DS 4400

Machine Learning and Data Mining I Spring 2022

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Outline

- Evaluation of classifiers
 - Accuracy, error, precision, recall
 - ROC curves and the AUC metric
 - Why multiple metrics

- Generative classifiers
- Linear Discriminant Analysis (LDA)
- Midterm exam review

Classifier Evaluation

- Classification is a supervised learning problem
 - Prediction is binary or multi-class
- Classification techniques
 - Linear classifiers
 - Logistic regression (probabilistic interpretation)
 - Instance learners
 - kNN: need to store entire training data
- Cross-validation should be used for parameter selection and estimation of model error

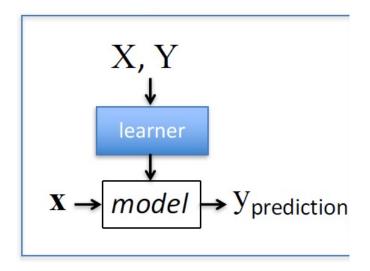
Evaluation of classifiers

Given: labeled training data $X, Y = \{\langle \boldsymbol{x}_i, y_i \rangle\}_{i=1}^n$

• Assumes each $oldsymbol{x}_i \sim \mathcal{D}(\mathcal{X})$

Train the model:

 $model \leftarrow classifier.train(X, Y)$



Apply the model to new data:

• Given: new unlabeled instance $x \sim \mathcal{D}(\mathcal{X})$ $y_{\mathsf{prediction}} \leftarrow \mathit{model}.\mathsf{predict}(\mathbf{x})$

Classification Metrics

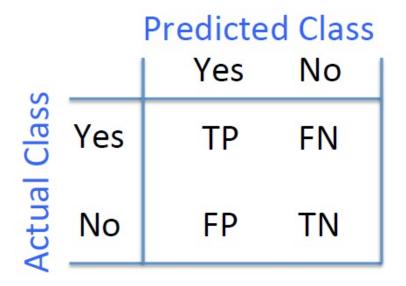
$$accuracy = \frac{\# correct predictions}{\# instances}$$

$$error = 1 - accuracy = \frac{\# incorrect predictions}{\# instances}$$

- Can evaluate on both training or testing
- Training set accuracy and error
- Testing set accuracy and error

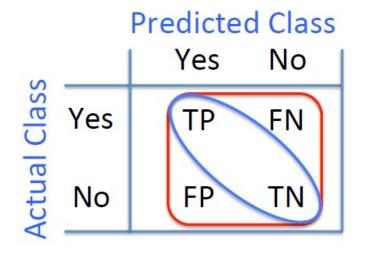
Confusion Matrix

Given a dataset of P positive instances and N negative instances:

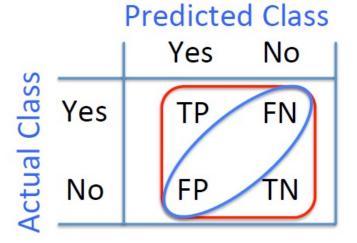


Accuracy and Error

Given a dataset of P positive instances and N negative instances:



$$accuracy = \frac{TP + TN}{P + N}$$

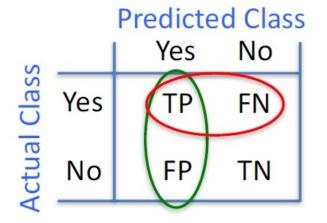


error =
$$1 - \frac{TP + TN}{P + N}$$

= $\frac{FP + FN}{P + N}$

Confusion Matrix

• Given a dataset of P positive instances and N negative instances:



$$accuracy = \frac{TP + TN}{P + N}$$

 Imagine using classifier to identify positive cases (i.e., for information retrieval)

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

Probability that classifier predicts positive correctly

Probability that actual class is predicted correctly

Why One Metric is Not Enough

Assume that in your training data, Spam email is 1% of data, and Ham email is 99% of data

- Scenario 1
 - Have classifier always output HAM!
 - What is the accuracy?
- Scenario 2
 - Predict one SPAM email as SPAM, all other emails as legitimate
 - What is the precision? 100%
- Scenario 3
 - Output always SPAM!
 - What is the recall?
 100%

Precision & Recall

Precision

- the fraction of positive predictions that are correct
- P(is pos | predicted pos)

$$precision = \frac{TP}{TP + FP}$$

Recall

- fraction of positive instances that are identified
- P(predicted pos | is pos)

$$recall = \frac{TP}{TP + FN}$$

- You can get high recall (but low precision) by only predicting positive
- Recall is a non-decreasing function of the # positive predictions
- Typically, precision decreases as either the number of positive predictions or recall increases
- Precision & recall are widely used in information retrieval

F-Score

Combined measure of precision/recall tradeoff

$$F_1 = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

- This is the harmonic mean of precision and recall
- In the F₁ measure, precision and recall are weighted evenly
- Can also have biased weightings that emphasize either precision or recall more ($F_2 = 2 \times \text{recall}$; $F_{0.5} = 2 \times \text{precision}$)
- Limitations:
 - F-measure can exaggerate performance if balance between precision and recall is incorrect for application
 - Don't typically know balance ahead of time

A Word of Caution

Consider binary classifiers A, B, C:

	-	A		В		C		
		1	0	1	0	1	0	
Predictions	1	0.9	0.1	0.8	0	0.78	0	
Fredictions	0	0	0	0.1	0.1	0.12	0.1	

A Word of Caution

Consider binary classifiers A, B, C:

- Clearly A is useless, since it always predicts 1
- B is slightly better than C
 - less probability mass wasted on the off-diagonals
- But, here are the performance metrics:

Metric	A	\mathbf{B}	\mathbf{C}
Accuracy	0.9	0.9	0.88
Precision	0.9	1.0	1.0
Recall	1.0	0.888	0.8667
F-score	0.947	0.941	0.9286

Classifiers can be tuned

- Logistic regression sets by default the threshold at 0.5 for classifying positive and negative instances
- Some applications have strict constraints on false positives (or other metrics)
 - Example: very low false positives in security (spam)

Classifiers can be tuned

- Logistic regression sets by default the threshold at 0.5 for classifying positive and negative instances
- Some applications have strict constraints on false positives (or other metrics)
 - Example: very low false positives in security (spam)
- Solution: choose different threshold

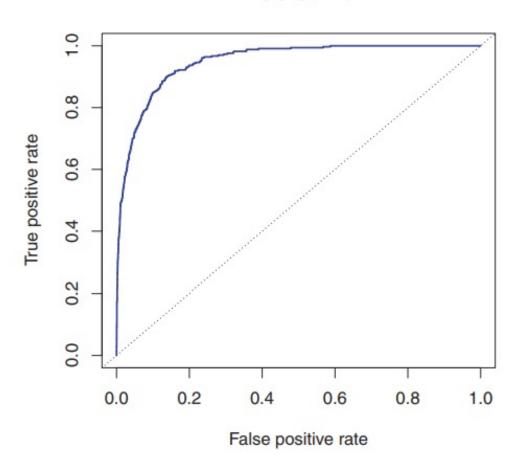
```
Probabilistic model h_{\theta(x)} = P[y = 1|x; \theta]
```

- Predict y = 1 if
$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) \geq \top$$

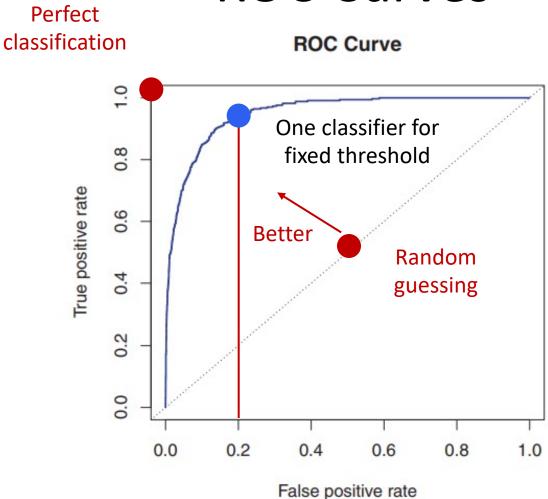
– Predict y = 0 if
$$h_{oldsymbol{ heta}}(oldsymbol{x}) < extstyle ag{T}$$

Higher T, lower FP Lower T, lower FN

ROC Curves



- Receiver Operating Characteristic (ROC)
- Determine operating point (e.g., by fixing false positive rate)

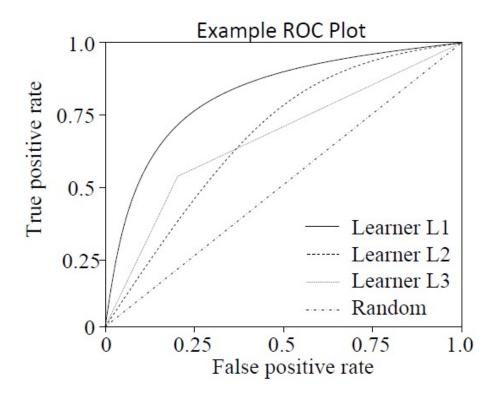


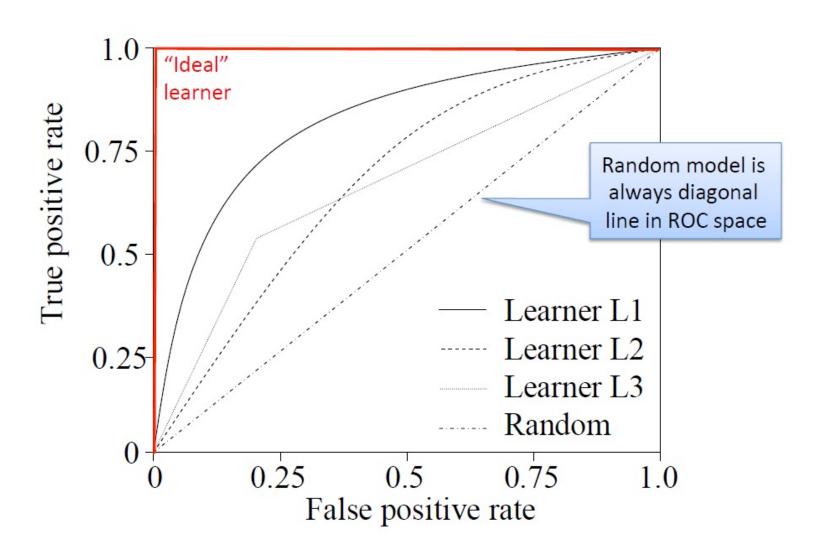
- Receiver Operating Characteristic (ROC)
- Determine operating point (e.g., by fixing false positive rate)

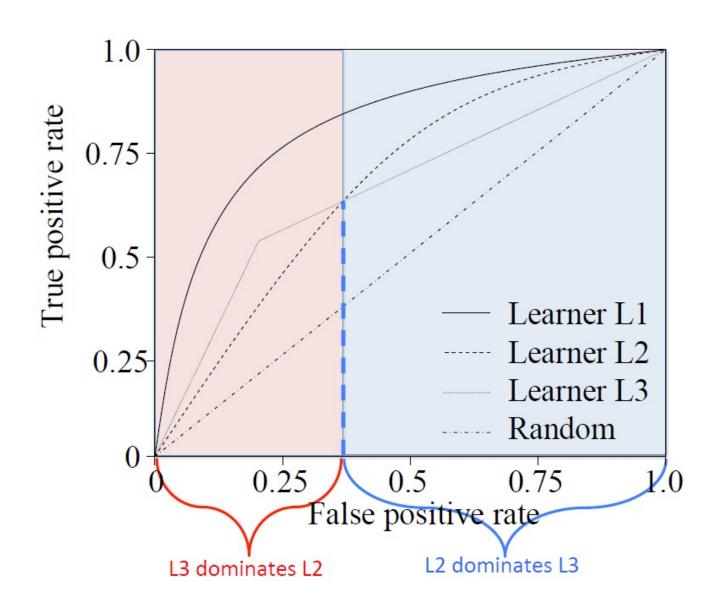
Performance Depends on Threshold

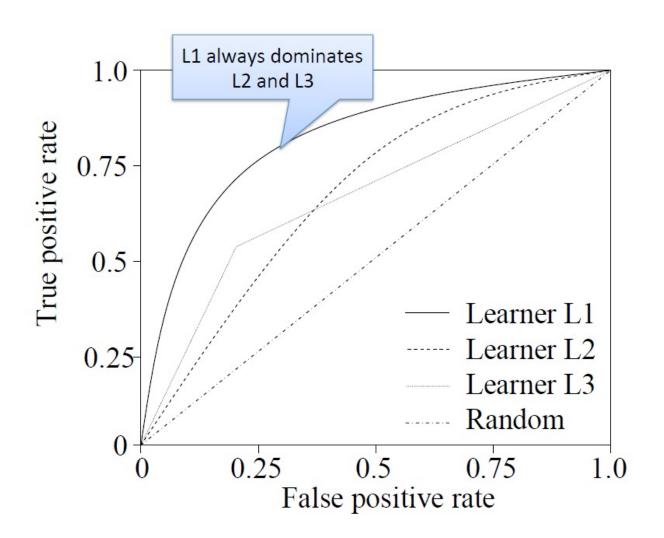
Predict positive if $P(y = 1 \mid \mathbf{x}) > T$ otherwise negative

- Number of TPs and FPs depend on threshold T
- As we vary T we get different (TPR, FPR) points

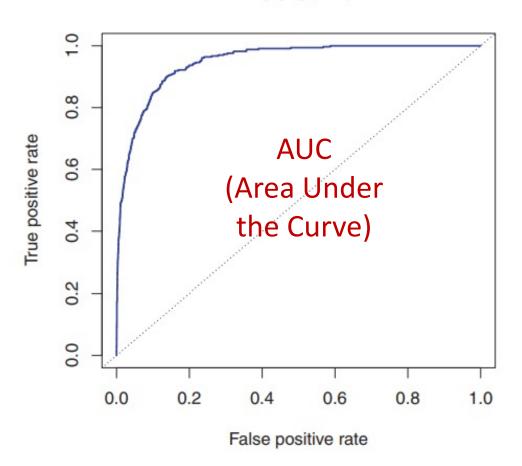








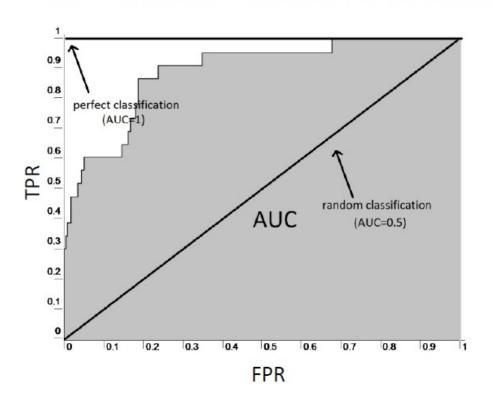
ROC Curves

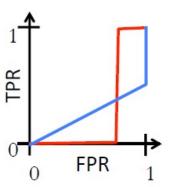


- Another useful metric: Area Under the Curve (AUC)
- The closest to 1, the better!

Area Under the ROC Curve

- Can take area under the ROC curve to summarize performance as a single number
 - Be cautious when you see only AUC reported without a ROC curve; AUC can hide performance issues

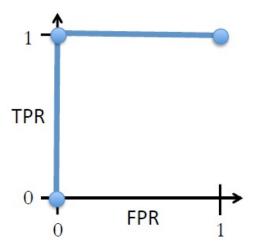




Same AUC, very different performance

i	y_i	$p(y_i = 1 \mid \mathbf{x}_i)$	$h(\mathbf{x_i} \mid \mathbf{T} = 0)$	$h(\mathbf{x_i} \mid 7 = 0.5)$	$h(\mathbf{x_i} \mid T = 1)$
1	1	0.9	1	1	0
2	1	0.8	1	1	0
3	1	0.7	1	1	0
4	1	0.6	1	1	0
5	1	0.5	1	1	0
6	0	0.4	1	0	0
7	0	0.3	1	0	0
8	0	0.2	1	0	0
9	0	0.1	1	0	0
			TPR =	TPR =	$TPR = \hat{\ } \hat{\ }$
			FPR =	FPR =	FPR =

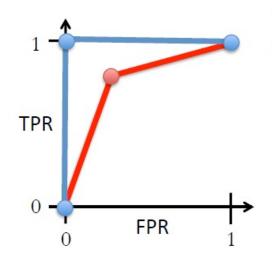
i	y_i	$p(y_i = 1 \mid \mathbf{x}_i)$	$h(\mathbf{x_i} \mid \theta = 0)$	$h(\mathbf{x_i} \mid \theta = 0.5)$	$h(\mathbf{x_i} \mid \theta = 1)$
1	1	0.9	1	1	0
2	1	0.8	1	1	0
3	1	0.7	1	1	0
4	1	0.6	1	1	0
5	1	0.5	1	1	0
6	0	0.4	1	0	0
7	0	0.3	1	0	0
8	0	0.2	1	0	0
9	0	0.1	1	0	0
	<u> </u>	<u> </u>	TDD -/- 1	TIDD ELE 1	TIDD 0/F 0



$$TPR = 5/5 = 1$$
 $TPR = 5/5 = 1$ $TPR = 0/5 = 0$
 $FPR = 4/4 = 1$ $FPR = 0/4 = 0$ $FPR = 0/4 = 0$

i	y_i	$p(y_i = 1 \mid \mathbf{x}_i)$	$h(\mathbf{x_i} \mid \mathbf{T} = 0)$	$h(\mathbf{x_i} \mid T = 0.5)$	$h(\mathbf{x_i} \mid T=1)$
1	1	0.9	1	1	0
2	1	0.8	1	1	0
3	1	0.7	1	1	0
4	1	0.6	1	1	0
5	1	0.2	1	0	0
6	0	0.6	1	1	0
7	0	0.3	1	0	0
8	0	0.2	1	0	0
9	0	0.1	1	0	0
	<u> </u>		TPR =	TPR =	TPR =
			FPR =	FPR =	FPR =

i	y_i	$p(y_i = 1 \mid \mathbf{x}_i)$	$h(\mathbf{x_i} \mid \theta = 0)$	$h(\mathbf{x_i} \mid \theta = 0.5)$	$h(\mathbf{x_i} \mid \theta = 1)$
1	1	0.9	1	1	0
2	1	0.8	1	1	0
3	1	0.7	1	1	0
4	1	0.6	1	1	0
5	1	0.2	1	0	0
6	0	0.6	1	1	0
7	0	0.3	1	0	0
8	0	0.2	1	0	0
9	0	0.1	1	0	0



TPR = 5/5 = 1	TPR = 4/5 = 0.8	TPR = 0/5 = 0
FPR = 4/4 = 1	FPR = 1/4 = 0.25	FPR = 0/4 = 0

Classifier Evaluation

- Accuracy and error are not sufficient for classifier evaluation
- Always include multiple metrics
 - Precision and recall for imbalance cases (plot precisionrecall curve by varying the thresholds)
 - F1 score is a single metric averaging precision and recall
- Classifiers can be tuned by changing the threshold for prediction
 - Respect application constraints (e.g., low false positives, high recall)
 - Plot ROC curve and report AUC
- Confusion matrix and metrics can be extended to multi-class classification

Midterm Exam Review

What we covered: I

- Bias-Variance Tradeoff
- Linear Regression
 - Closed form simple and multiple Linear Regression
 - Correlation and regression
- Gradient Descent (GD)
 - General algorithm
 - GD for Linear Regression; comparison to closed form
- Non-linear regression: polynomial, spline regression
- Regularization
 - Ridge and Lasso regularization
 - GD for Ridge regression

What we covered: II

- Classifiers
 - Linear vs non-linear classification
 - Generative vs Discriminative models
- kNN classifier
- Logistic regression
 - Maximum Likelihood Estimation (MLE)
 - Cross-entropy objective
 - GD for logistic regression
- Linear Discriminant Analysis (LDA)
- Cross-validation
- Evaluation of classifiers
 - Metrics: precision, recall, F1 score, accuracy, error, confusion matrix
 - ROC curves, AUC

ML Models

- Categorization
 - Is it a linear or non-linear?
 - Is it generative or discriminative?
- For each ML model
 - Understand how training is done
 - Take a small example and train a model
 - E.g., linear regression, LDA
 - Once you have a model know how to evaluate a point and generate a prediction
 - Example: predict probability by logistic regression model or kNN

How to measure performance

- Regression: MSE
- Why we need multiple metrics
 - Accuracy, error
 - Precision, recall
 - Confusion matrix
 - F1 score
 - ROC curves, AUC
- Compute these metrics on small examples

Type I: Conceptual

- Example 1: Describe difference between classification and regression
- Example 2: List two methods for regularization and compare them
- Example 3: Provide advantages and disadvantages, and compare the following:
 - Linear regression with polynomial regression
 - Gradient descent vs closed form solution for linear regression

Type II: Computational

- Example 1: Given a small dataset, train a particular ML model
 - E.g., linear regression, LDA, etc.
 - Evaluate model on some small training and testing data
- Example 2: Compute different metrics: accuracy, precision, recall, etc.

Type III: Case Study

• Example: Consider the problem of predicting a patient's risk to a disease. The features include demographic information (address, zip code), as well as measurements from blood test results in the last 2 years. Assume there is a datasets including patients with and without the disease.

Describe the process to:

- Represent the features in a format suitable for ML
- 2. Describe what models you would use and why

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!