DS 4400

Machine Learning and Data Mining I Spring 2022

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Announcements

- Project milestone is due on April 13
 - Template in Gradescope
 - We would like to see at least one trained ML model
 - Discuss any challenges
- Final exam is on Wed, April 20
 - During class
 - Same format as the midterm
 - Topics everything from LDA to CNN

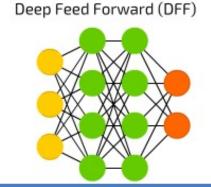
Outline

- Feed-forward neural networks
 - Activations
 - Softmax classifier
 - Architectures and parameters
- Convolutional neural networks
 - Convolution layer
 - Max pooling
 - Well-known convolutional networks architectures

Neural Network Architectures

Feed-Forward Networks

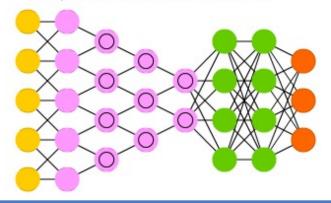
 Neurons from each layer connect to neurons from next layer



Convolutional Networks

- Includes convolution layer for feature reduction
- Learns hierarchical representations

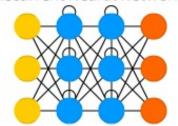
Deep Convolutional Network (DCN)



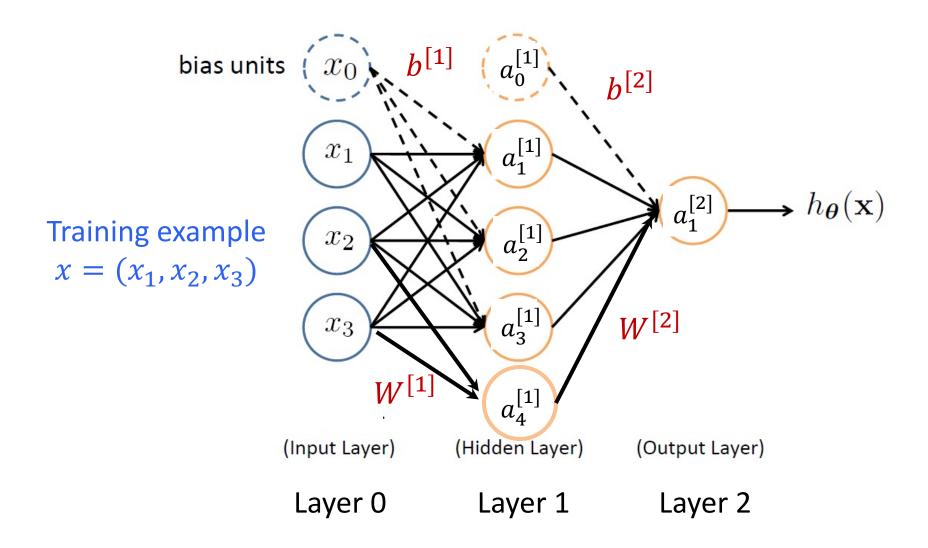
Recurrent Networks

- Keep hidden state
- Have cycles in computational graph

Recurrent Neural Network (RNN)



Feed-Forward Neural Network



Feed-Forward NN

- Hyper-parameters
 - Number of layers
 - Architecture (how layers are connected)
 - Number of hidden units per layer
 - Number of units in output layer
 - Activation functions
- Other
 - Initialization
 - Regularization

Vectorization

$$z_1^{[1]} = W_1^{[1]} \quad x + b_1^{[1]} \quad \text{and} \quad a_1^{[1]} = g(z_1^{[1]})$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$z_4^{[1]} = W_4^{[1]} \quad x + b_4^{[1]} \quad \text{and} \quad a_4^{[1]} = g(z_4^{[1]})$$

$$\underbrace{\begin{bmatrix} z_1^{[1]} \\ \vdots \\ \vdots \\ z_4^{[1]} \end{bmatrix}}_{z^{[1]} \in \mathbb{R}^{4 \times 1}} = \underbrace{\begin{bmatrix} -W_1^{[1]} \\ -W_2^{[1]} \\ \vdots \\ -W_4^{[1]} \end{bmatrix}}_{W^{[1]} \in \mathbb{R}^{4 \times 3}} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{x \in \mathbb{R}^{3 \times 1}} + \underbrace{\begin{bmatrix} b_1^{[1]} \\ b_2^{[1]} \\ \vdots \\ b_4^{[1]} \end{bmatrix}}_{b^{[1]} \in \mathbb{R}^{4 \times 1}}$$

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

 $a^{[1]} = g(z^{[1]})$

Linear

Non-Linear

Vectorization

Output layer

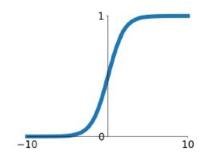
$$z_1^{[2]} = W_1^{[2]^T} a^{[1]} + b_1^{[2]}$$
 and $a_1^{[2]} = g(z_1^{[2]})$

$$\underbrace{z^{[2]}}_{1\times 1} = \underbrace{W^{[2]}}_{1\times 4} \underbrace{a^{[1]}}_{4\times 1} + \underbrace{b^{[2]}}_{1\times 1} \quad \text{and} \quad \underbrace{a^{[2]}}_{1\times 1} = g(\underbrace{z^{[2]}}_{1\times 1})$$

Non-Linear Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



Binary Classification

tanh

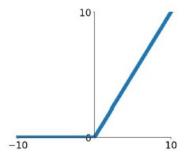
tanh(x)



Regression

ReLU

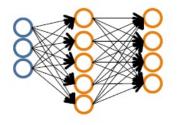
 $\max(0, x)$

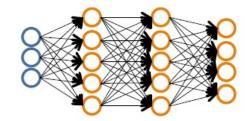


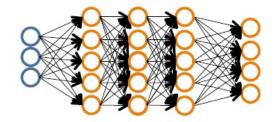
Intermediary layers

How to pick architecture?

Pick a network architecture (connectivity pattern between nodes)



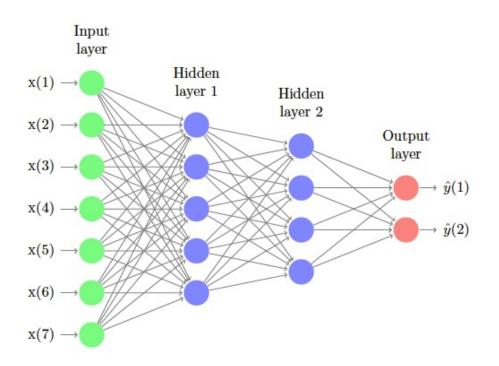




- # input units = # of features in dataset
- # output units = # classes

Reasonable default: 1 hidden layer

FFNN Architectures



- Input and Output Layers are completely specified by the problem domain
- In the Hidden Layers, number of neurons in Layer i+1 is usually smaller or equal to the number of neurons in Layer i

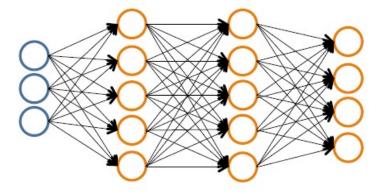
Multi-Class Classsification

Pedestrian

Car

Motorcycle

Truck



$$h_{\Theta}(\mathbf{x}) \in \mathbb{R}^K$$

We want:

$$h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

when pedestrian

$$h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

when car

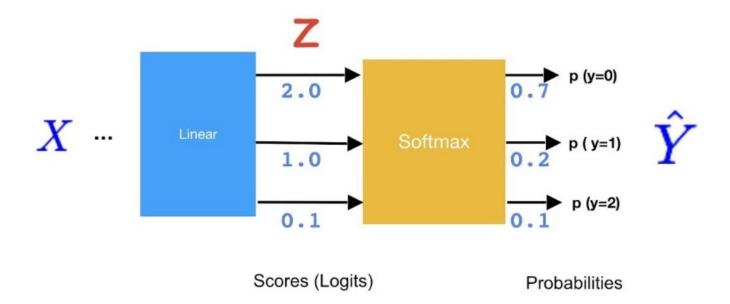
$$h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
 when pedestrian when car when motorcycle when truck

$$h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

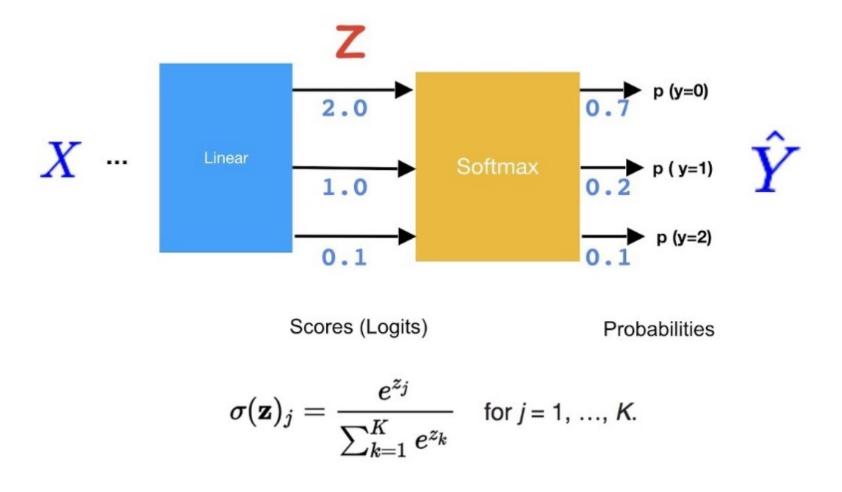
when motorcycle

when truck

Softmax classifier

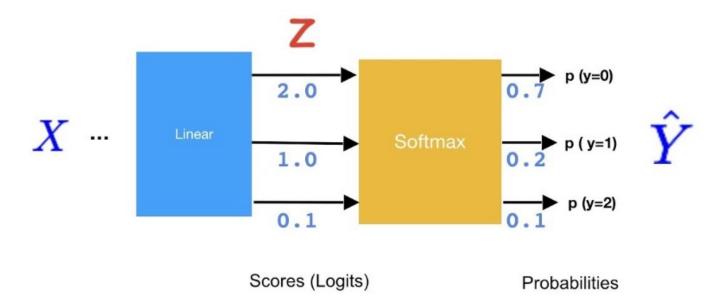


Softmax classifier

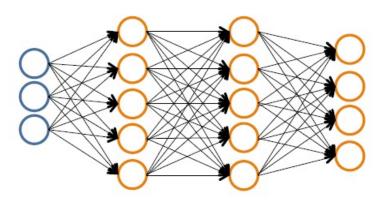


- Predict the class with highest probability
- Generalization of sigmoid/logistic regression to multi-class

Cross-entropy loss



Neural Network Classification



Binary classification

y = 0 or 1

1 output unit $(s_{L-1}=1)$

Sigmoid

Given:

$$\begin{split} &\{(\mathbf{x}_1,y_1),\ (\mathbf{x}_2,y_2),\ ...,\ (\mathbf{x}_n,y_n)\}\\ &\mathbf{s} \in \mathbb{N}^{+L} \text{ contains \# nodes at each layer}\\ &-\ s_0 = d \text{ (\# features)} \end{split}$$

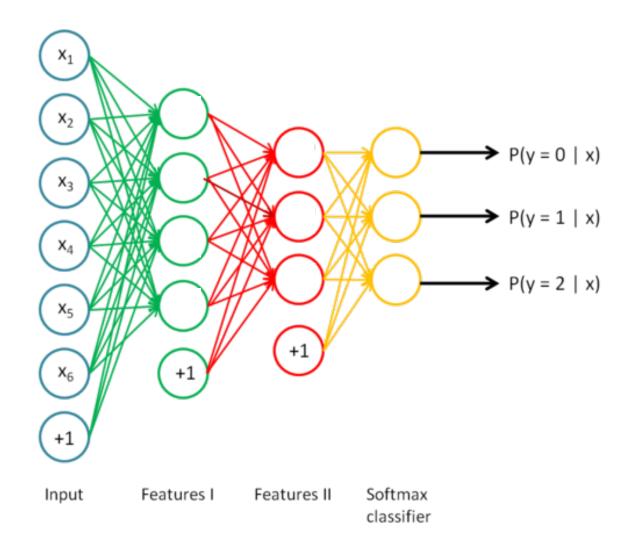
Multi-class classification (K classes)

$$\mathbf{y} \in \mathbb{R}^K \quad \text{e.g.} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
 pedestrian car motorcycle truck

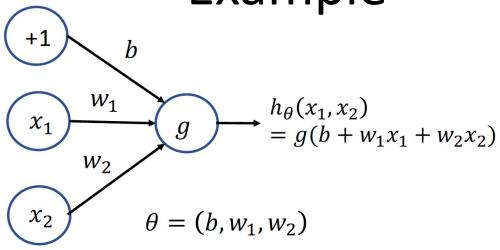
$$K$$
 output units $(s_{L-1} = K)$

Softmax

Multi-class classification



Example



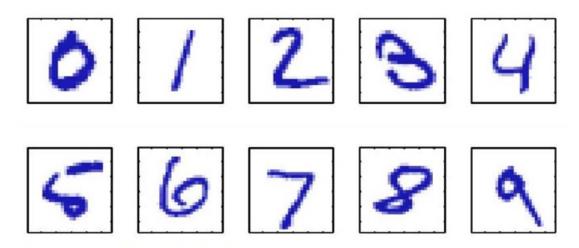
1. Given b=-10, $w_1=12$, $w_2=5$ Activation g(z)=sign(z)Compute the output:

x_1	x_2	$h(x_1,x_2)$
0	0	
0	1	
1	0	
1	1	

2. Find out the weights b, w_1 , w_2 and activation function to get the following output:

x_1	x_2	$h(x_1,x_2)$
0	0	1
0	1	1
1	0	1
1	1	0

MNIST: Handwritten digit recognition



Images are 28 x 28 pixels

Represent input image as a vector $\mathbf{x} \in \mathbb{R}^{784}$ Learn a classifier $f(\mathbf{x})$ such that, $f: \mathbf{x} \to \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

> Predict the digit Multi-class classifier

Parameter Counting

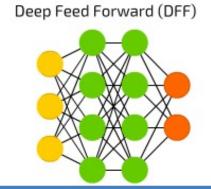
Review FFNN

- Feed-Forward Neural Networks are common neural networks architectures
 - Fully connected networks are called Multi-Layer Perceptron
 - Usually use 1 or 2 hidden layers
- Input, output, and hidden layers
 - Linear matrix operations followed by non-linear activations at every layer
- Activations:
 - ReLU, tanh, etc., for hidden layers
 - Sigmoid (binary classification) and softmax (for multiclass classification) at last layer
- Forward propagation: process of evaluating input through the network

Neural Network Architectures

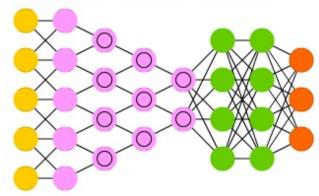
Feed-Forward Networks

 Neurons from each layer connect to neurons from next layer



Convolutional Networks

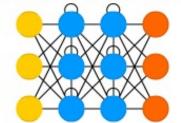
- Includes convolution layer for feature reduction
- Learns hierarchical representations



Recurrent Networks

- Keep hidden state
- Have cycles in computational graph

Recurrent Neural Network (RNN)

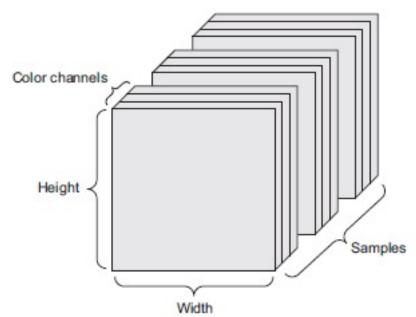


Convolutional Nets

- Neurons are connected from layer to the next
 - Invented by [LeCun 89]
- Applicable to data with natural grid topology
 - Time series
 - Images
- Use convolutions on at least one layer
 - Convolution is a linear operation that uses local information
 - Also use pooling operation
 - Used for dimensionality reduction and learning hierarchical feature representations

Image Representation

- Image is 3D "tensor": height, width, color channel (RGB)
- Black-and-white images are 2D matrices: height, width
 - Each value is pixel intensity



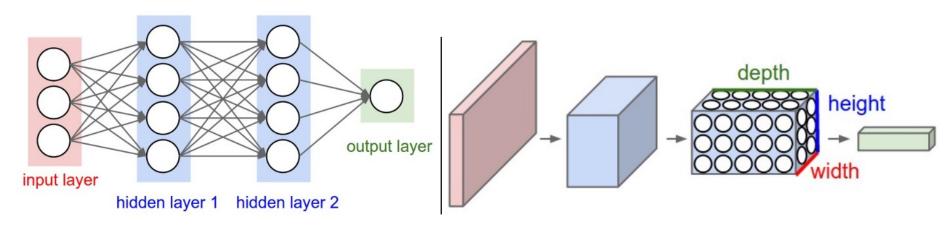
Computer vision principles

- Task: image classification (object identification)
- Translation invariance
 - Classification should work if object appears in different locations in the image => All image regions are treated the same
- Locality
 - Focus on local regions for object detection => computation should be local
- Mathematical operation: Convolution

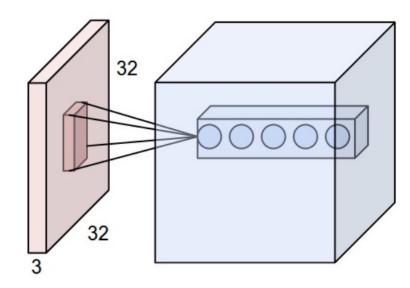
Convolutional Neural Networks

Feed-forward network

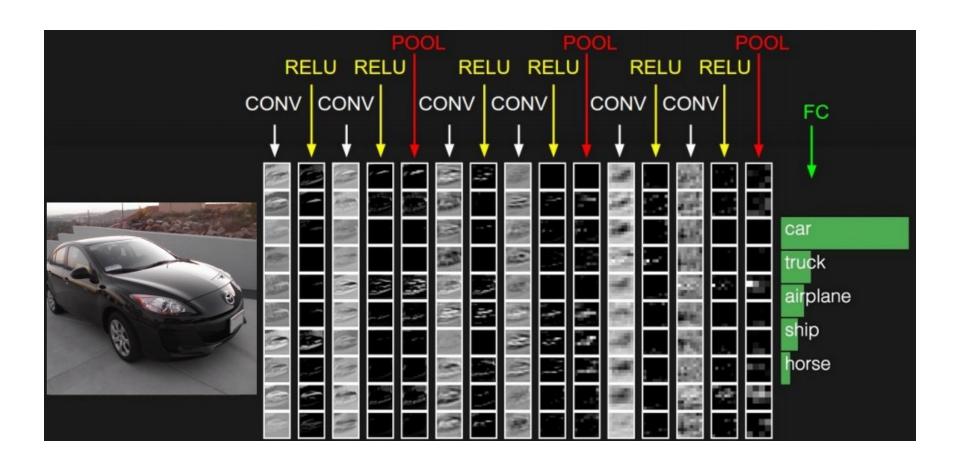
Convolutional network



Filter

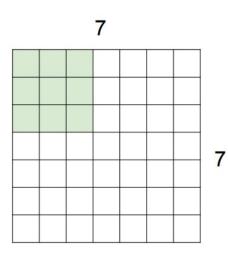


Convolutional Nets

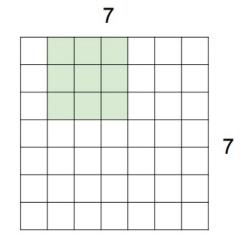


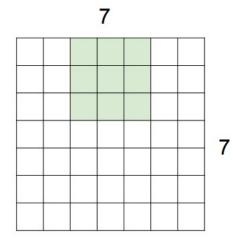
Convolutions

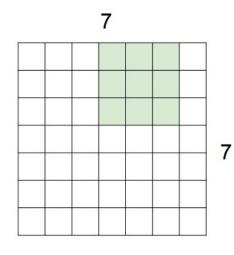
A closer look at spatial dimensions:



7x7 input (spatially) assume 3x3 filter

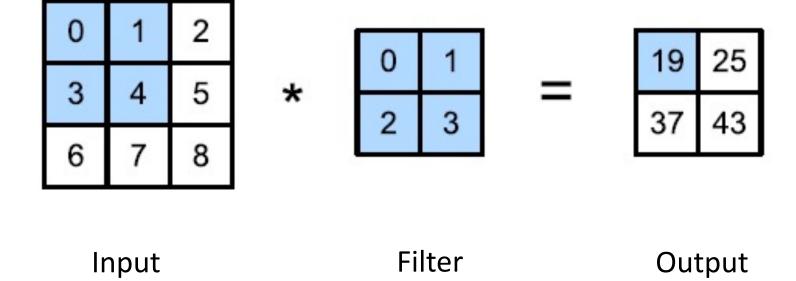






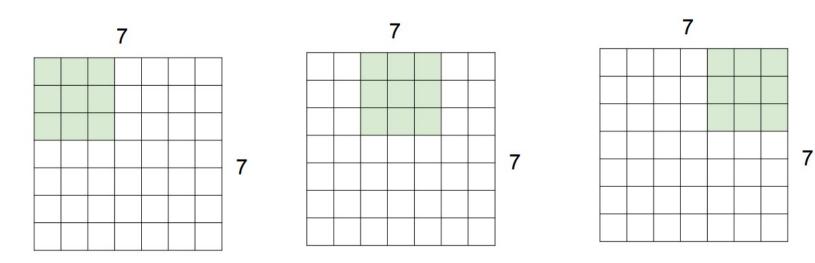


Example



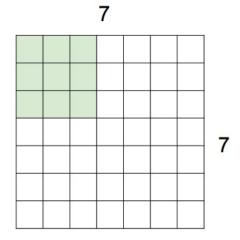
Convolutions with stride

7x7 input (spatially) assume 3x3 filter applied with stride 2



Convolutions with stride

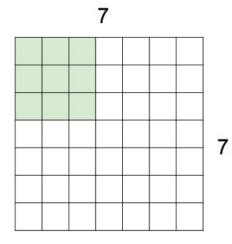
7x7 input (spatially) assume 3x3 filter applied with stride 3?



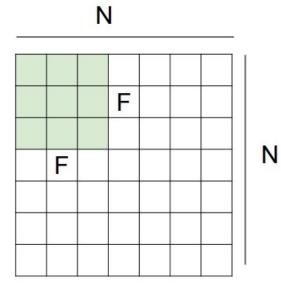
N F N

Convolutions with stride

7x7 input (spatially) assume 3x3 filter applied with stride 3?



doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.



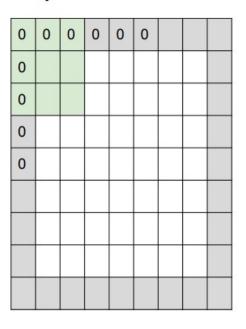
Output size: (N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$:\

Padding

In practice: Common to zero pad the border

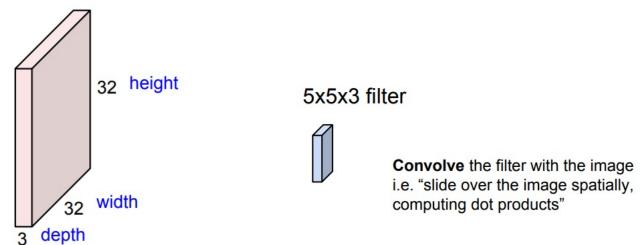


e.g. input 7x7
3x3 filter, applied with stride 3
pad with 1 pixel border => what is the output?

```
(recall:)
(N - F) / stride + 1
```

Convolution Layer

32x32x3 image -> preserve spatial structure



- Depth of filter always depth of input
- Computation is based only on local information

Convolution layer: Takeaways

- Convolution is a linear operation
 - Reduces parameter space of Feed-Forward Neural Network considerably
 - Capture locality of pixels in images
 - Smaller filters need less parameters
 - Multiple filters in each layer (computation can be done in parallel)
- Convolutions are followed by activation functions
 - Typically ReLU