DS 4400

Machine Learning and Data Mining I Spring 2022

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Announcements

- HW 4 is due on April 8
 - Decision trees, ensembles, Naïve Bayes
- Project milestone is due on April 13
 - Template in Gradescope
 - We would like to see at least one trained ML model
 - Discuss any challenges
- Experential Al Institute opening on Wed, April 6
 - Poster session 12-4pm, needs registration
 - I will present on AI in Cybersecurity at 3pm
 - PhD student Giorgio Severi will give the lecture and tutorial on language models

Outline

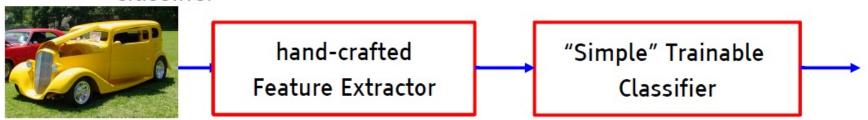
- Deep learning
 - Learning feature representations
 - Perceptron and limitations
- Feed-forward neural networks
 - Activations
 - Forward propagation
 - Vectorization
 - Softmax classifier

References

- Deep Learning books
 - https://d2l.ai/ (D2L)
 - https://www.deeplearningbook.org/ (advanced)
- Stanford notes on deep learning
 - http://cs229.stanford.edu/summer2020/cs229notes-deep_learning.pdf

Deep Learning

- The traditional model of pattern recognition (since the late 50's)
 - Fixed/engineered features (or fixed kernel) + trainable classifier

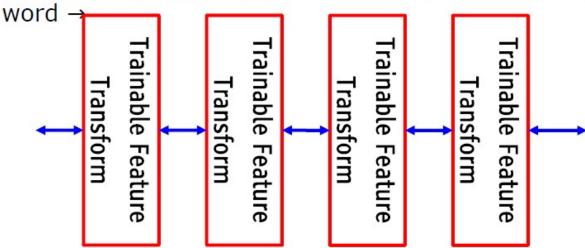


End-to-end learning / Feature learning / Deep learning

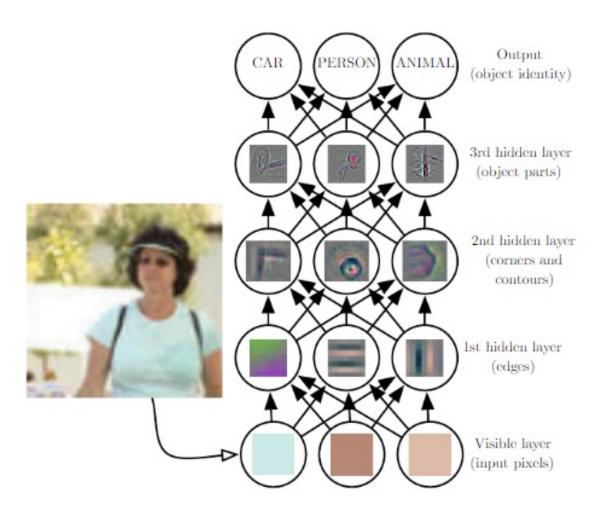


Trainable Feature Hierarchy

- Hierarchy of representations with increasing level of abstraction
- Each stage is a kind of trainable feature transform
- Image recognition
 - Pixel → edge → texton → motif → part → object
- Text
 - Character → word → word group → clause → sentence → story
- Speech
 - Sample → spectral band → sound → ... → phone → phoneme →



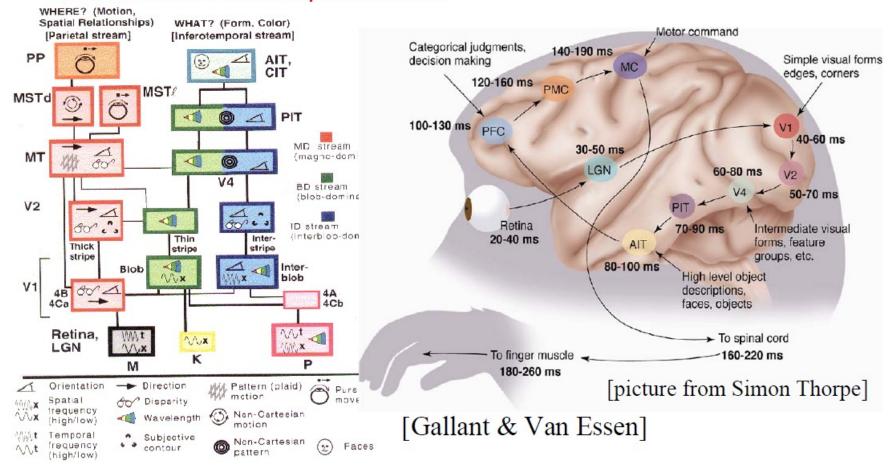
Learning Representations



Deep Learning addresses the problem of learning hierarchical representations

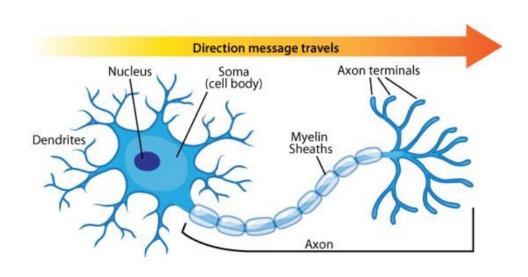
The Visual Cortex is Hierarchical

- The ventral (recognition) pathway in the visual cortex has multiple stages
- Retina LGN V1 V2 V4 PIT AIT
- Lots of intermediate representations

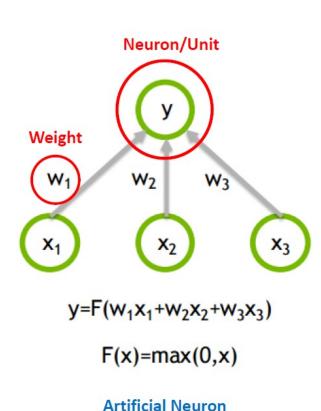


Analogy to Human Brain

Human Brain



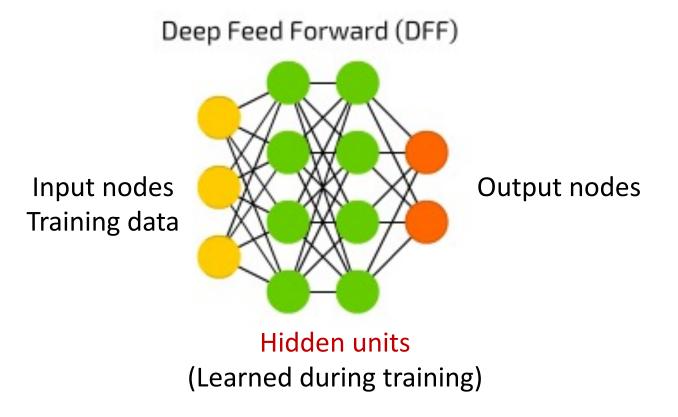
Biological Neuron



Neural Networks

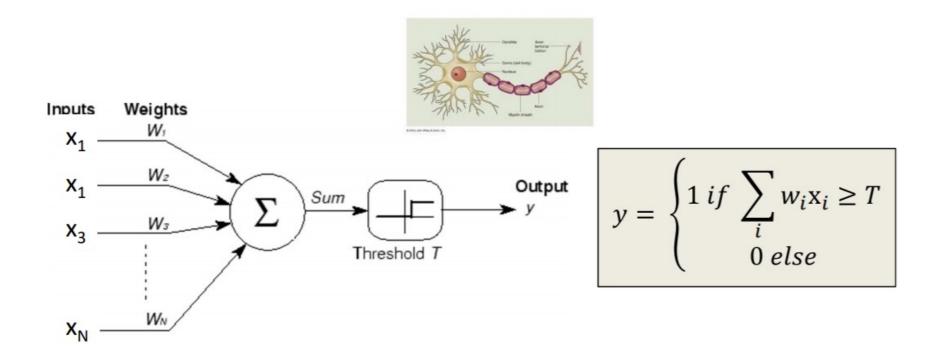
- · Origins: Algorithms that try to mimic the brain.
- Very widely used in 80s and early 90s; popularity diminished in late 90s.
- Recent resurgence: State-of-the-art technique for many applications
- Artificial neural networks are not nearly as complex or intricate as the actual brain structure

Neural Networks



- Neural networks: made up from nodes connected by links
- Each link has a weight and activation function
- Feed-forward neural networks
 - Training data is input to left, prediction are output on right.

Perceptron



- A threshold unit
 - "Fires" if the weighted sum of inputs exceeds a threshold

The Perceptron

$$h(x) = \operatorname{sign}(\theta^{\mathsf{T}} x)$$
 where $\operatorname{sign}(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ -1 & \text{if } z < 0 \end{cases}$

• The perceptron uses the following update rule each time it receives a new training instance (x_i, y_i)

$$\theta_j \leftarrow \theta_j - \frac{1}{2} (h_\theta(x_i) - y_i) x_{ij}$$

- If the prediction matches the label, make no change
- Otherwise, adjust heta

The Perceptron

• The perceptron uses the following update rule each time it receives a new training instance (x_i, y_i)

$$\theta_j \leftarrow \theta_j - \frac{1}{2} (h_\theta(x_i) - y_i) x_{ij}$$

The Perceptron

• The perceptron uses the following update rule each time it receives a new training instance (x_i, y_i)

$$\theta_j \leftarrow \theta_j - \frac{1}{2} (h_{\theta}(x_i) - y_i) x_{ij}$$
either 2 or -2

• Re-write as

$$\theta_j \leftarrow \theta_j + y_i x_{ij}$$

(only upon misclassification)

Perceptron Rule: If x_i is misclassified, do $\theta \leftarrow \theta + y_i x_i$

Online Perceptron

```
Let \theta \leftarrow [0,0,...,0]
Repeat:
Receive training example (x_i,y_i)
If y_i\theta^Tx_i \leq 0 // prediction is incorrect \theta \leftarrow \theta + y_i x_i
Until stopping condition
```

Online learning – the learning mode where the model update is performed each time a single observation is received

Batch learning – the learning mode where the model update is performed after observing the entire training set

Batch Perceptron

```
Let \theta \leftarrow [0,0,...,0]

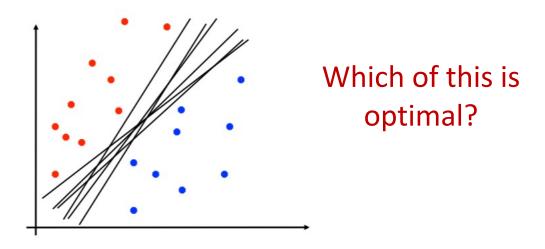
Repeat: \Delta = [0,0,...,0]

For i=1 to N // Consider all training examples \text{If } y_i \theta^T x_i \leq 0 \qquad \text{// Prediction is incorrect} \Delta \leftarrow \Delta + y_i \ x_i. \qquad \text{// Accumulate all errors} \theta \leftarrow \theta + \frac{\Delta}{N} \qquad \text{// Parameter update rule} Until stopping condition
```

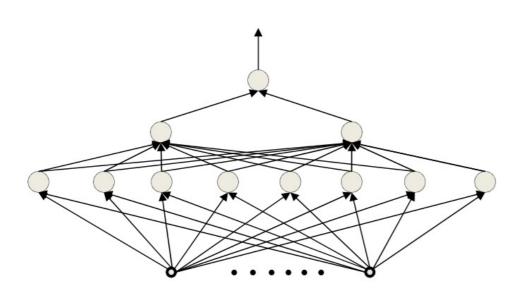
 Guaranteed to find separating hyperplane if data is linearly separable

Perceptron Limitations

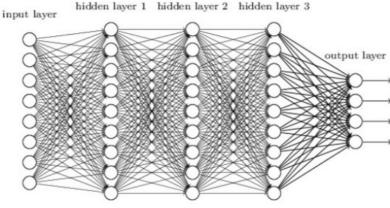
- Is dependent on starting point
- It could take many steps for convergence
- Perceptron can overfit
 - Move the decision boundary for every example
- It is a linear model



Multi-Layer Perceptron



Deep neural network

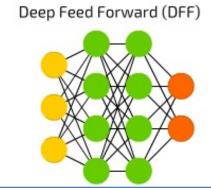


- A network of perceptrons
 - Generally "layered"

Neural Network Architectures

Feed-Forward Networks

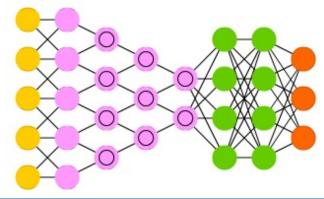
 Neurons from each layer connect to neurons from next layer



Convolutional Networks

- Includes convolution layer for feature reduction
- Learns hierarchical representations

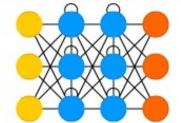
Deep Convolutional Network (DCN)



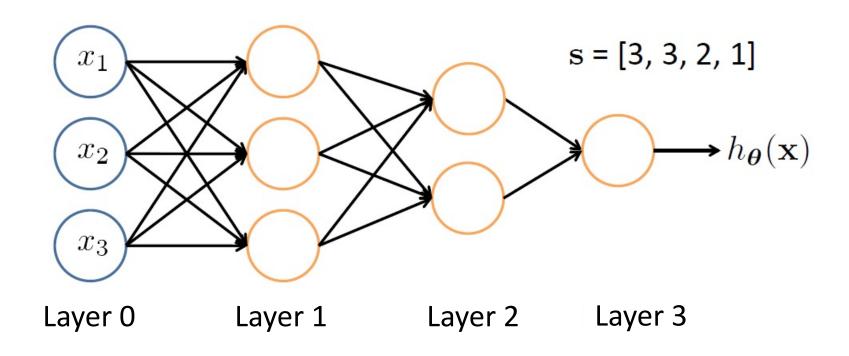
Recurrent Networks

- Keep hidden state
- Have cycles in computational graph

Recurrent Neural Network (RNN)



Feed-Forward Networks



 ${\it L}$ denotes the number of layers

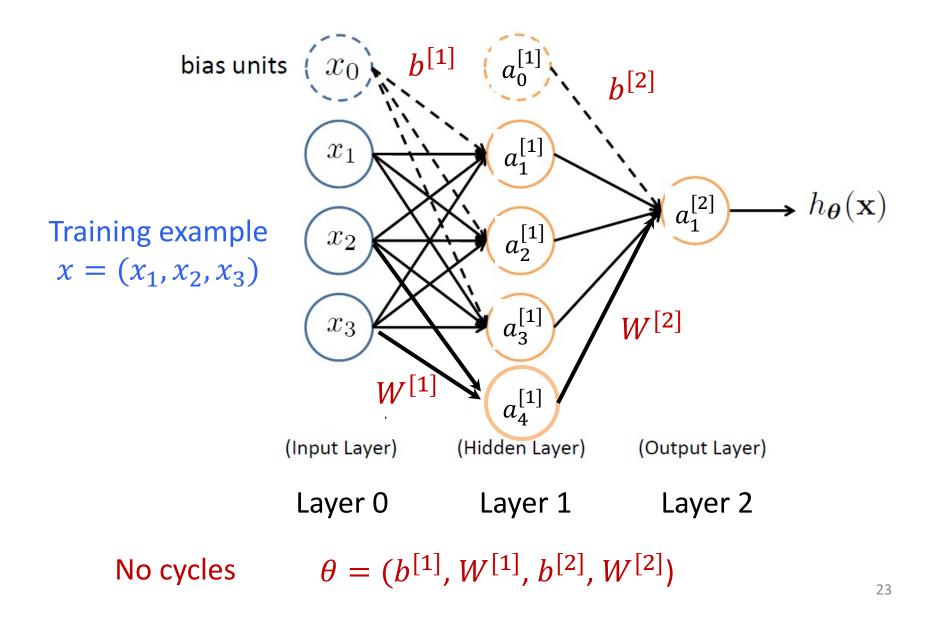
 $\mathbf{s} \in \mathbb{N}^{+L}$ contains the numbers of nodes at each layer

- Not counting bias units
- Typically, $s_0=d$ (# input features) and $s_{L-1}=K$ (# classes)

Feed-Forward NN

- Hyper-parameters
 - Number of layers
 - Architecture (how layers are connected)
 - Number of hidden units per layer
 - Number of units in output layer
 - Activation functions
- Other
 - Initialization
 - Regularization

Feed-Forward Neural Network



Vectorization: First Layer

$$z_1^{[1]} = W_1^{[1]} \quad x + b_1^{[1]} \quad \text{and} \quad a_1^{[1]} = g(z_1^{[1]})$$

$$\vdots \qquad \qquad \vdots \qquad \vdots$$

$$z_4^{[1]} = W_4^{[1]} \quad x + b_4^{[1]} \quad \text{and} \quad a_4^{[1]} = g(z_4^{[1]})$$

$$\underbrace{\begin{bmatrix} z_1^{[1]} \\ \vdots \\ \vdots \\ z_4^{[1]} \end{bmatrix}}_{z^{[1]} \in \mathbb{R}^{4 \times 1}} = \underbrace{\begin{bmatrix} -W_1^{[1]} \\ -W_2^{[1]} \\ \vdots \\ -W_4^{[1]} \end{bmatrix}}_{W^{[1]} \in \mathbb{R}^{4 \times 3}} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{x \in \mathbb{R}^{3 \times 1}} + \underbrace{\begin{bmatrix} b_1^{[1]} \\ b_2^{[1]} \\ \vdots \\ b_4^{[1]} \end{bmatrix}}_{b^{[1]} \in \mathbb{R}^{4 \times 1}}$$

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

 $a^{[1]} = g(z^{[1]})$

Linear

Non-Linear

Vectorization: Second Layer

Output layer

$$z_1^{[2]} = W_1^{[2]T} a^{[1]} + b_1^{[2]}$$
 and $a_1^{[2]} = g(z_1^{[2]})$

12 21 22 2 121

$$\underbrace{z^{[2]}}_{1\times 1} = \underbrace{W^{[2]}}_{1\times 4} \underbrace{a^{[1]}}_{4\times 1} + \underbrace{b^{[2]}}_{1\times 1} \quad \text{and} \quad \underbrace{a^{[2]}}_{1\times 1} = g(\underbrace{z^{[2]}}_{1\times 1})$$

Hidden Units

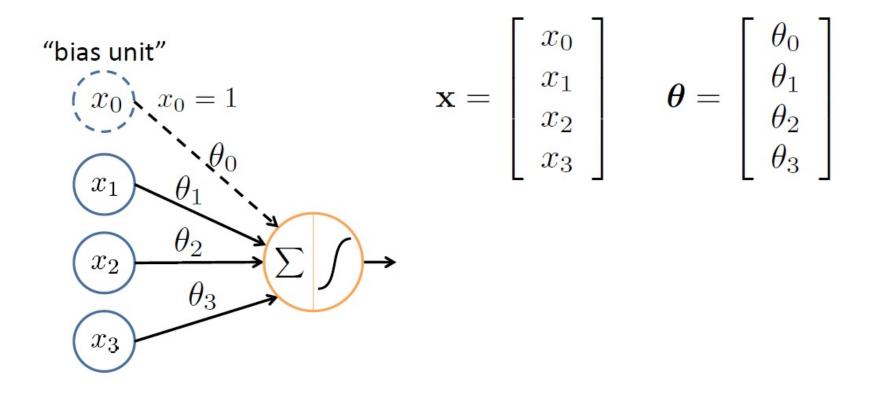
Layer 1

- First hidden unit:
 - Linear: $z_1^{[1]} = W_1^{[1]T}x + b_1^{[1]}$
 - Non-linear: $a_1^{[1]} = g(z_1^{[1]})$
- **—** ...
- Fourth hidden unit:
 - Linear: $z_4^{[1]} = W_4^{[1]T}x + b_4^{[1]}$
 - Non-linear: $a_4^{[1]} = g(z_4^{[1]})$

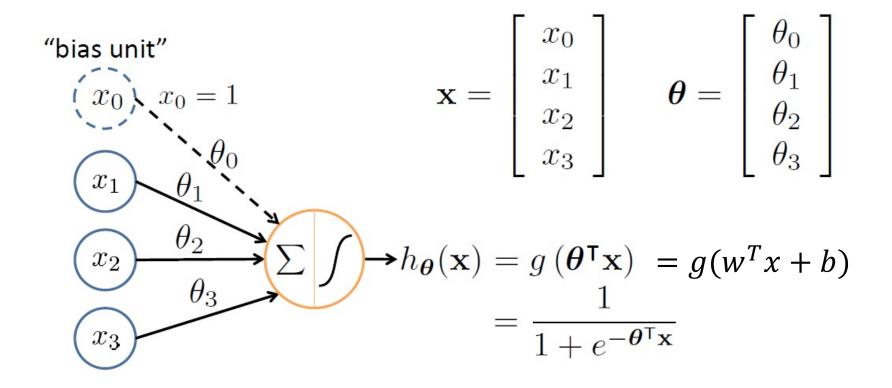
Terminology

- $-a_i^{[j]}$ Activation of unit i in layer j
- g Activation function
- $-W^{[j]}$ Weight matrix controlling mapping from layer j-1 to j
- $-b^{[j]}$ Bias vector from layer j-1 to j

Logistic Unit: A simple NN



Logistic Unit: A simple NN

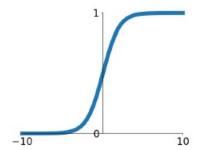


Sigmoid (logistic) activation function:
$$g(z) = \frac{1}{1 + e^{-z}}$$

Non-Linear Activation Functions

Sigmoid

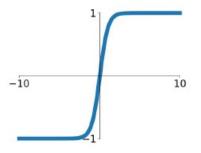
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



Binary Classification

tanh

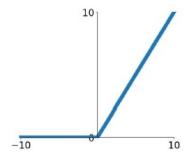
tanh(x)



Regression

ReLU

 $\max(0,x)$



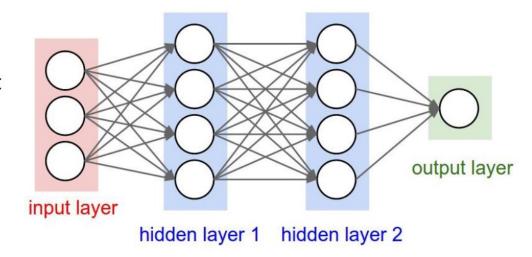
Intermediary layers

Training Neural Networks

- Input training dataset D
 - Number of features: d
 - Labels from K classes
- First layer has d+1 units (one per feature and bias)
- Output layer has K units
- Training procedure determines parameters that optimize loss function
 - Backpropagation
 - Learn optimal $W^{[i]}$, $b^{[i]}$ at layer i
- Evaluation of a point done by forward propagation

Forward Propagation

- The input neurons first receive the data features of the object. After processing the data, they send their output to the first hidden layer.
- The hidden layer processes this output and sends the results to the next hidden layer.
- This continues until the data reaches the final output layer, where the output value determines the object's classification.
- This entire process is known as Forward Propagation, or Forward prop.



x — Prediction