DS 4400

Machine Learning and Data Mining I Spring 2022

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Today's Outline

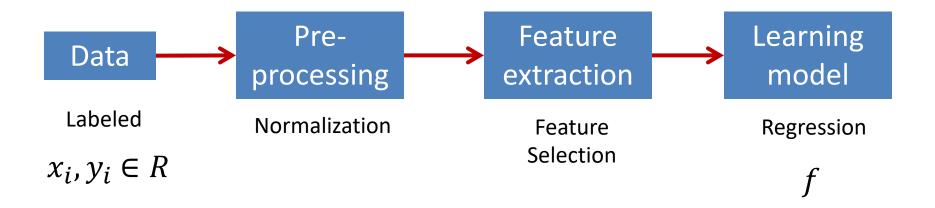
Announcements

- HW 1 is due on Feb 7 at 11:59pm (Gradescope)
- Pb 1,2,3, 4(a), and 4(b) are math
- Pb 4(c) and 5 are coding
- Submit PDF and include link to code
- Preferrable to type solutions, but can also handwrite
- Linear regression
 - Simple and multiple linear regression
 - Derivation of optimal solution
 - Correlation coefficient, covariance, and connection to regression

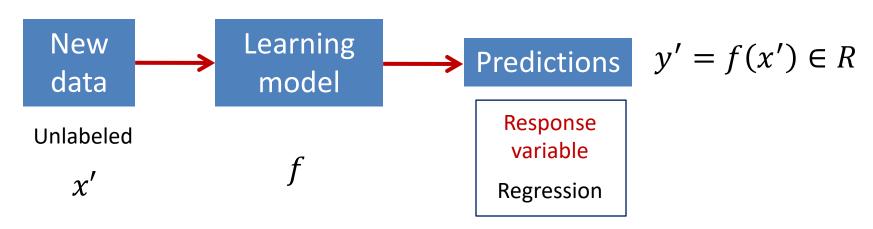
Linear regression

Supervised Learning: Regression

Training



Testing



Steps to Learning Process

- Define problem space
- Collect data
- Extract features
- Pick hypothesis space
- Develop a learning algorithm
 - Train and learn model parameters
- Make predictions on new data
 - Testing phase
- In practice, usually re-train when new data is available and use feedback from deployment

Linear regression

- The oldest statistical learning method
 - Legendre and Gauss 1805
- One of the most widely used techniques
- Fundamental to many complex models
 - Generalized Linear Models
 - Logistic regression
 - Neural networks
 - Deep learning
- Easy to understand and interpret
- Efficient to find optimal solution in closed form
- Efficient practical algorithm (gradient descent)

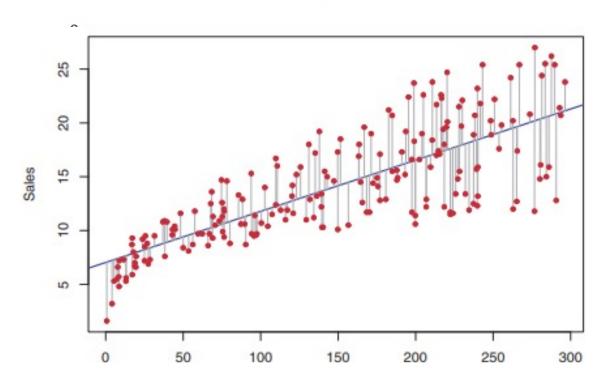
Linear regression

Given:

– Data $X = \{x_1, \dots x_N\}$, where $x_i \in \mathbb{R}^d$

Features

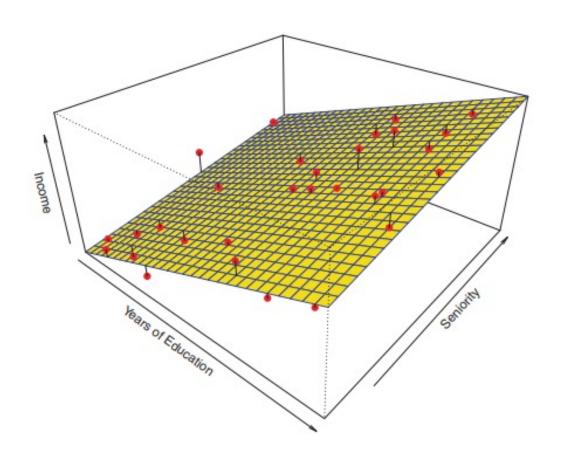
- Corresponding labels $Y = \{y_1, ..., y_N\}$, where $y_i \in R$



Response variables

Simple Linear Regression: 1 predictor

Income Prediction



Linear Regression with 2 predictors

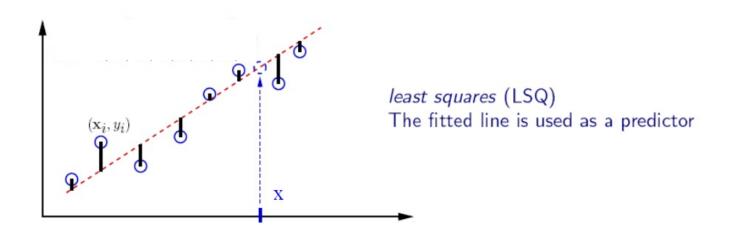
Multiple Linear Regression

Hypothesis: linear model

• Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Simple linear regression Regression model is a line with 2 parameters: θ_0 , θ_1

Fit model by minimizing sum of squared errors



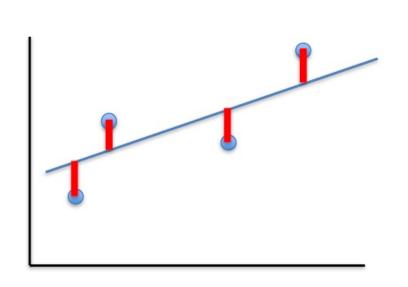
Least-Squares Linear Regression

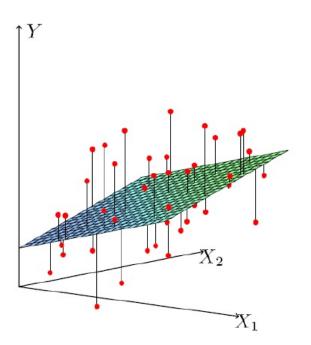
Cost Function

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2$$

Mean Square Error (MSE)

• Fit by solving $\min_{oldsymbol{ heta}} J(oldsymbol{ heta})$





Terminology and Metrics

Residuals

- Difference between predicted values and actual values
- Predicted value for example i is: $\hat{y}_i = h_{\theta}(x_i)$

$$-R_i = |y_i - \widehat{y}_i| = |y_i - (\theta_0 + \theta_1 x_i)|$$

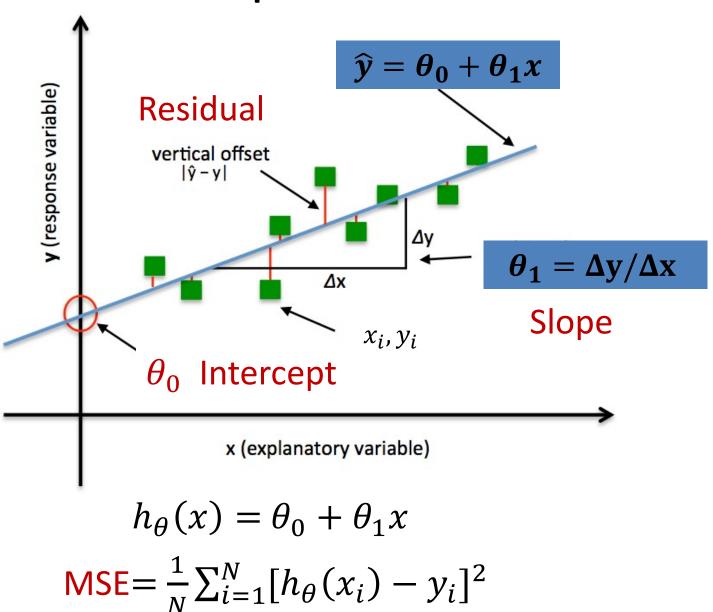
Residual Sum of Squares (RSS)

$$-RSS = \sum R_i^2 = \sum [y_i - (\theta_0 + \theta_1 x_i)]^2$$

Mean Square Error (MSE)

$$-MSE = \frac{1}{N} \sum R_i^2 = \frac{1}{N} \sum [y_i - (\theta_0 + \theta_1 x_i)]^2$$

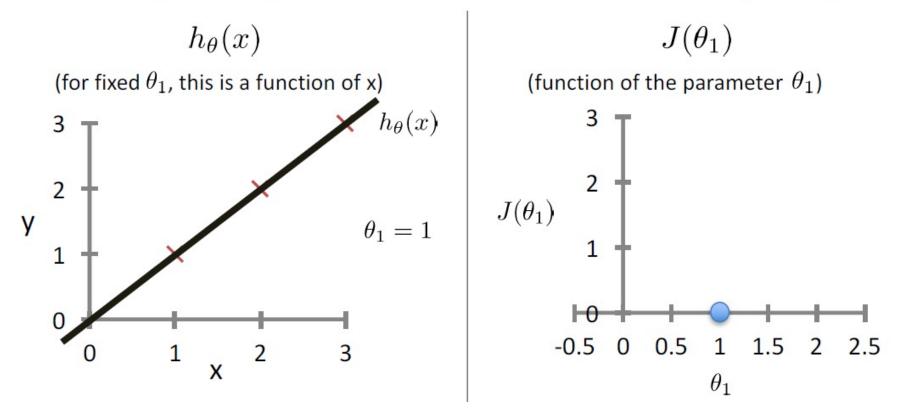
Interpretation



Intuition on MSE

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2$$

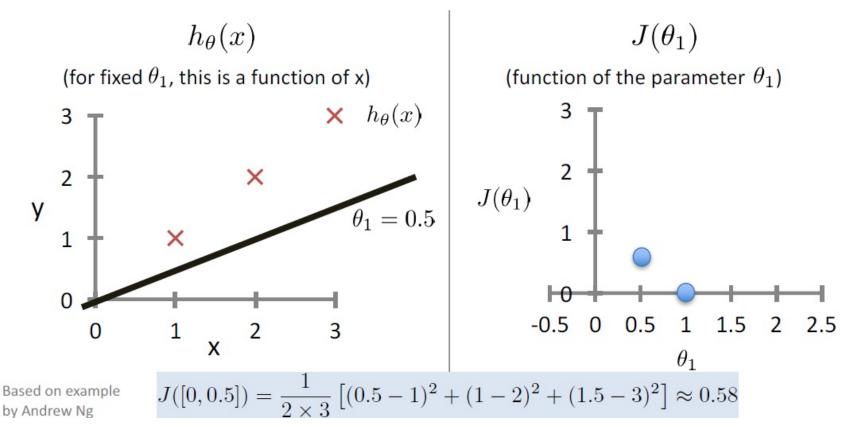
For insight on J(), let's assume $x \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1]$



Intuition on MSE

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2$$

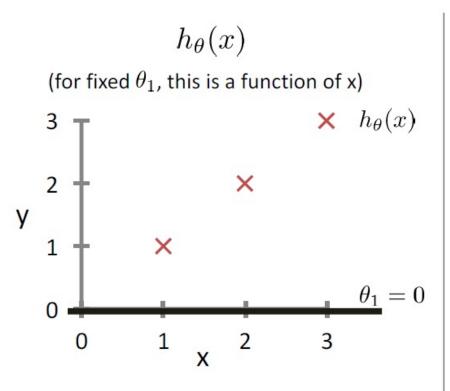
For insight on J(), let's assume $x \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1]$

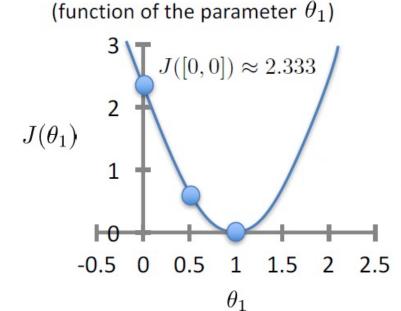


Intuition on MSE

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2$$

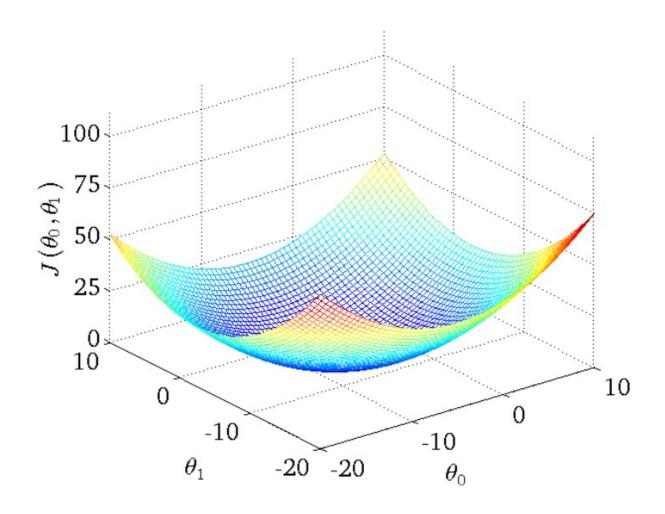
For insight on J(), let's assume $x \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1]$





 $J(\theta_1)$

MSE function



Convex function, unique minimum

Solution for simple linear regression

- Dataset $x_i \in R$, $y_i \in R$, $h_{\theta}(x) = \theta_0 + \theta_1 x$
- $J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (\theta_0 + \theta_1 x_i y_i)^2$ MSE / Loss

Solution for simple linear regression

- Dataset $x_i \in R$, $y_i \in R$, $h_{\theta}(x) = \theta_0 + \theta_1 x$
- $J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (\theta_0 + \theta_1 x_i y_i)^2$ MSE / Loss

$$\frac{\partial J(\theta)}{\partial \theta_0} = \frac{2}{N} \sum_{i=1N} (\theta_0 + \theta_1 x_i - y_i) = 0$$

$$\frac{\partial J(\theta)}{\partial \theta_1} = \frac{2}{N} \sum_{i=1}^{N} x_i (\theta_0 + \theta_1 x_i - y_i) = 0$$

Solution of min loss

$$-\theta_0 = \bar{y} - \theta_1 \bar{x}$$

$$-\theta_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

$$\bar{y} = \frac{\sum_{i=1}^{N} y_i}{N}$$

Relationship between Two Random Variables

- Model X (feature / predictor) and Y (response) as two random variables
- Fit of simple linear regression depends on dependence between X and Y
- Covariance
 - Measures the strength of relationship between two random variables
- Pearson correlation
 - Normalized between [-1,1]
 - Proportional to covariance

Covariance

- X and Y are random variables
- Cov(X,Y) = E[(X E(X))(Y E(Y))]
- Properties

- (i) Cov(X, Y) = Cov(Y, X)
- (ii) Cov(X, X) = Var(X)
- (iii) Cov(aX, Y) = a Cov(X, Y)

(iv)
$$\text{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \text{Cov}(X_{i}, Y_{j})$$

Covariance

- X and Y are random variables
- Definition:

$$-Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

Can derive that:

$$-Cov(X,Y) = E[XY] - E[X]E[Y]$$

If X and Y are independent then:

$$-E[XY] = E[X]E[Y]$$

$$-Cov(X,Y)=0$$

Pearson Correlation

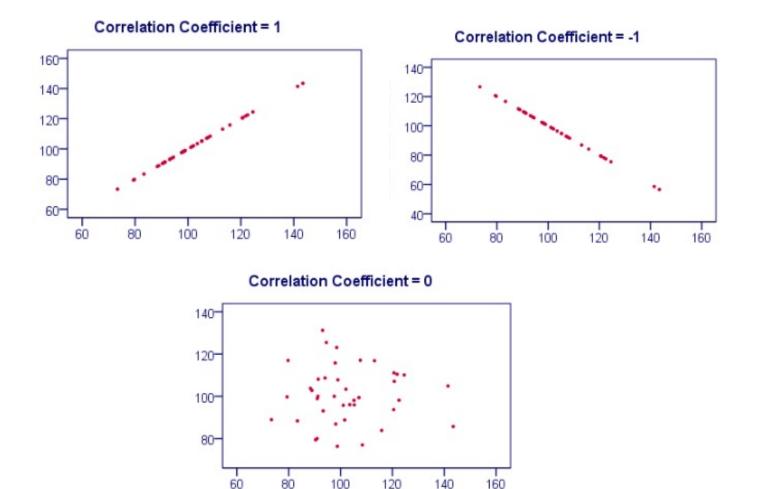
$$\rho = \operatorname{Corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y} \in [-1, 1]$$

Standard deviation
$$\sigma_X = \sqrt{Var(X)}$$

Pearson Correlation

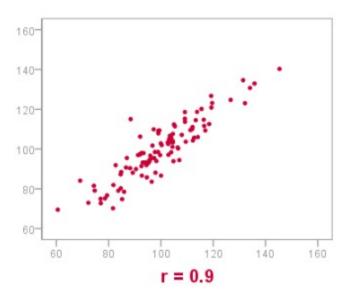
$$\rho = \operatorname{Corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y} \in [-1, 1]$$

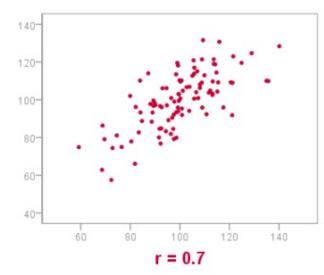
Standard deviation $\sigma_X = \sqrt{Var(X)}$



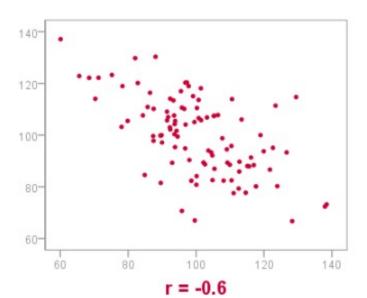
Positive/Negative Correlation

Positive Correlation





Negative Correlation



How Well Does the Model Fit?

- Correlation between feature and response
 - Pearson's correlation coefficient

$$\rho = Corr(X,Y) = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2 \sqrt{\sum_{i=1}^{N} (y_i - \bar{y})^2}}} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

- Measures linear dependence between X and Y
- Positive coefficient implies positive correlation
 - The closer to 1 the coefficient is, the stronger the correlation
- Negative coefficient implies negative correlation
 - The closer to -1 the coefficient is, the stronger the correlation

•
$$\theta_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{\text{Cov}(X,Y)}{Var[X]}$$

• If $\sigma_X = \sigma_Y$, then $\theta_1 = Corr(X, Y)$

How Well Does the Model Fit?

Residual Sum of Squares

- RSS =
$$\sum [R_i]^2 = \sum [y_i - (\theta_0 + \theta_1 x_i)]^2$$

Total Sum of Squares

$$-TSS = \sum [y_i - \bar{y}]^2$$

- Total variance of the response
- Proportion of variability in Y that can be explained using X

$$-R^2 = 1 - \frac{RSS}{TSS} \in [0,1]$$

Correlation between feature and response

$$\rho = Corr(X,Y) = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2 \sqrt{\sum_{i=1}^{N} (y_i - \bar{y})^2}}}$$

For simple regression R^2 is equal to ρ^2

Regression vs Correlation

Correlation

- Find a numerical value expressing the relationship between variables
- Pearson correlation measures linear dependence

Regression

- Estimate values of response variable on the basis of the values of predictor variable
- The slope of linear regression is related to correlation coefficient
- Regression scales to more than 2 variables, but correlation does not

Recap Linear Regression

- Least Square Regression, OLS
- Simple linear regression: one dimension
- Multiple linear regression: multiple dimensions
- Minimize cost (loss) function
 - MSE: average of squared residuals
- Can derive closed-form solution for simple LR

$$-\theta_0 = \bar{y} - \theta_1 \bar{x}$$

$$-\theta_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!