DS 4400

Machine Learning and Data Mining I Spring 2022

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Announcements

- Final Project
 - Feedback for proposal posted on Gradescope
 - Project milestone due on April 13
 - Report your progress and receive feedback
 - Project video recording (5 minute presentation)
 due on May 2
 - Project report due on May 2 (6-8 pages)

General Feedback

- ML problem
 - Make sure you define if it's a classification or regression setting
 - Pay attention to metrics
 - Regression: MSE, R2
 - Classification: accuracy, precision, recall, F1, AUC
 - Plot ROC curves
- Feature engineering and selection
 - If feature space is small (<50), you might not need feature selection
 - Text representation:
 - Bag-of-Word, TF-IDF (Need feature selection)
 - Word embedding (word2vec, Glove)
 - If dimension is small, can you extract new features from dataset?

General Feedback: ML Models

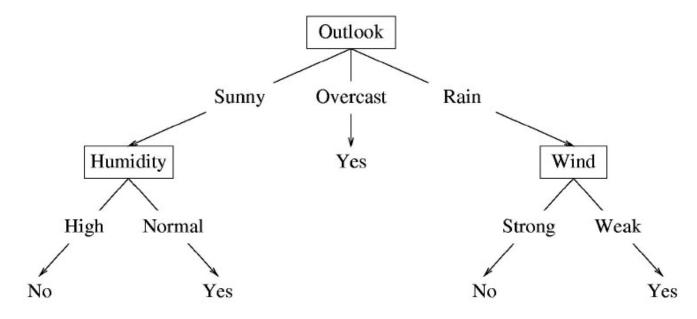
- Use a mix of linear and non-linear (more advanced models)
- Everyone should use an ensemble model or a neural network
- Recommendations:
 - Logistic regression for linear classifier (baseline), use Lasso regularization if number of features is large
 - Use one of SVM, decision trees, or Naïve Bayes (DT and NB if categorical features); Not recommend kNN
 - Use an ensemble model: bagging (random forest) or boosting (gradient boosting); look at variable importance for analysis of feature contributions
 - If features do not have semantic locality, can use a MLP -multi-layer perceptron (i.e., feed-forward neural network)
 - If image classification, use Convolutional Neural Networks (CNNs)
 - High computational complexity (need GPU access)
 - Can use pre-trained models and fine tune on your task

Outline

- Decision trees
 - Information gain / entropy measures
 - Training algorithm
 - Example
- Ensemble models
 - Bagging
 - Boosting

Decision Tree

A possible decision tree for the data:

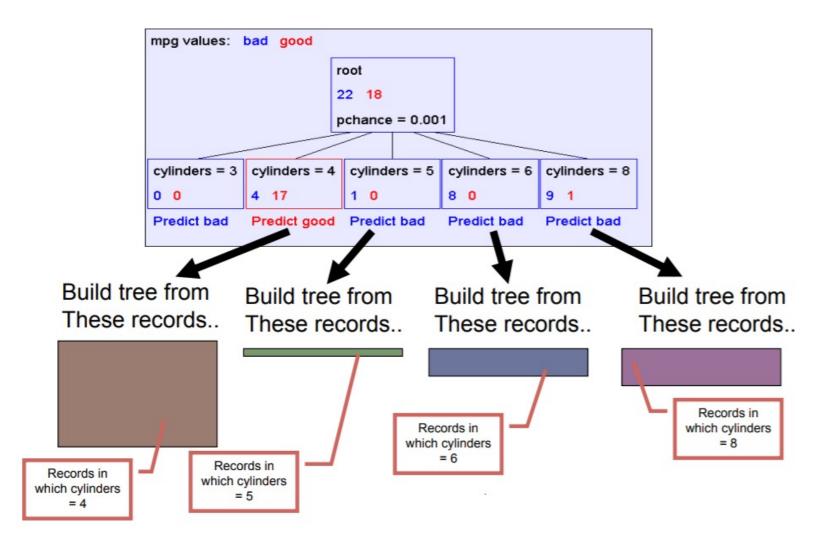


- Each internal node: test one attribute X_i
- Each branch from a node: selects one value for X_i
- Each leaf node: predict Y (or $p(Y \mid x \in \text{leaf})$)

Learning Decision Trees

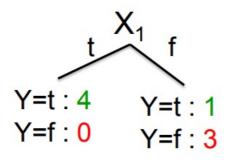
- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse

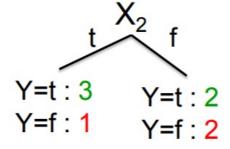
Key Idea: Use Recursion Greedily



Splitting

Would we prefer to split on X_1 or X_2 ?





X ₁	X ₂	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

Entropy

Suppose X can have one of m values... V_{1} , V_{2} , ... V_{m}

$$P(X=V_1) = p_1$$
 $P(X=V_2) = p_2$ $P(X=V_m) = p_m$

What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X's distribution? It's

$$H(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_m \log_2 p_m$$
$$= -\sum_{j=1}^m p_j \log_2 p_j$$

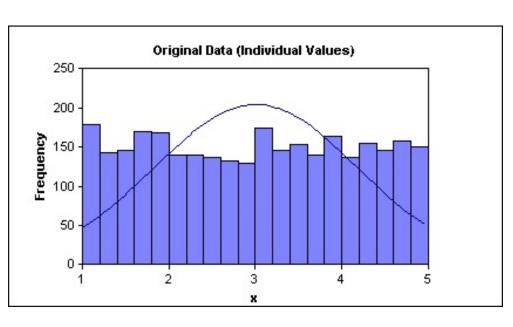
H(X) = The entropy of X

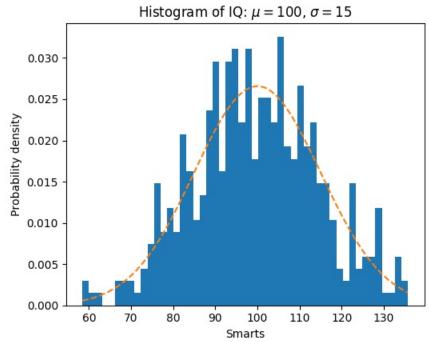
- "High Entropy" means X is from a uniform (boring) distribution
- "Low Entropy" means X is from varied (peaks and valleys) distribution

Entropy Examples

High/Low Entropy

Which distribution has high entropy?





Suppose I'm trying to predict output Y and I have input X

X = College Major

Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Let's assume this reflects the true probabilities

E.G. From this data we estimate

Note:

•
$$H(X) = 1.5$$

$$\bullet H(Y) = 1$$

X = College Major

Y = Likes "Gladiator"

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Specific Conditional Entropy:

H(Y|X=v) = The entropy of Yamong only those records in which X has value V

Example:

•
$$H(Y|X=Math) = 1$$

•
$$H(Y|X=History) = 0$$

$$\bullet \ H(Y|X=CS)=0$$

X = College Major

Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Conditional Entropy:

H(Y|X) = The average specific conditional entropy of Y

- = if you choose a record at random what will be the conditional entropy of *Y*, conditioned on that row's value of *X*
- = Expected number of bits to transmit Y if both sides will know the value of X

$$= \sum_{j} Prob(X=v_{j}) H(Y \mid X=v_{j})$$

X = College Major Y = Likes "Gladiator"

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Conditional Entropy:

H(Y|X) = The average conditional entropy of Y

$$= \sum_{j} Prob(X=v_j) H(Y \mid X=v_j)$$

Example:

V_j	$Prob(X=v_j)$	$H(Y \mid X = v_j)$
Math	0.5	1
History	0.25	0
CS	0.25	0

$$H(Y|X) = 0.5 * 1 + 0.25 * 0 + 0.25 * 0 = 0.5$$

Information Gain

X = College Major

Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Information Gain:

IG(Y|X) = I must transmit Y. How many bits on average would it save me if both ends of the line knew X?

$$IG(Y|X) = H(Y) - H(Y|X)$$

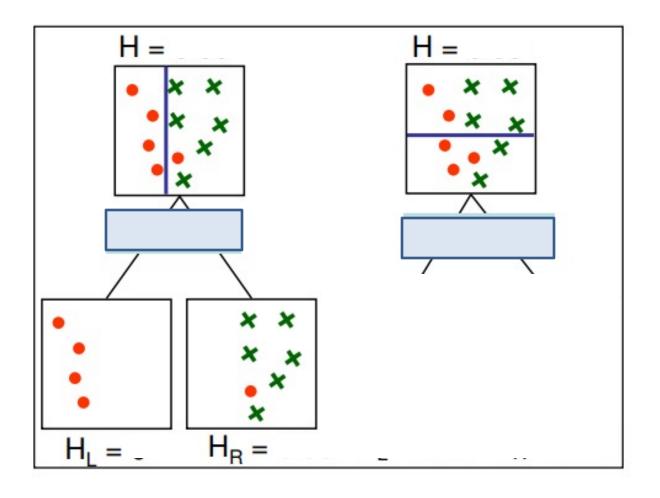
Example:

- H(Y) = 1
- H(Y|X) = 0.5
- Thus IG(Y|X) = 1 0.5 = 0.5

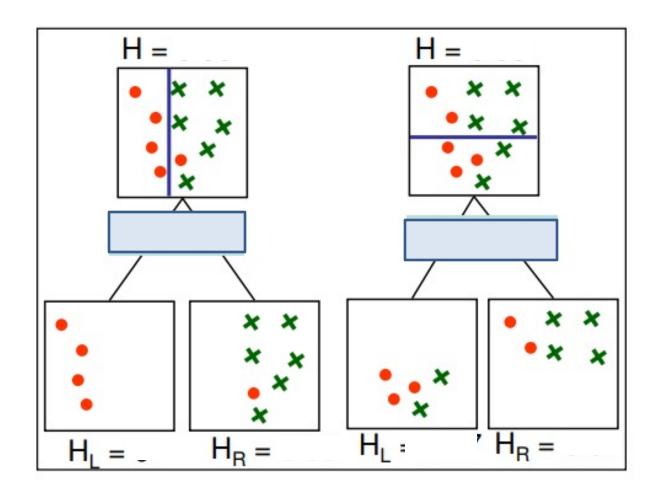
Relevance for decision trees

- Multiple features $X_1, ..., X_d$
- Label Y: Initial entropy H(Y)
- How much each feature X_i helps explain uncertainty in Y
 - Compute Information gain $IG(Y|X_i) = H(Y) H(Y|X_i)$
- Select feature that maximizes IG
- Then recurse on the remaining set of features

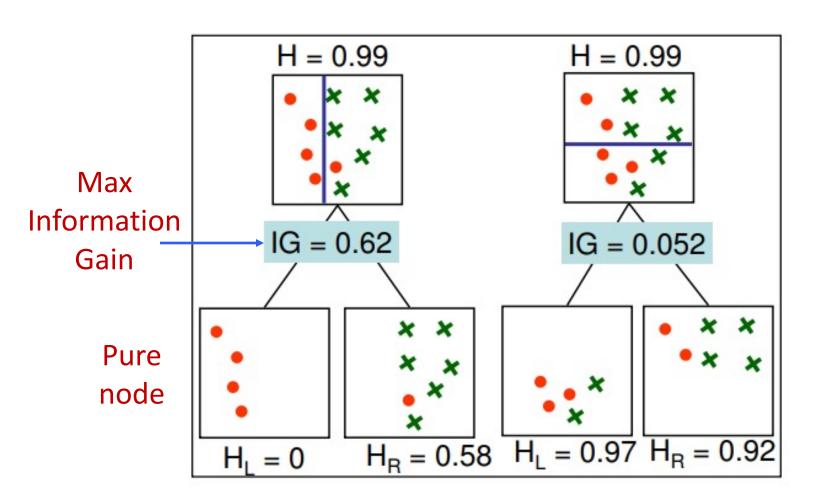
Example Information Gain



Example Information Gain



Example Information Gain



Learning Decision Trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

$$\arg\max_{i} IG(X_{i}) = \arg\max_{i} H(Y) - H(Y \mid X_{i})$$

Recurse

ID3 algorithm uses Information Gain Information Gain reduces uncertainty on Y

Impurity Metrics

Split a node according to max reduction of impurity

1. Entropy

2. Gini Index

– For binary case with prob p_0 , p_1 :

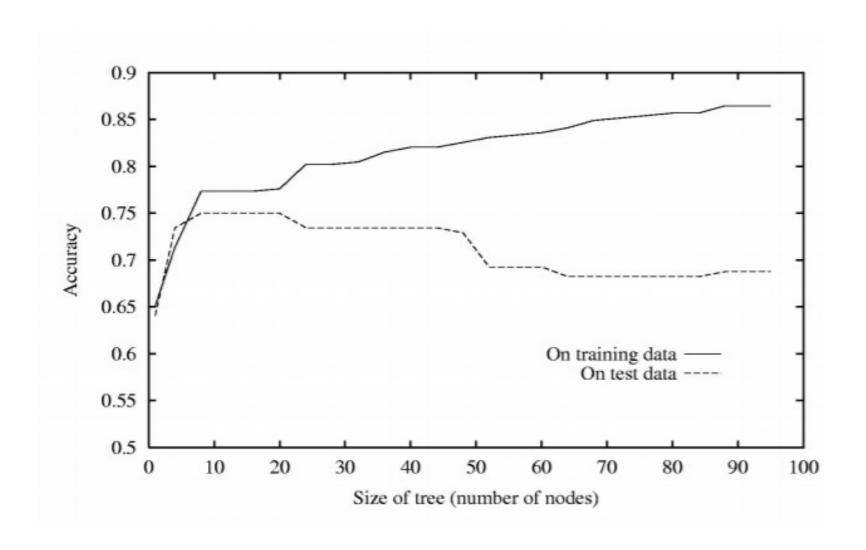
$$I(p_0, p_1) = 2p_0p_1 = 2p_0(1 - p_0)$$

– For multi-class with prob $p_1, ..., p_K$:

$$I(p_1, ... p_K) = \sum_{i=1}^{K} p_i (1 - p_i)$$

- Properties
 - Impurity metrics have value 0 for pure nodes
 - Impurity metrics are maximized for uniform distribution (nodes with most uncertainty)

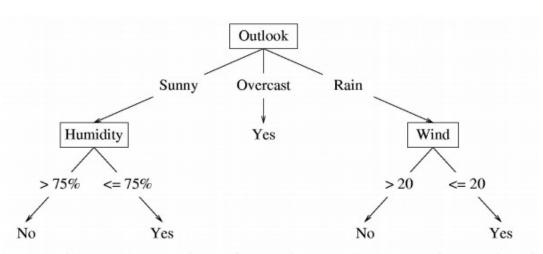
Overfitting



Solutions against Overfitting

- Standard decision trees have no learning bias
 - Training set error is always zero!
 - (If there is no label noise)
 - Lots of variance
 - Must introduce some bias towards simpler trees
- Many strategies for picking simpler trees
 - Fixed depth
 - Minimum number of samples per leaf
- Pruning
 - Remove branches of the tree that increase error using cross-validation

Real-valued Features

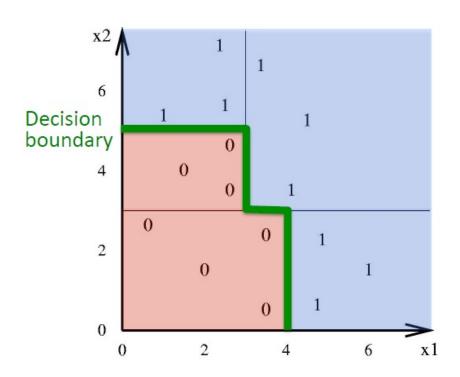


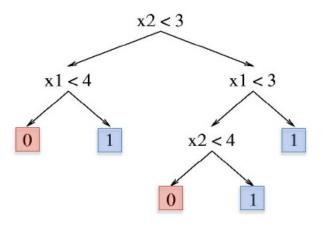
- Change to binary splits by choosing a threshold
- One method:
 - Sort instances by value, identify adjacencies with different classes

Choose among splits by InfoGain()

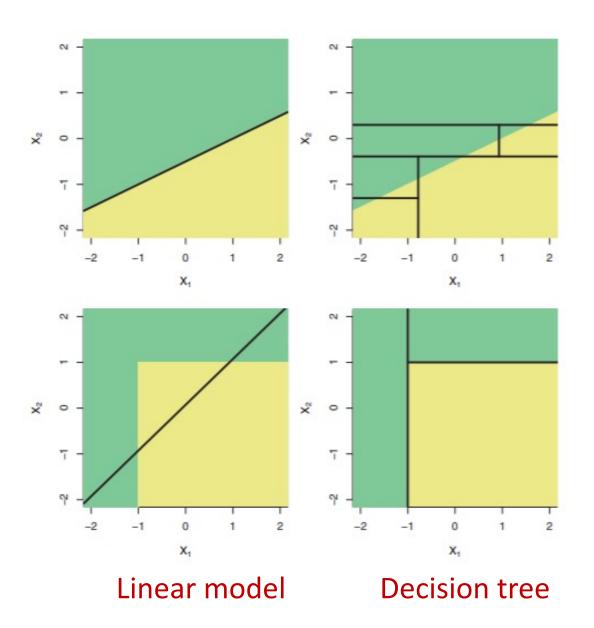
Decision Boundary

- Decision trees divide the feature space into axisparallel (hyper-)rectangles
- Each rectangular region is labeled with one label

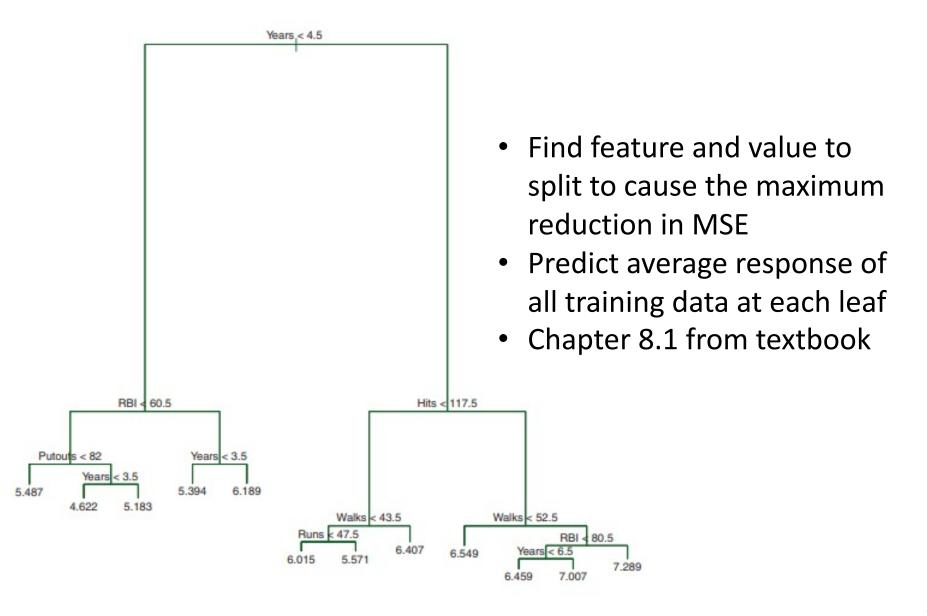




Decision Trees vs Linear Models



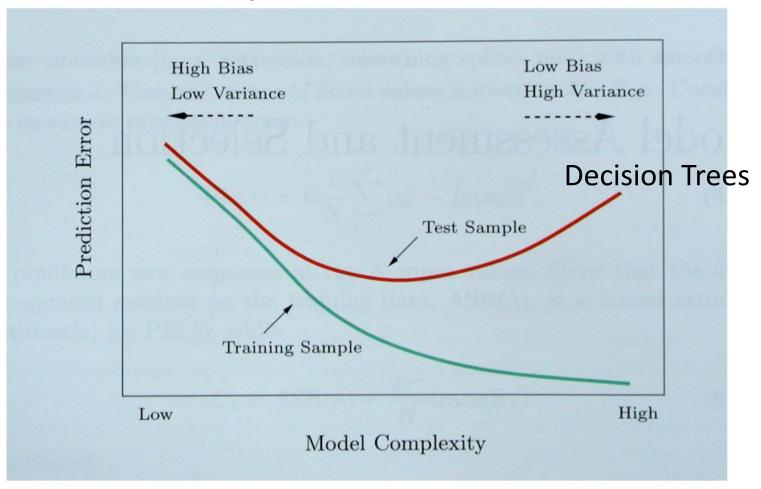
Regression Trees



Summary Decision Trees

- Greedy method for training
 - Not based on optimization or probabilities
- Uses impurity metric (e.g., information gain or Gini index) for splitting
- Advantages
 - Interpretability of decisions
- Limitations
 - Decision trees are prone to overfitting
 - Can be addressed by pruning or using ensembles of decision trees

Bias/Variance Tradeoff



Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

How to reduce variance of single decision tree?

Ensemble Learning

Consider a set of classifiers h_1 , ..., h_L

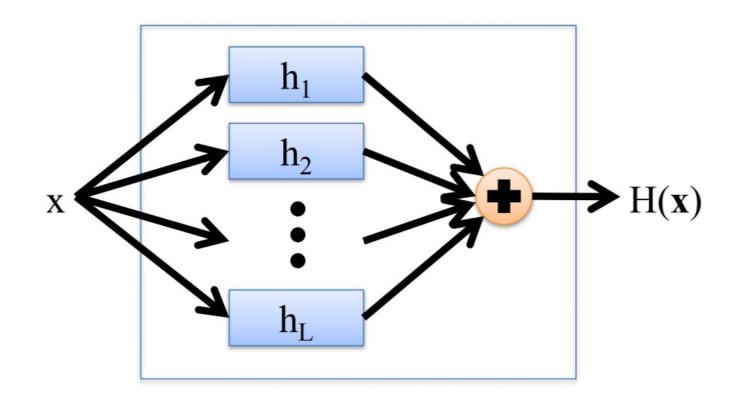
Idea: construct a classifier $H(\mathbf{x})$ that combines the individual decisions of $h_1, ..., h_L$

- e.g., could have the member classifiers vote, or
- e.g., could use different members for different regions of the instance space

Successful ensembles require diversity

- Classifiers should make different mistakes
- Can have different types of base learners

Combining Classifiers: Averaging



Final hypothesis is a simple vote of the members

Practical Applications

Goal: predict how a user will rate a movie

- Based on the user's ratings for other movies
- and other peoples' ratings
- with no other information about the movies

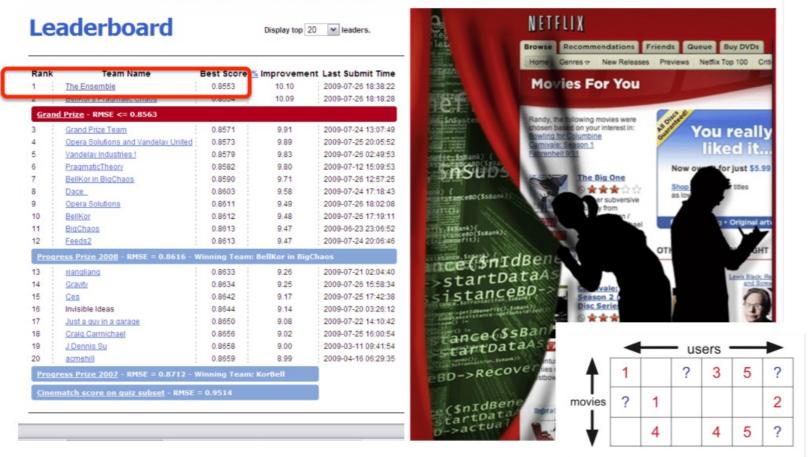
This application is called "collaborative filtering"

Netflix Prize: \$1M to the first team to do 10% better then Netflix' system (2007-2009)

Winner: BellKor's Pragmatic Chaos – an ensemble of more than 800 rating systems

Netflix Prize

Machine learning competition with a \$1 million prize



Reduce Variance

Averaging reduces variance:

$$Var(\overline{X}) = \frac{Var(X)}{N}$$
 (when predictions are independent)

Average models to reduce model variance One problem:

only one training set

where do multiple models come from?

How to Achieve Diversity

- Avoid overfitting
 - Vary the training data
- Features are noisy
 - Vary the set of features

Two main ensemble learning methods

- Bagging (e.g., Random Forests)
- Boosting (e.g., AdaBoost)