP , A starts sending Ping to B via the best known
route to each of its leafset members. If a Pong arrives now,
A changes B’s virtual link to the source route listed in the
Pong.

However, if 3TP expires before any route is found, A has
established that none of the other leafset members can di-
rectly reach B any more, so under our assumption that leaf-
sets are always connected, B cannot be alive. Hence, A

declares B dead. However, A does not remove B from its
leafset until another TP has passed, to ensure that all other
leafset nodes declare B dead. Once this total of 4TP has
expired, A can remove B from the leafset and then reclaim
its keys.

The parameter TP directly influences the bandwidth re-
quired for maintenance. Higher values result in lower band-
width, but also increase the latency between a node failure
and the time when its portion of key space is taken over by
the other nodes.

4.3.4 Justification
We assumed above that leafsets were connected, or that in

a given node N ’s leafset [N1, N2, ..., N, ..., Nk] there always
existed a path between N and every Ni. In this section, we
provide a brief justification of why this is reasonable.

As mentioned earlier, we assume that each path Ni → Nj

in a given leafset fails independently with probability p. For
simplicity, we consider virtual links with at most two hops.
Then N cannot reach Ni if the direct path N → Ni fails
and for every leafset member Li, either the path N → Li

or the path Li → Ni fails. If the leafset contains l nodes on
each side, this occurs with probability

P1 = p ·
`

1 − (1 − p)2
´m

where m is the number of nodes in the shared leafset of N

and Ni, which ranges from l − 1, when N and Ni are far
apart, to 2(l − 1), when they are adjacent. We consider N

and Ni disconnected if either of them cannot reach the other
one. The probability of this is

P2 = 1 − (1 − P1)
2

As stated above, routing consistency is violated only if N is
disconnected from either its left or its right neighbor. This
happens with probability

P3 = 1 − (1 − P2)
2

If we assume small leafsets (l = 8) and a massive failure rate
of p = 0.1, then P3 ≈ 6.072·10−12 , so even in a network with
N = 10000 nodes, the probability of finding a single discon-
nected node is less than 6.1·10−8 . If we consider virtual links
with more than two hops, the resulting probability is even
lower. For comparison, in a protocol that requires a physical

link between each node and its right and left neighbors, the
probability of an inconsistency is

P
′
3 = 1 − (1 − p)4

For the parameters mentioned earlier, P ′
3 ≈ 0.3439, so about

one-third of the nodes would be disconnected. In practice,
after adding the new leafset stabilization protocol we have
not observed any routing inconsistencies.

4.4 Correlated failures
Lesson 4: Reliable decentralized systems must be built to
withstand large-scale failures.

In order to provide high availability based on unreliable end
hosts, a decentralized system must be able to tolerate many
of the nodes failing, possibly simultaneously. We initially
assumed that the ePOST node population would be highly
diverse, so failures would be independent. However, our
actual node population was diverse only in some aspects,
and not in others. In our initial Rice University ePOST
ring, we deployed the network on 10 Red Hat, 14 Debian,
2 Fedora Core, 6 Windows, and 3 OS X machines. These
machines were connected over a range of subnets, but they
were all inside a single building. In the PlanetLab-based
ring, the nodes were connected over a wide range of subnets
and power grid, but all shared the same operating system
and had similar hardware. As a result, we sometimes ob-
served large-scale correlated failures that affected a large
fraction of the nodes. Since early versions of ePOST were
not designed to withstand failures of this magnitude, some
ePOST user data was lost.

4.4.1 Causes of correlated failures
While deploying ePOST, we found that correlated fail-

ures were caused by a range of problems. We experienced
a few network failures, causing data to become temporarily
unavailable. However, there was no actual data loss from
these failures, since the failed nodes re-joined the ring later
with their state intact. A few ePOST software failures we
experienced, on the other hand, were not always so benign.
Occasionally, bugs caused data loss in the overlay.

The first type of correlated failures we experienced did
not result in data loss or service unavailability, but caused
a partition. For example, at one point, a member node was
accidentally configured to claim the IP address of the local
router, leading all traffic destined for addresses outside of
the subnet to be dropped. This effectively partitioned the
ring in roughly two halves, causing many email messages to
be unavailable to users.

A second type of failures led to DHT data being temporar-
ily unavailable. For example, the PlanetLab ring suffered
two large-scale correlated failures: First, after an upgraded
kernel was deployed, 89% of the nodes failed to boot and
returned slowly over the following week. The week before
that, a separate upgrade had caused 50% of our nodes to
fail. Figure 6 shows the number of live nodes in our Planet-
Lab deployment over time; both of these correlated failures
are clearly visible.

The third type of failures was the most severe, because
it resulted in actual data loss. First, a bug caused some
nodes to crash during periodic data lease extensions (dis-
cussed in Section 5.2). Since the nodes never completed
the lease extensions, some of the data was lost before we no-



ticed the problem. Second, in the Rice ring, a bug in ePOST
lead nodes to incorrectly calculate their range of responsi-
ble keys. As a result, the nodes started deleting keys and
removed 80% of the data in the network before the bug was
caught. Third, in the early stages of the PlanetLab deploy-
ment, our PlanetLab slice was accidentally deleted, which
caused a 100% correlated failure with complete data loss.

Other interesting failures we experienced included a light-
ning strike, which caused a campus-wide power outage. We
were fortunate enough to never observe a major worm-related
failure, probably because most of our early adopters use less
common machines such as Apple and Linux workstations. A
fast worm such as Slammer [36] could affect a large fraction
of the node population within minutes. Some worms have
been known to gain administrator privileges, so they could
easily erase the hard drive if they wanted to.

4.4.2 Dealing with correlated failures
To handle such failures, we revised our initial design in

four areas. Our first response was to simply add more het-
erogeneity to the system by introducing additional nodes.
Several users agreed to run ePOST nodes at home, therefore
eliminating the single shared network and power sources.
Second, we changed the storage layer to be much more con-
servative when deleting files. Specifically, we modified the
implementation such that it would keep deleted objects in a
special ‘trashcan’ for some time. This allowed us to recover
lost objects when the failure was caused by a software bug,
and would have prevent some of the failures we experienced
from causing actual data loss. Third, we added mechanisms
to tolerate and recover from overlay partitions, as described
in Section 4.1.

Fourth, and most importantly, we added a durable stor-
age layer called Glacier [23] that stores data with sufficient
redundancy to survive large-scale correlated failures of up
to 80% of the nodes. Since Glacier has been presented else-
where, we only briefly describe it here. Glacier uses erasure
codes to reduce the storage cost of this redundancy, and
it uses aggregation and a loosely coupled fragment mainte-
nance protocol to reduce the maintenance costs. The repli-
cas in the DHT are now used only to provide efficient data
access and to mask individual node failures. Since the DHT
is no longer required to guarantee data durability, we re-
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Figure 6: Number of live PlanetLab hosts over a
period of 43 days.

duced the number of replicas for immutable objects from
five to just three.

Since some of the failures we observed were instantaneous,
we decided against a reactive system that would monitor
data availability and repair damages as they occur (our un-
derlying DHT, PAST, is an example of a reactive system).
Glacier is proactive in the sense that it always maintains
enough redundancy to sustain an instantaneous worst-case
failure, at the expense of a higher storage overhead. Also,
due to the difficulty of capturing all sources of correlated
failures, we decided against the introspective approach used
in Phoenix [27] or OceanStore [30]. Instead, Glacier provides
stochastic guarantees and assumes only an upper bound on
the magnitude of a worst-case failure (e.g., up to 80% of the
nodes may fail at the same time).

Since Glacier provides statistical guarantees, Glacier’s op-
erational parameters are entirely dependent on the expected
maximal fraction of nodes that may suffer a correlated fail-
ure. With a single global overlay, this quantity would be
difficult to assess, as the make-up of the overlay may not
be known. However, since each organization runs its own
independent ring, the failure probabilities of such individual
rings can be controlled and estimated more easily, allowing
for a practical deployment of Glacier with different param-
eters across different organizations.

4.4.3 Improvement
With Glacier in place, the data in our ePOST deployment

can now survive large-scale instantaneous and permanent
failures with high probability. Since we introduced Glacier,
we have not observed any symptoms of data loss.

5. PITFALLS
In this section, we briefly describe a number of pitfalls we

encountered while designing, deploying and running ePOST.
Most of these pitfalls have been encountered in other sys-
tems and been reported elsewhere. Had we managed to
bring to bear on our original design the collective experience
of the systems community, we probably could have avoided
them. Nevertheless, we think they are important enough
to repeat them here as a guide to others, particularly since
some of the issues appeared in new disguises.

5.1 Do not rely on fail-stop failures
Like many other designers of p2p systems, we believed

that nodes would fail in predictable and detectable ways.
Experience showed that even in the absence of security at-
tacks, nodes sometimes failed in complex ways, and the over-
lay must be prepared to handle such failures.

Bugs in the ePOST software, the libraries, or language
runtime would occasionally cause nodes to stall but not
crash. In this state, nodes maintained their TCP connec-
tions and sometimes accepted incoming connections, but
messages sent to the nodes were never delivered. This re-
sulted in insert and lookup failures in PAST, and conse-
quently prevented emails from being delivered and logs from
being written. To fix this problem, we added a watchdog
process, which periodically pings the ePOST process locally
and automatically restarts it if no response is received.

DHT objects inserted in PAST are stored on the local
disk of the ePOST nodes that are responsible for their key.
Stored with the key is node-specific metadata such as the
lifetime of the object in PAST. When a node fails, such data



cannot be recovered from other nodes and must be protected
on disk. To prevent occasional corruption of this metadata
due to node failures, we had to add an atomic disk write
mechanism.

5.2 Avoid strong assumptions regarding re-
source consumption

Like many other designers of p2p systems we believed that
the underutilized resources of the participating nodes could
provide all of the resources needed by the system. During
the initial design of ePOST, we studied the growth of con-
sumer hard disk capacity and measured the amount of data
users typically store in their mail folders. We found that
the disk growth rate far exceeded the storage requirements
over time. This led us to conclude that we could easily retain
all ePOST data indefinitely. To maintain PAST keys among
replica nodes, our replication protocol simply exchanged the
complete list. We also initially stored the PAST data on disk
by creating one file per key in a single directory.

In practice, we found that while the amount of disk stor-
age required was acceptable, the number of keys we were
forced to manage grew very large. First, we had not an-
ticipated the large increase in spam email since the initial
design of ePOST, which led to a large increase in the num-
ber of objects stored in the DHT. Second, the addition of
Glacier introduced 48 additional fragments for each DHT
object, significantly increasing the number of keys ePOST
needed to manage.

Key management became a burden on the memory, CPU,
and network resources. On average, over 1, 700 objects were
inserted daily, which resulted in approximately 86, 000 new
keys generated daily or 2, 600 new keys per machine per
day. This large number of keys was due to log entries, data
replication, and Glacier fragments. Many of these keys were
no longer referenced by any objects, but they could not be
deleted. This garbage came from deleted email data and old
log entries in ePOST. In fact, we found that after running
ePOST for only 6 months, 75% of the keys stored in the
DHT were garbage.

To handle this explosion of keys, we were forced to change
the ePOST system in several ways. The replication began to
incur a significant overhead due to the large key lists, so we
instead used Bloom filters [4] to optimize key list exchange.
These allow smaller messages to be exchanged during repli-
cation, and do not require the full key list to be sent. Second,
we implemented a log coalescing scheme which collapsed 50
log entries into a single entry, thereby reducing the number
of new keys.

Third, to reduce the large key increase from Glacier frag-
ments, we implemented an aggregation layer that bundles
small objects and inserts them into Glacier as a single ob-
ject. Aggregation reduced the number of keys required by
Glacier in our deployment by a factor of 30, greatly aiding
the scalability of the storage layer.

Fourth, to reduce the number of keys referencing garbage
objects, we implemented a lease-based version of the PAST
DHT, which stores objects for limited time intervals. When
inserting an object, an expiration time is specified, and user
proxies can later extend the expiration time if they are still
interested in the object. Therefore, objects that are no
longer referenced by any user are eventually garbage col-
lected and deleted. This has the secondary effect of reducing
the storage needed as these garbage objects are deleted. The

use of leases to control the lifetime of stored objects obviates
the need for a delete operation, which would present a se-
vere security risk. Leases are commonly used in distributed
storage systems; for example, they have also been used in
Tapestry [57] and CFS [13].

5.3 Consider using a database library to main-
tain persistent data

Storing a large number of keys also became a problem on
machines using the FAT and NTFS filesystems, which limit
the total number of files in a directory. Moreover, in ext3,
a bug surfaced once more than 64,000 files were stored in
a directory and the NTFS file system became increasingly
slow as the number of keys increased.

To work around the file system scalability problems, we
implemented a directory-splitting mechanism that maintains
a directory hierarchy and limits the number of keys in a sin-
gle directory. Once this limit is exceeded, subdirectories are
created, and the keys are redistributed into the newly cre-
ated directories. With hindsight, we may have been better
off using a database library like BerkeleyDB [39] to man-
age persistent data on disk, as was done for instance, in
DHash [13], for instance. This would have avoided the scala-
bility problems in file systems and have freed us from having
to implement our own atomic disk write mechanism, though
the use of a complex black-box system like a database comes
with risks as well.

5.4 Anticipate slow nodes and congested links
Like most academic research projects, ePOST was initially

designed and tested on a LAN with well-maintained ma-
chines. It did not consider what would happen when older
nodes or nodes with slow network connections participated
in the system. The original design of the routing mechanism
ignored overloaded nodes and severely congested network
links; the next hop of an overlay route was always chosen
based solely on its nodeId and the periodically measured,
smoothed RTT. Thus, intermittently overloaded nodes or
ones whose network links were congested were chosen along-
side other nodes.

Experience with a deployment ‘in the wild’ (e.g., in Plan-
etLab, the open Internet, and with DSL and cable modems),
quickly showed that such nodes introduced significant de-
lays. This affected the user experience, as the interactive
response time of folder operations and email retrieval suf-
fered.

To work around this problem, we implemented fast rerout-
ing, in which nodes constantly monitor the forwarding queue
to a given node, and quickly re-route messages destined for
slow nodes. Additionally, the nodes use the length of the
queue as a hint to check on the liveness of the remote node
using UDP pings, in case the remote node has stalled or is
dead. Similar mechanisms are used in MS-Pastry [6] and
Bamboo [2].

Additionally, in the initial implementation of Glacier, data
objects were pushed to newly joining nodes. We found that
this caused congestion on nodes connected via relatively slow
links, e.g., those connected via DSL or cable modem. To fix
this, we added configurable traffic shaping based on token
buckets, which allows a node to control the speed at which
data is downloaded.



5.5 Watch for hidden single points of failure
One of the strengths of p2p systems is the absence of a

single point of failure. In practice, however, not all sources of
failures are obvious, and great care must be taken to prevent
single points of failure from creeping in unexpectedly.

In the initial ePOST design, the set of bootstrap nodes
was specified by their domain names, which all ended in
‘epostmail.org’. Since DNS is a highly available, replicated
name service, the implicit dependence on DNS translations
seemed safe. However, at one point, our domain name
provider misconfigured the DNS entry for ‘epostmail.org’,
making it impossible for nodes to join the ePOST ring, thus
causing the ePOST ring to slowly fade away as a result of
normal churn. The problem was solved trivially by storing
a cached IP address as a hint with the domain name.

Despite replication and Glacier, there is a non-zero prob-
ability that a data item will eventually get lost. Moreover,
a software error may cause a corrupted data item to be in-
serted into the PAST store. An extremely rare loss of a
single data item seems tolerable and is ultimately unavoid-
able in any real storage system. As it turns out, however,
if the lost data item is a log entry and the log is organized
as a singly linked list, the entire log preceding the lost entry
becomes inaccessible. A trivial solution is to store some skip
pointers into each entry, greatly reducing the probability of
a loss of the log.

Lastly, there is a single point of failure that is actually
desirable from a security standpoint, but requires awareness
and care on the part of users. If a user loses their ePOST key
material, their email account becomes inaccessible. There is
no system administrator who can reset their key and recover
the data.

6. DIRECTIONS FOR FUTURE RESEARCH
We have identified four major interesting directions for

future work on reliable decentralized systems. First, the
ePOST solution for dealing with inconsistent data after net-
work partitions is specific to the class of data that ePOST
stores: single-writer logs with few mutable log heads and
mostly immutable data. A more general solution for other
types of applications and data remains an interesting open
problem.

Second, while ePOST was designed to be secure, and we
are not aware of any vulnerabilities in the ePOST layer itself,
our deployment has not been large enough to be subjected to
any security or denial-of-service attacks on either ePOST or
the components on which it is built. Studying the security
and robustness of decentralized systems like ePOST “in the
wild” is an important subject for future research.

Third, one of the goals of ePOST was to reduce the amount
of systems management humans were required to perform on
reliable systems. We hoped that the system would be self-
managing to a large extent. Given that the system is fun-
damentally different from a server-based email system, that
it has been under active development until recently, and we
do not have a large enough deployment to do a meaningful
study of manageability, the results are still inconclusive. An
interesting question is to what extent decentralized systems
can be made to be self-managing, and which tasks funda-
mentally require human intervention.

Fourth, a broader question is what the class of reliable
user applications can decentralized systems support. ePOST

benefits from the time scale of operations and the consis-
tency requirements that are typical of collaboration appli-
cations: relatively infrequent events requiring completion
times that are acceptable to human users, with relatively
weak consistency requirements and little contention. We
have demonstrated that reliable applications with these char-
acteristics can be built today. However, what other classes
of applications with challenging reliability demands can rea-
sonably be built on top of decentralized, cooperative sys-
tems?

7. CONCLUSION
In this paper, we have reported our experience in design-

ing, deploying and operating ePOST, a decentralized email
service that is based on p2p technology. ePOST was in-
tended as a ‘proving ground’ to study whether p2p systems
can actually deliver the high reliability they promise. We
ran into challenges providing the reliability and data dura-
bility required for such a system, especially in the case of
network partitions, routing anomalies, node churn, and cor-
related failures. We were able to solve some of these issues
by applying known principles of system design, and others
by devising new techniques and tools. Beyond ePOST, a
number of important challenges still remain, such as a gen-
eral solution for handling network partitions and creating
more self-managing reliable systems.
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