## DS 4400

# Machine Learning and Data Mining I Spring 2022

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

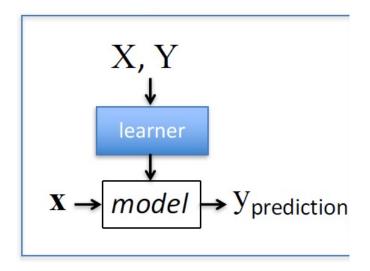
### Outline

- Evaluation of classifiers
  - Accuracy, error, precision, recall
  - ROC curves and the AUC metric
  - Why multiple metrics

- Generative classifiers
- Linear Discriminant Analysis (LDA)
- Midterm exam review

#### Classifier Evaluation

- Classification is a supervised learning problem
  - Prediction is binary or multi-class
- Classification techniques
  - Linear classifiers
    - Logistic regression (probabilistic interpretation)
  - Instance learners
    - kNN: need to store entire training data
- Cross-validation should be used for parameter selection and estimation of model error


#### **Evaluation of classifiers**

**Given:** labeled training data  $X, Y = \{\langle \boldsymbol{x}_i, y_i \rangle\}_{i=1}^n$ 

• Assumes each  $oldsymbol{x}_i \sim \mathcal{D}(\mathcal{X})$ 

#### Train the model:

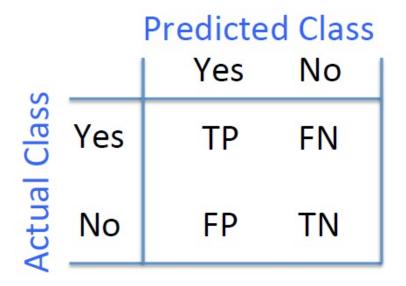
 $model \leftarrow classifier.train(X, Y)$ 



#### Apply the model to new data:

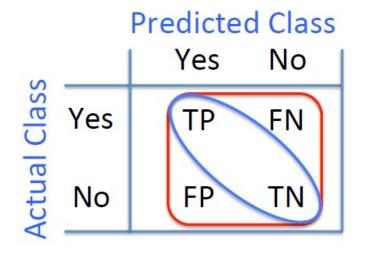
• Given: new unlabeled instance  $x \sim \mathcal{D}(\mathcal{X})$   $y_{\mathsf{prediction}} \leftarrow \mathit{model}.\mathsf{predict}(\mathbf{x})$ 

### Classification Metrics

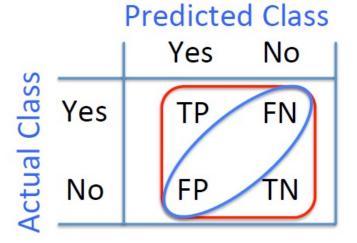

$$accuracy = \frac{\# correct predictions}{\# instances}$$

$$error = 1 - accuracy = \frac{\# incorrect predictions}{\# instances}$$

- Can evaluate on both training or testing
- Training set accuracy and error
- Testing set accuracy and error


### **Confusion Matrix**

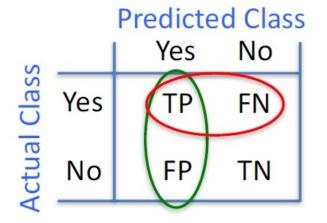
Given a dataset of P positive instances and N negative instances:




## Accuracy and Error

Given a dataset of P positive instances and N negative instances:




$$accuracy = \frac{TP + TN}{P + N}$$



error = 
$$1 - \frac{TP + TN}{P + N}$$
  
=  $\frac{FP + FN}{P + N}$ 

### **Confusion Matrix**

• Given a dataset of P positive instances and N negative instances:



$$accuracy = \frac{TP + TN}{P + N}$$

 Imagine using classifier to identify positive cases (i.e., for information retrieval)

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

Probability that classifier predicts positive correctly

Probability that actual class is predicted correctly

# Why One Metric is Not Enough

Assume that in your training data, Spam email is 1% of data, and Ham email is 99% of data

- Scenario 1
  - Have classifier always output HAM!
  - What is the accuracy?
- Scenario 2
  - Predict one SPAM email as SPAM, all other emails as legitimate
  - What is the precision? 100%
- Scenario 3
  - Output always SPAM!
  - What is the recall?
    100%

### **Precision & Recall**

#### Precision

- the fraction of positive predictions that are correct
- P(is pos | predicted pos)

$$precision = \frac{TP}{TP + FP}$$

#### Recall

- fraction of positive instances that are identified
- P(predicted pos | is pos)

$$recall = \frac{TP}{TP + FN}$$

- You can get high recall (but low precision) by only predicting positive
- Recall is a non-decreasing function of the # positive predictions
- Typically, precision decreases as either the number of positive predictions or recall increases
- Precision & recall are widely used in information retrieval

#### F-Score

Combined measure of precision/recall tradeoff

$$F_1 = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

- This is the harmonic mean of precision and recall
- In the F<sub>1</sub> measure, precision and recall are weighted evenly
- Can also have biased weightings that emphasize either precision or recall more ( $F_2 = 2 \times \text{recall}$ ;  $F_{0.5} = 2 \times \text{precision}$ )
- Limitations:
  - F-measure can exaggerate performance if balance between precision and recall is incorrect for application
    - Don't typically know balance ahead of time

#### A Word of Caution

Consider binary classifiers A, B, C:

|             | - | A   |     | В   |     | C    |     |  |
|-------------|---|-----|-----|-----|-----|------|-----|--|
|             |   | 1   | 0   | 1   | 0   | 1    | 0   |  |
| Predictions | 1 | 0.9 | 0.1 | 0.8 | 0   | 0.78 | 0   |  |
| Fredictions | 0 | 0   | 0   | 0.1 | 0.1 | 0.12 | 0.1 |  |

#### A Word of Caution

Consider binary classifiers A, B, C:

- Clearly A is useless, since it always predicts 1
- B is slightly better than C
  - less probability mass wasted on the off-diagonals
- But, here are the performance metrics:

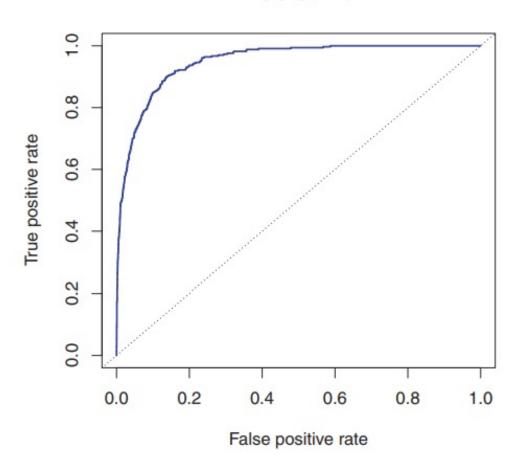
| Metric    | A     | $\mathbf{B}$ | $\mathbf{C}$ |
|-----------|-------|--------------|--------------|
| Accuracy  | 0.9   | 0.9          | 0.88         |
| Precision | 0.9   | 1.0          | 1.0          |
| Recall    | 1.0   | 0.888        | 0.8667       |
| F-score   | 0.947 | 0.941        | 0.9286       |

#### Classifiers can be tuned

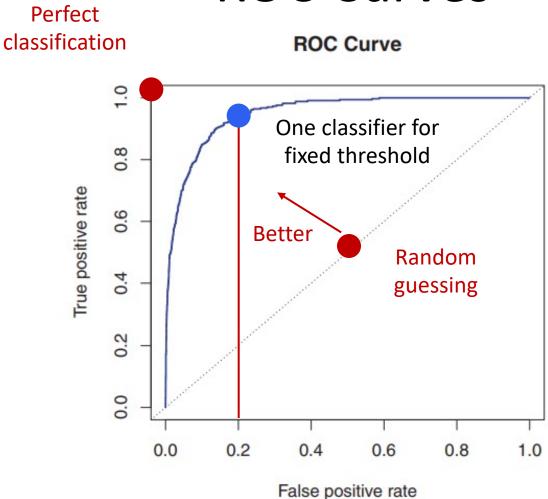
- Logistic regression sets by default the threshold at 0.5 for classifying positive and negative instances
- Some applications have strict constraints on false positives (or other metrics)
  - Example: very low false positives in security (spam)

### Classifiers can be tuned

- Logistic regression sets by default the threshold at 0.5 for classifying positive and negative instances
- Some applications have strict constraints on false positives (or other metrics)
  - Example: very low false positives in security (spam)
- Solution: choose different threshold


```
Probabilistic model h_{\theta(x)} = P[y = 1|x; \theta]
```

- Predict y = 1 if 
$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) \geq \top$$

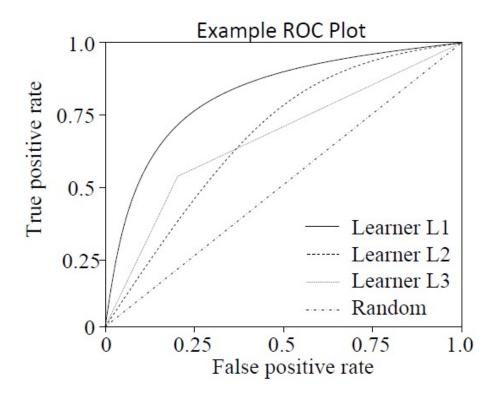

– Predict y = 0 if 
$$h_{oldsymbol{ heta}}(oldsymbol{x}) < extstyle ag{T}$$

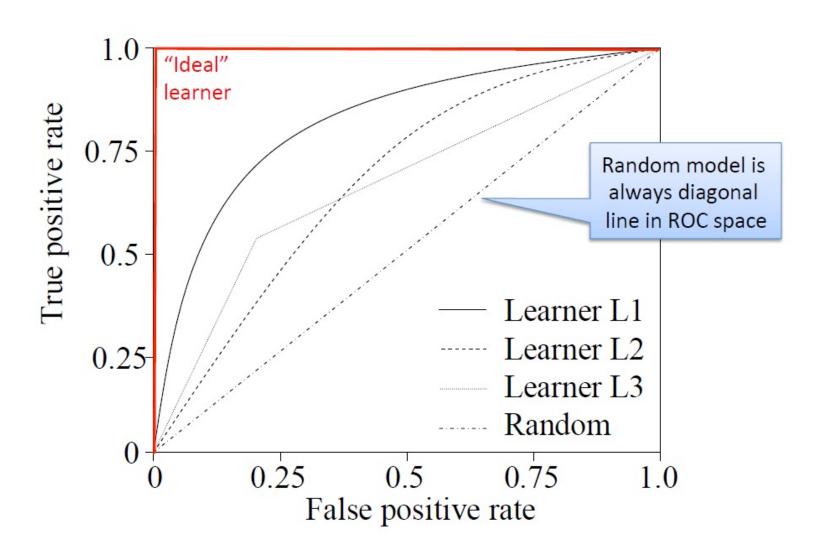
Higher T, lower FP Lower T, lower FN

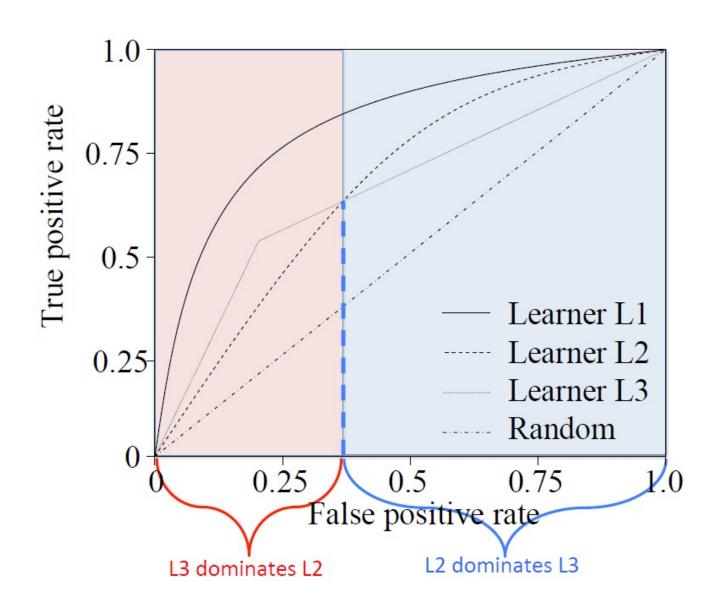
### **ROC Curves**

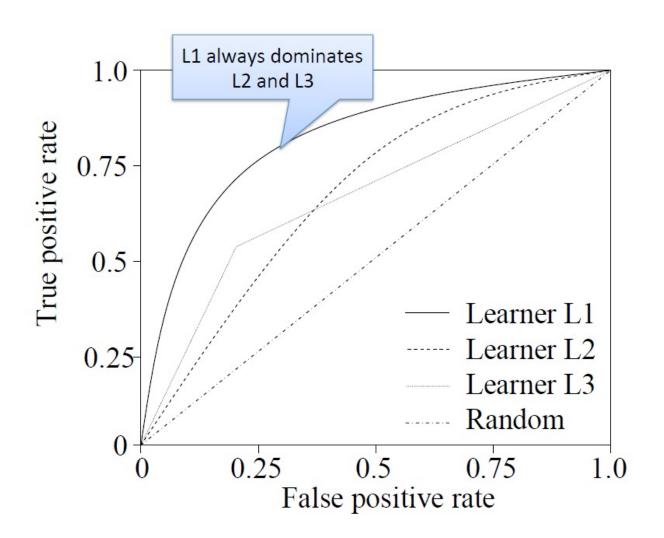


- Receiver Operating Characteristic (ROC)
- Determine operating point (e.g., by fixing false positive rate)

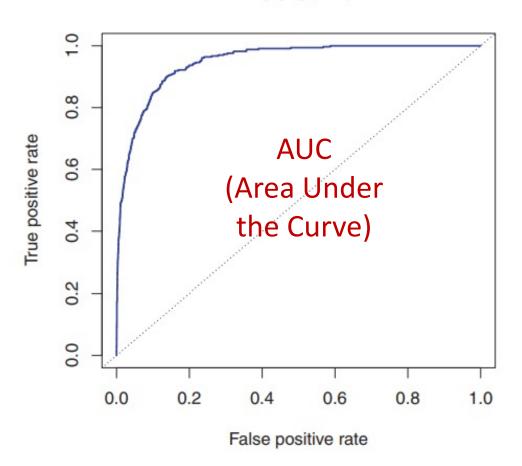




- Receiver Operating Characteristic (ROC)
- Determine operating point (e.g., by fixing false positive rate)


## Performance Depends on Threshold


Predict positive if  $P(y = 1 \mid \mathbf{x}) > T$  otherwise negative

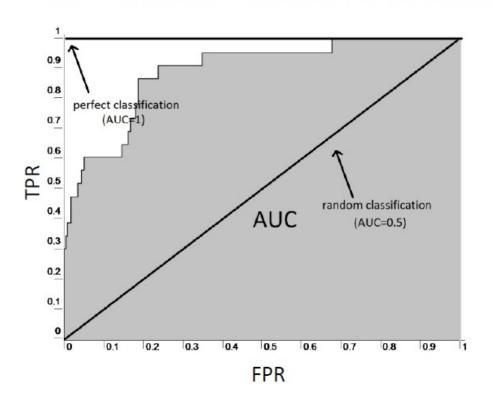
- Number of TPs and FPs depend on threshold T
- As we vary T we get different (TPR, FPR) points

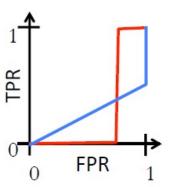








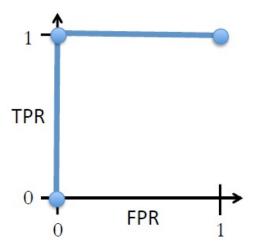


### **ROC Curves**




- Another useful metric: Area Under the Curve (AUC)
- The closest to 1, the better!

#### Area Under the ROC Curve

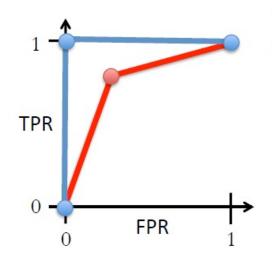
- Can take area under the ROC curve to summarize performance as a single number
  - Be cautious when you see only AUC reported without a ROC curve; AUC can hide performance issues






Same AUC, very different performance

| i | $y_i$ | $p(y_i = 1 \mid \mathbf{x}_i)$ | $h(\mathbf{x_i} \mid \mathbf{T} = 0)$ | $h(\mathbf{x_i} \mid 7 = 0.5)$ | $h(\mathbf{x_i} \mid T = 1)$ |
|---|-------|--------------------------------|---------------------------------------|--------------------------------|------------------------------|
| 1 | 1     | 0.9                            | 1                                     | 1                              | 0                            |
| 2 | 1     | 0.8                            | 1                                     | 1                              | 0                            |
| 3 | 1     | 0.7                            | 1                                     | 1                              | 0                            |
| 4 | 1     | 0.6                            | 1                                     | 1                              | 0                            |
| 5 | 1     | 0.5                            | 1                                     | 1                              | 0                            |
| 6 | 0     | 0.4                            | 1                                     | 0                              | 0                            |
| 7 | 0     | 0.3                            | 1                                     | 0                              | 0                            |
| 8 | 0     | 0.2                            | 1                                     | 0                              | 0                            |
| 9 | 0     | 0.1                            | 1                                     | 0                              | 0                            |
|   |       |                                | TPR =                                 | TPR =                          | $TPR = \hat{\ } \hat{\ }$    |
|   |       |                                | FPR =                                 | FPR =                          | FPR =                        |


| i | $y_i$    | $p(y_i = 1 \mid \mathbf{x}_i)$ | $h(\mathbf{x_i} \mid \theta = 0)$ | $h(\mathbf{x_i} \mid \theta = 0.5)$ | $h(\mathbf{x_i} \mid \theta = 1)$ |
|---|----------|--------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|
| 1 | 1        | 0.9                            | 1                                 | 1                                   | 0                                 |
| 2 | 1        | 0.8                            | 1                                 | 1                                   | 0                                 |
| 3 | 1        | 0.7                            | 1                                 | 1                                   | 0                                 |
| 4 | 1        | 0.6                            | 1                                 | 1                                   | 0                                 |
| 5 | 1        | 0.5                            | 1                                 | 1                                   | 0                                 |
| 6 | 0        | 0.4                            | 1                                 | 0                                   | 0                                 |
| 7 | 0        | 0.3                            | 1                                 | 0                                   | 0                                 |
| 8 | 0        | 0.2                            | 1                                 | 0                                   | 0                                 |
| 9 | 0        | 0.1                            | 1                                 | 0                                   | 0                                 |
|   | <u> </u> | <u> </u>                       | TDD -/- 1                         | TIDD ELE 1                          | TIDD 0/F 0                        |



$$TPR = 5/5 = 1$$
  $TPR = 5/5 = 1$   $TPR = 0/5 = 0$   
 $FPR = 4/4 = 1$   $FPR = 0/4 = 0$   $FPR = 0/4 = 0$ 

| i | $y_i$    | $p(y_i = 1 \mid \mathbf{x}_i)$ | $h(\mathbf{x_i} \mid \mathbf{T} = 0)$ | $h(\mathbf{x_i} \mid T = 0.5)$ | $h(\mathbf{x_i} \mid T=1)$ |
|---|----------|--------------------------------|---------------------------------------|--------------------------------|----------------------------|
| 1 | 1        | 0.9                            | 1                                     | 1                              | 0                          |
| 2 | 1        | 0.8                            | 1                                     | 1                              | 0                          |
| 3 | 1        | 0.7                            | 1                                     | 1                              | 0                          |
| 4 | 1        | 0.6                            | 1                                     | 1                              | 0                          |
| 5 | 1        | 0.2                            | 1                                     | 0                              | 0                          |
| 6 | 0        | 0.6                            | 1                                     | 1                              | 0                          |
| 7 | 0        | 0.3                            | 1                                     | 0                              | 0                          |
| 8 | 0        | 0.2                            | 1                                     | 0                              | 0                          |
| 9 | 0        | 0.1                            | 1                                     | 0                              | 0                          |
|   | <u> </u> |                                | TPR =                                 | TPR =                          | TPR =                      |
|   |          |                                | FPR =                                 | FPR =                          | FPR =                      |

| i | $y_i$ | $p(y_i = 1 \mid \mathbf{x}_i)$ | $h(\mathbf{x_i} \mid \theta = 0)$ | $h(\mathbf{x_i} \mid \theta = 0.5)$ | $h(\mathbf{x_i} \mid \theta = 1)$ |
|---|-------|--------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|
| 1 | 1     | 0.9                            | 1                                 | 1                                   | 0                                 |
| 2 | 1     | 0.8                            | 1                                 | 1                                   | 0                                 |
| 3 | 1     | 0.7                            | 1                                 | 1                                   | 0                                 |
| 4 | 1     | 0.6                            | 1                                 | 1                                   | 0                                 |
| 5 | 1     | 0.2                            | 1                                 | 0                                   | 0                                 |
| 6 | 0     | 0.6                            | 1                                 | 1                                   | 0                                 |
| 7 | 0     | 0.3                            | 1                                 | 0                                   | 0                                 |
| 8 | 0     | 0.2                            | 1                                 | 0                                   | 0                                 |
| 9 | 0     | 0.1                            | 1                                 | 0                                   | 0                                 |



| TPR = 5/5 = 1 | TPR = 4/5 = 0.8  | TPR = 0/5 = 0 |
|---------------|------------------|---------------|
| FPR = 4/4 = 1 | FPR = 1/4 = 0.25 | FPR = 0/4 = 0 |

#### Classifier Evaluation

- Accuracy and error are not sufficient for classifier evaluation
- Always include multiple metrics
  - Precision and recall for imbalance cases (plot precisionrecall curve by varying the thresholds)
  - F1 score is a single metric averaging precision and recall
- Classifiers can be tuned by changing the threshold for prediction
  - Respect application constraints (e.g., low false positives, high recall)
  - Plot ROC curve and report AUC
- Confusion matrix and metrics can be extended to multi-class classification

#### Midterm Exam Review

#### What we covered: I

- Bias-Variance Tradeoff
- Linear Regression
  - Closed form simple and multiple Linear Regression
  - Correlation and regression
- Gradient Descent (GD)
  - General algorithm
  - GD for Linear Regression; comparison to closed form
- Non-linear regression: polynomial, spline regression
- Regularization
  - Ridge and Lasso regularization
  - GD for Ridge regression

## What we covered: II

- Classifiers
  - Linear vs non-linear classification
  - Generative vs Discriminative models
- kNN classifier
- Logistic regression
  - Maximum Likelihood Estimation (MLE)
  - Cross-entropy objective
  - GD for logistic regression
- Linear Discriminant Analysis (LDA)
- Cross-validation
- Evaluation of classifiers
  - Metrics: precision, recall, F1 score, accuracy, error, confusion matrix
  - ROC curves, AUC

#### **ML** Models

- Categorization
  - Is it a linear or non-linear?
  - Is it generative or discriminative?
- For each ML model
  - Understand how training is done
  - Take a small example and train a model
    - E.g., linear regression, LDA
  - Once you have a model know how to evaluate a point and generate a prediction
    - Example: predict probability by logistic regression model or kNN

# How to measure performance

- Regression: MSE
- Why we need multiple metrics
  - Accuracy, error
  - Precision, recall
  - Confusion matrix
  - F1 score
  - ROC curves, AUC
- Compute these metrics on small examples

# Type I: Conceptual

- Example 1: Describe difference between classification and regression
- Example 2: List two methods for regularization and compare them
- Example 3: Provide advantages and disadvantages, and compare the following:
  - Linear regression with polynomial regression
  - Gradient descent vs closed form solution for linear regression

# Type II: Computational

- Example 1: Given a small dataset, train a particular ML model
  - E.g., linear regression, LDA, etc.
  - Evaluate model on some small training and testing data
- Example 2: Compute different metrics: accuracy, precision, recall, etc.

# Type III: Case Study

• Example: Consider the problem of predicting a patient's risk to a disease. The features include demographic information (address, zip code), as well as measurements from blood test results in the last 2 years. Assume there is a datasets including patients with and without the disease.

#### Describe the process to:

- Represent the features in a format suitable for ML
- 2. Describe what models you would use and why

# Acknowledgements

- Slides made using resources from:
  - Andrew Ng
  - Eric Eaton
  - David Sontag
- Thanks!