DS 4400

Machine Learning and Data Mining I Spring 2022

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Announcements

- HW 4 is out, will be due on April 8
 - Decision trees, ensembles, Naïve Bayes
- Project milestone is due on April 13
 - Template in Gradescope
 - We would like to see at least one trained ML model
 - Discuss any challenges
- Experential AI opening on April 6
 - Poster session 12-4pm, needs registration
 - I will present on AI in Cybersecurity at 3pm
 - PhD student Giorgio Severi will give the lecture and tutorial on language models

Outline

- Ensemble learning
- Boosting
 - AdaBoost
 - Properties of boosting
 - Bagging vs Boosting
- Introduction to deep learning
 - History of deep learning
 - Perceptron and limitations

Ensemble Learning

Consider a set of classifiers h_1 , ..., h_L

Idea: construct a classifier $H(\mathbf{x})$ that combines the individual decisions of $h_1, ..., h_L$

- e.g., could have the member classifiers vote, or
- e.g., could use different members for different regions of the instance space

Successful ensembles require diversity

- Classifiers should make different mistakes
- Can have different types of base learners

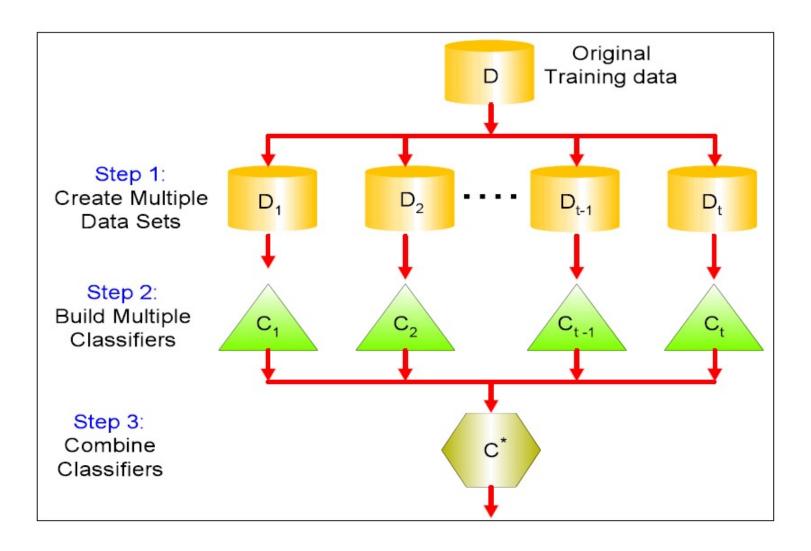
How to Achieve Diversity

- Avoid overfitting
 - Randomize the training data
- Features are noisy
 - Randomize the set of features

Two main ensemble learning methods

- Bagging
- Boosting

Bagging



Random Forests

- Ensemble method specifically designed for decision tree classifiers
- Introduce two sources of randomness: "Bagging" and "Random input vectors"
 - Bagging method: each tree is grown using a bootstrap sample of training data
 - Random vector method: At each node, best split is chosen from a random sample of m attributes instead of all attributes

- A meta-learning algorithm with great theoretical and empirical performance
- Turns a base learner (i.e., a "weak hypothesis") into a high performance classifier
- Creates an ensemble of weak hypotheses by repeatedly emphasizing mispredicted instances

Adaptive Boosting Freund and Schapire 1997

Overview of AdaBoost

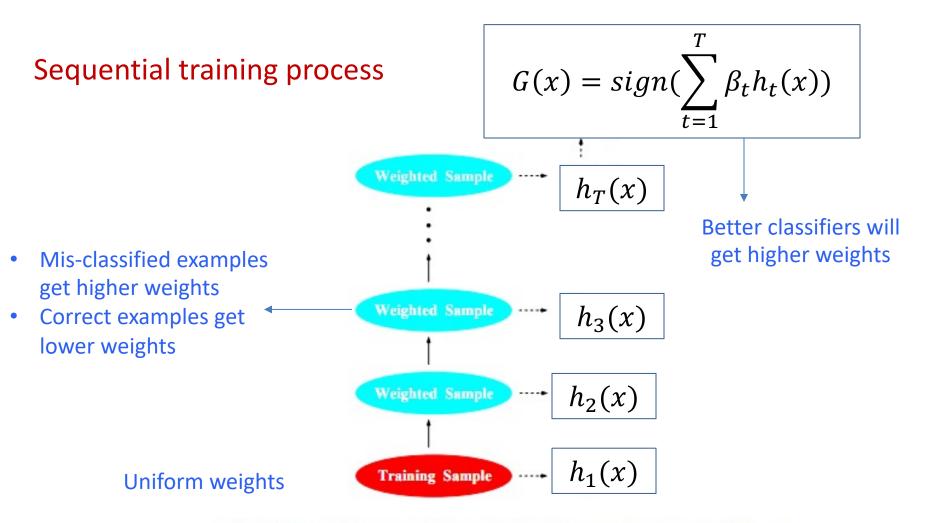


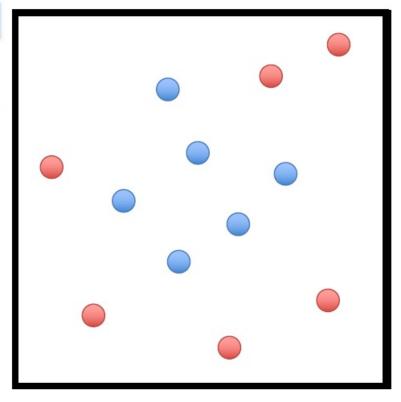
FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted versions of the dataset, and then combined to produce a final prediction.

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



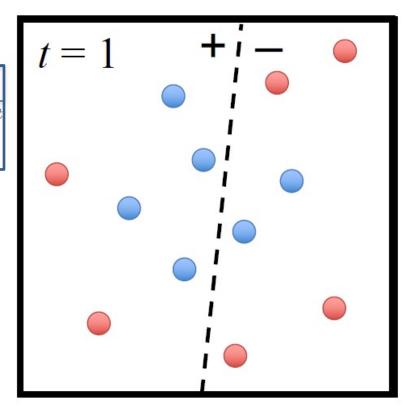
Size of point represents the instance's weight

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



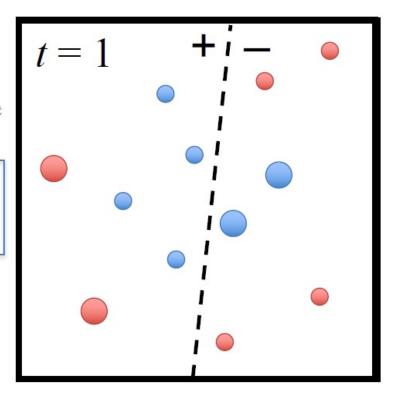
- β_t measures the importance of h_t
- If $\epsilon_t \leq 0.5$, then $\beta_t \geq 0$

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



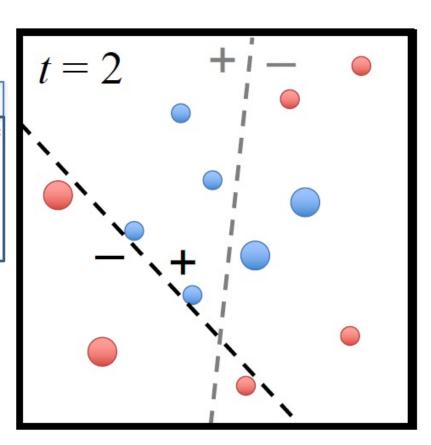
- Weights of correct predictions are multiplied by $\,e^{-eta_t} \leq 1\,$
- Weights of incorrect predictions are multiplied by $\,e^{eta_t} \geq 1\,$

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



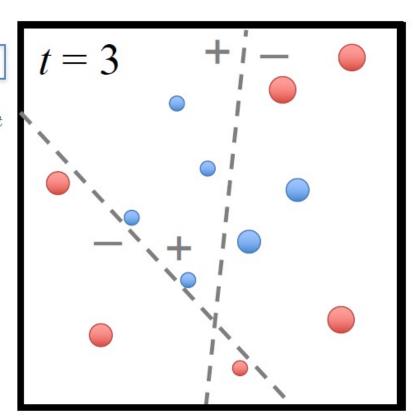
- Compute importance of hypothesis β_t
- Update weights w_t

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

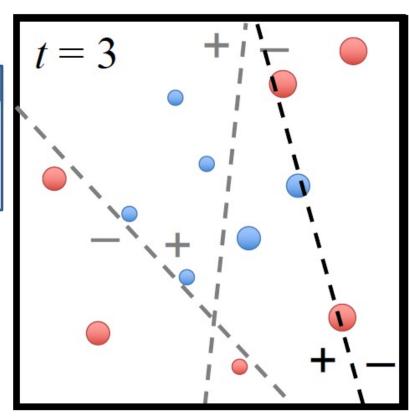


- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



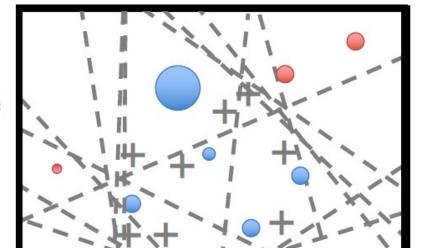
- Compute importance of hypothesis β_t
- Update weights w_t

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



t = T

- Final model is a weighted combination of members
 - Each member weighted by its importance

INPUT: training data
$$X, y = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$$
, the number of iterations T

- 1: Initialize a vector of n uniform weights $\mathbf{w}_1 = \left[\frac{1}{n}, \dots, \frac{1}{n}\right]$
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with instance weights \mathbf{w}_t
- 4: Compute the weighted training error rate of h_t :

$$\epsilon_t = \sum_{i: y_i \neq h_t(\mathbf{x}_i)} w_{t,i}$$

- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp(-\beta_t y_i h_t(\mathbf{x}_i)) \quad \forall i = 1, \dots, n$$

7: Normalize \mathbf{w}_{t+1} to be a distribution:

$$w_{t+1,i} = \frac{w_{t+1,i}}{\sum_{j=1}^{n} w_{t+1,j}} \quad \forall i = 1, \dots, n$$

- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

Train with Weighted Instances

- For algorithms like logistic regression, can simply incorporate weights w into the cost function
 - Essentially, weigh the cost of misclassification differently for each instance

$$J_{\text{reg}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} w_i \left[y_i \log h_{\boldsymbol{\theta}}(\mathbf{x}_i) + (1 - y_i) \log \left(1 - h_{\boldsymbol{\theta}}(\mathbf{x}_i) \right) \right] + \lambda \|\boldsymbol{\theta}_{[1:d]}\|_2^2$$

- For algorithms that don't directly support instance weights (e.g., ID3 decision trees, etc.), use weighted bootstrap sampling
 - Form training set by resampling instances with replacement according to w

Properties

- If a point is repeatedly misclassified
 - Its weight is increased every time
 - Eventually it will generate a hypothesis that correctly predicts it
- In practice AdaBoost does not typically overfit
- Does not use explicitly regularization

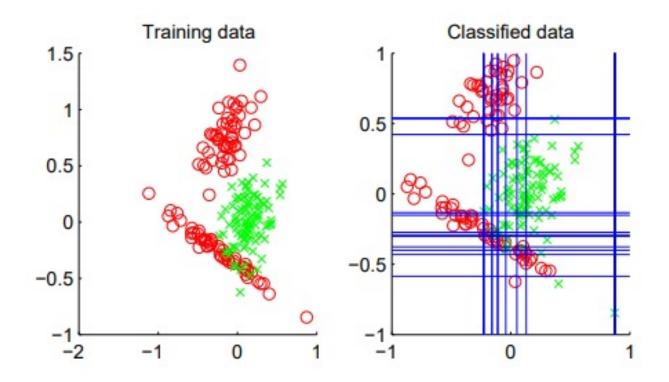
Base Learner Requirements

- AdaBoost works best with "weak" learners
 - Should not be complex
 - Typically high bias classifiers
 - Works even when weak learner has an error rate just slightly under 0.5 (i.e., just slightly better than random)
 - Can prove training error goes to 0 in O(log n) iterations

Examples:

- Decision stumps (1 level decision trees)
- Depth-limited decision trees
- Linear classifiers

AdaBoost with Decision Stumps



AdaBoost in Practice

Strengths:

- Fast and simple to program
- No parameters to tune (besides T) Learn with Cross-Validation
- No assumptions on weak learner Error less than ½

When boosting can fail:

- Given insufficient data
- Overly complex weak hypotheses
- Can be susceptible to noise
- When there are a large number of outliers

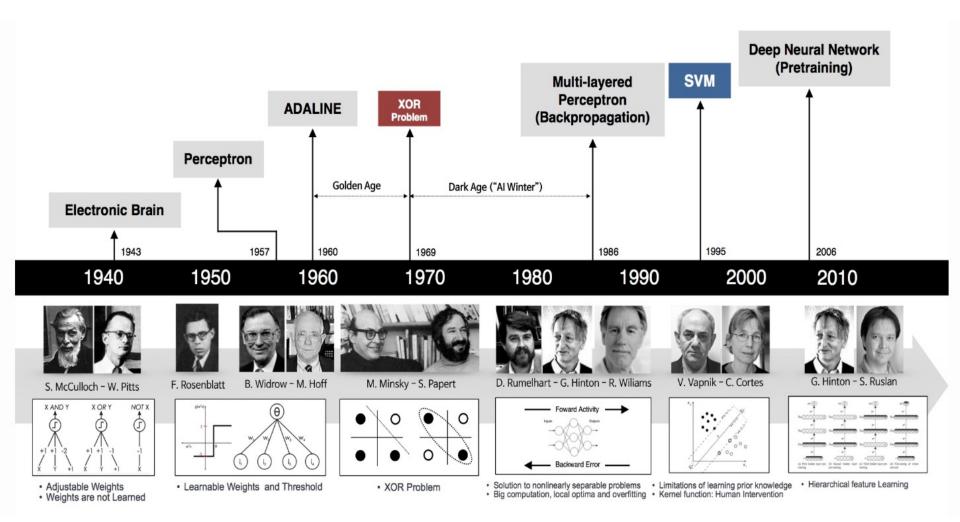
Bagging vs Boosting

Bagging	vs.	Boosting
Resamples data points		Reweights data points (modifies their distribution)
Weight of each classifier is the same		Weight is dependent on classifier's accuracy
Only variance reduction		Both bias and variance reduced – learning rule becomes more complex with iterations
Applicable to complex models with low bias, high variance		Applicable to weak models with high bias, low variance

Review

- Ensemble learning are powerful learning methods
 - Better accuracy than standard classifiers
- Bagging uses bootstrapping (with replacement), trains T models, and averages their prediction
 - Random forests vary training data and feature set at each split
- Boosting is an ensemble of T weak learners that emphasizes mis-predicted examples
 - AdaBoost has great theoretical and experimental performance
 - Can be used with linear models or simple decision trees (stumps, fixed-depth decision trees)

History of Deep Learning



References

- Deep Learning books
 - https://d2l.ai/ (D2L)
 - https://www.deeplearningbook.org/ (advanced)
- Stanford notes on deep learning
 - http://cs229.stanford.edu/summer2020/cs229notes-deep_learning.pdf