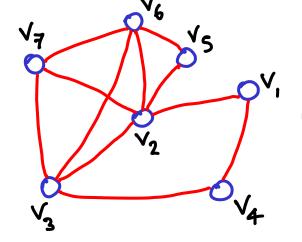
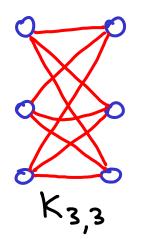
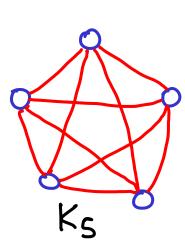
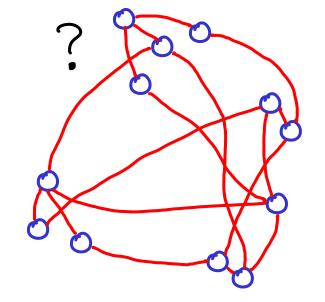
PLANE GRAPH No crossings Value Val

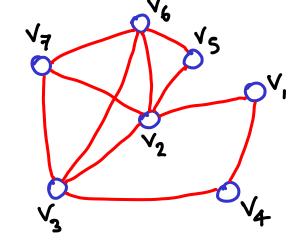


PLANAR GRAPH
can redraw
without crossings

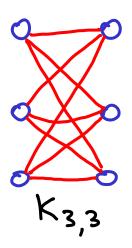


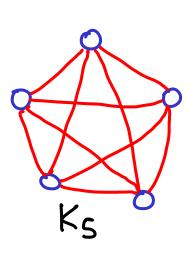


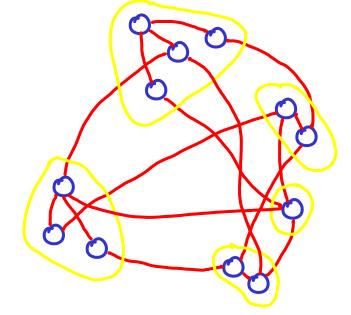




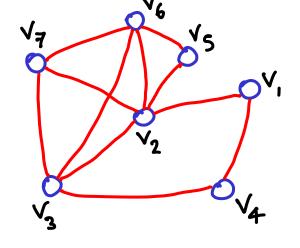
PLANAR GRAPH
can redraw
without crossings



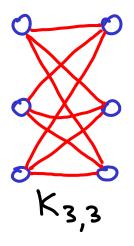


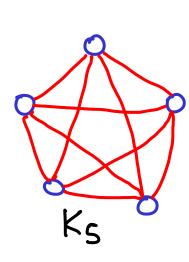


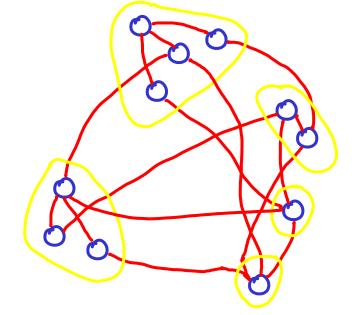
PLANE GRAPH No crossings Value Val



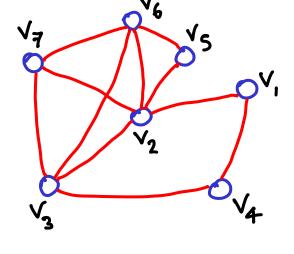
PLANAR GRAPH
can redraw
without crossings



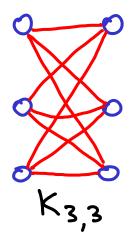


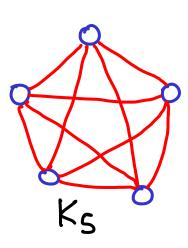


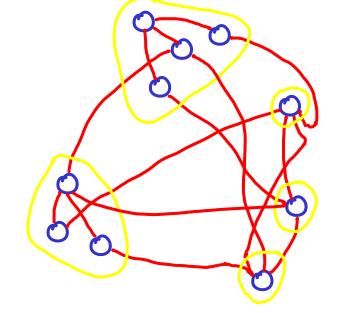
PLANE GRAPH No crossings Value Val

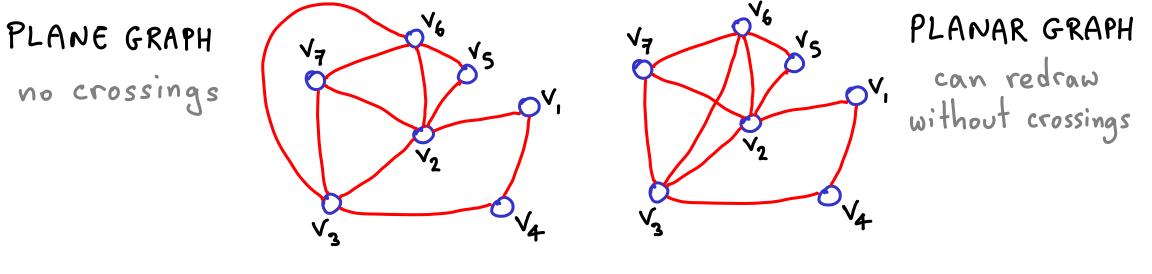


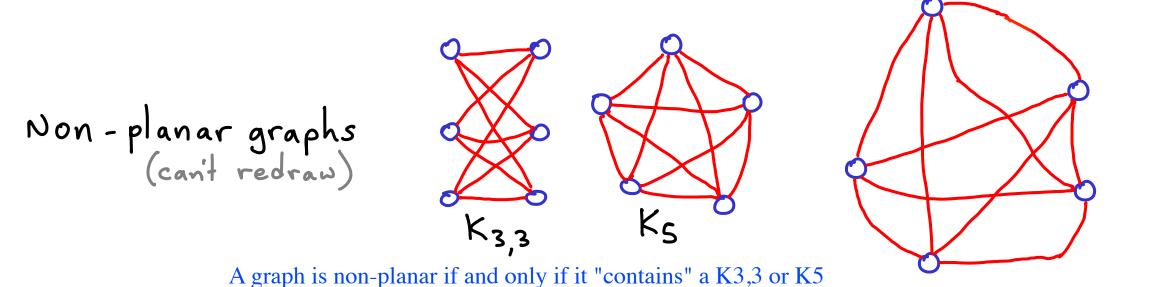
PLANAR GRAPH
can redraw
without crossings











obtained by successive contractions

FYI

Every planar graph can be drawn without crossings. In fact the edges can be drawn straight as well.

EULER FORMULA for planar connected graphs: V-E+F=2

Proof by induction on number of faces: Base case → F=1 → G is a tree → V=E+1 so (E+1)-E+1=2

Fiven G=(V,E) W/ F>1 taces, remove an edge e between 2 faces, f, & f₂. Given G=(V,E) W/ F>1 faces, Either for for is a bounded face,

hypothesis so e is on a cycle (e is not a cut edge) V-(E-1)+(F-1)=2Ge is connected & fi, f2 merge: √ √-E+F=2 ✓ Note that this also holds for multigraphs

Euler formula V-E+F=2

V-E+F=2 applies to any connected planar (in tact, to convex polyhedra) Induction on faces: Induction on vertices V=1:F=E+1 | Induction on edges V=1:F=E+1 | V=0:F=E+1 | V=0:F=E+1Contract edge × 7 Y E>1: if × ≠ y contract as before Remove an edge between 2 faces. V→V-1 E→E-1 else oremove as before Remains connected. $E \rightarrow \xi - 1$ & $F \rightarrow \xi - 1$ $V \rightarrow V - 1$

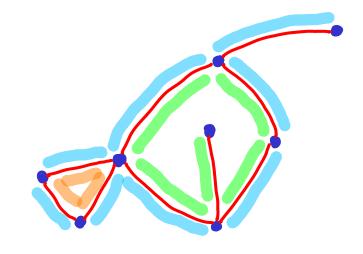
F → F - 1 E → E - 1

use the Euler formula V-E+F=2 to show that a connected plane graph has $E \le 3V-6$ for V>3

Not allowed: ?

use the Euler formula V-E+F=2to show that a connected plane graph has $E \le 3V-6$

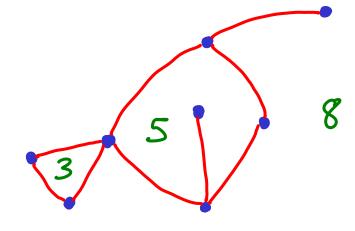
Every edge belongs to 1 or 2 faces \sum_{all faces} \in 2 \in 2 \in 1 \in 1 \in 2 \in 1 \i



use the Euler formula V-E+F=2 to show that a connected plane graph has $E \le 3V-6$

Every edge belongs to 1 or 2 faces \sum_{all faces} \in 2E

Every face has >3 edges (for V>3) \(\sum_{\text{all faces}} = \rightarrow 3F

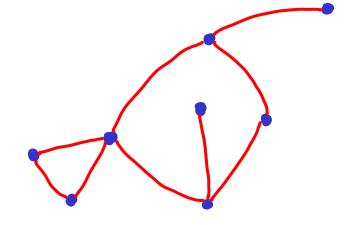


use the Euler formula V-E+F=2 to show that a connected plane graph has $E \le 3V-6$

Every edge belongs to 1 or 2 faces $\sum_{\text{all faces}} e \leq 2E$ Every face has >3 edges (for V>3) $\sum_{\text{all faces}} e > 3F$

E-F=V-2
E-
$$\frac{3F}{3} \le V-2$$

E \le 3V-6
E \le 2V-4



$$E \leq 3V-6$$

$$10 \leq 15-6$$

$$111$$

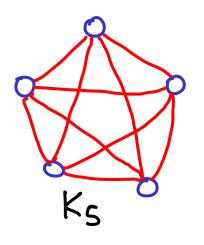
$$111$$

$$111$$

$$111$$

$$111$$

$$111$$



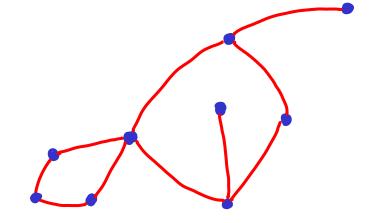
$$E \le 3V-6$$
 $9 \le 18-6$ ok!
 K_{3}

$$\sum_{\text{all faces}} e \leq 2E$$

$$\sum_{\text{all faces}} e > 4F$$

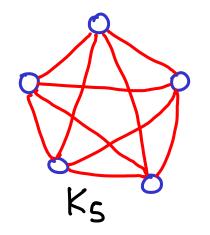
$$E - \frac{E}{2} \leq V - 2$$

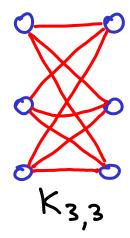
instead of \$3V-6



for triangle free: $E \le 2V-4$ $9 \le 2.6-4$ NOT PLANAR V=6, E=9

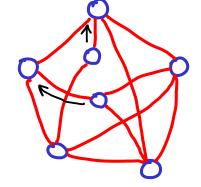
K3 2





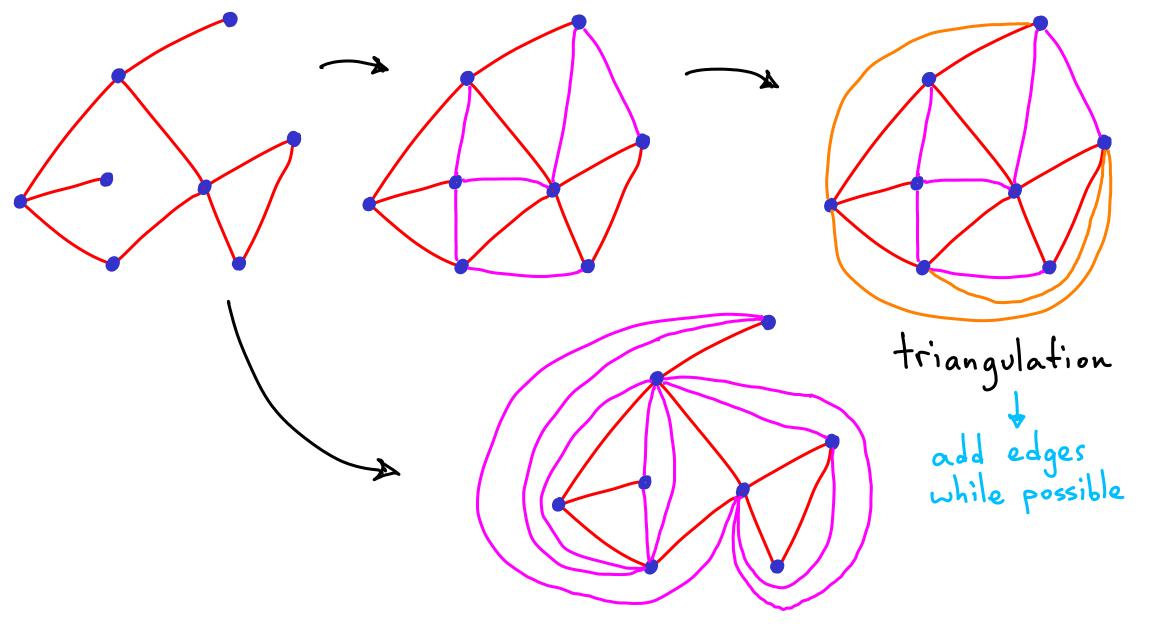
It turns out that every non-planar graph "contains" one of these two shapes.

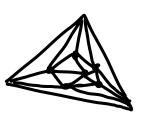
e.g:



See links

(example was shown, with contractions)



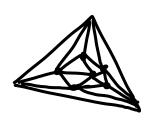


E=3V-6
Why?

Assume outer face is a triangle

$$E-F=V-2$$

 $E-\frac{3E}{3}=V-2$
 $E=3V-6$



What is the average degree of a triangulation? $\frac{1}{V} \cdot \sum_{i=1}^{V} d(v_i) = \frac{1}{V} \cdot 2E = \frac{6V-12}{V} \leq 6$

$$\frac{1}{V} \cdot \sum_{i=1}^{V} d(v_i) = \frac{1}{V} \cdot 2E = \frac{6V - 12}{V} \leq 6$$

€ Every triangulation has a vertex ω/ degree ≤5

Immediately applies to any planar graph (fewer edges)

What is the average degree of a triangulation? $\frac{1}{V} \sum_{i=1}^{V} d(v_i) = \frac{1}{V} \cdot 2E = \frac{6V - 12}{V} \leq \frac{6}{V}$

(> Every planar graph has a vertex w/ degree <5

Can we find many low-degree vertices? -> not if "low" = 5. what if "low" = 8?

Say you had $\frac{1}{2}$ vertices $\frac{1}{2}$ degree $\frac{1}{2}$ 9

Say you had $\frac{1}{2}$ vertices $\frac{1}{2}$ degree $\frac{1}{2}$ 9

Say you had $\frac{1}{2}$ 2 vertices $\frac{1}{2}$ 40 degree $\frac{1}{2}$ 9

Say you had $\frac{1}{2}$ 2 vertices $\frac{1}{2}$ 40 degree $\frac{1}{2}$ 9

Say you had $\frac{1}{2}$ 2 vertices $\frac{1}{2}$ 40 degree $\frac{1}{2}$ 9

Say you had $\frac{1}{2}$ 2 vertices $\frac{1}{2}$ 40 degree $\frac{1}{2}$ 9

Say you had $\frac{1}{2}$ 2 vertices $\frac{1}{2}$ 40 degree $\frac{1}{2}$ 9

Say you had $\frac{1}{2}$ 42 vertices $\frac{1}{2}$ 40 degree $\frac{1}{2}$ 9

Say you had $\frac{1}{2}$ 42 vertices $\frac{1}{2}$ 40 degree $\frac{1}{2}$ 9

Say you had $\frac{1}{2}$ 42 vertices $\frac{1}{2}$ 40 degree $\frac{1}{2}$ 9

Say you had $\frac{1}{2}$ 42 vertices $\frac{1}{2}$ 40 degree $\frac{1}{2}$ 9

Say you had $\frac{1}{2}$ 42 vertices $\frac{1}{2}$ 40 degree $\frac{1}{2}$ 9

Say you had $\frac{1}{2}$ 42 vertices $\frac{1}{2}$ 40 degree $\frac{1}{2}$ 9

Say you had $\frac{1}{2}$ 42 vertices $\frac{1}{2}$ 40 degree $\frac{1}{2}$ 9

Say you had $\frac{1}{2}$ 42 vertices $\frac{1}{2}$ 40 degree $\frac{1}{2}$ 9

Say you had $\frac{1}{2}$ 42 vertices $\frac{1}{2}$ 42 vertices $\frac{1}{2}$ 44 degree $\frac{1}{2}$ 44 vertices have degree $\frac{1}{2}$ 45 always have $\frac{1}{2}$ 44 vertices $\frac{1}{2}$ 44 vertices $\frac{1}{2}$ 45 vertices $\frac{1}{2}$ 46 vertices $\frac{1}{2}$ 46 vertices $\frac{1}{2}$ 47 vertices $\frac{1}{2}$ 47 vertices $\frac{1}{2}$ 47 vertices $\frac{1}{2}$ 48 vertices $\frac{1}{2}$ 49 vertices $\frac{1}{2}$ 40 vertices \frac