DS 4400

Machine Learning and Data Mining I Spring 2021

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Outline

- Linear regression
 - Feature standardization
 - Outliers
- Gradient descent optimization
 - General algorithm
 - Instantiation for linear regression

Solution for simple linear regression

- Dataset $x_i \in R$, $y_i \in R$, $h_{\theta}(x) = \theta_0 + \theta_1 x$
- $J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (\theta_0 + \theta_1 x_i y_i)^2$ MSE / Loss

$$\frac{\partial J(\theta)}{\partial \theta_0} = \frac{2}{N} \sum_{i=1N} (\theta_0 + \theta_1 x_i - y_i) = 0$$

$$\frac{\partial J(\theta)}{\partial \theta_1} = \frac{2}{N} \sum_{i=1}^{N} x_i (\theta_0 + \theta_1 x_i - y_i) = 0$$

Solution of min loss

$$-\theta_0 = \bar{y} - \theta_1 \bar{x}$$

$$-\theta_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{\text{Cov}(x_i y)}{\text{Var}(x)}$$

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

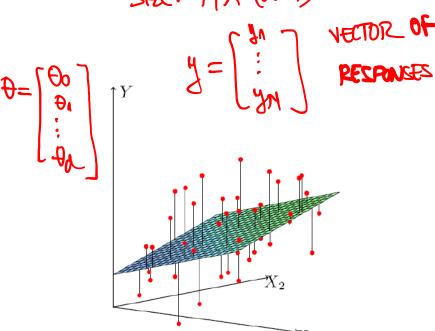
$$\bar{y} = \frac{\sum_{i=1}^{N} y_i}{N}$$

Multiple Linear Regression

- Dataset: $x_i \in R^{(d)}, y_i \in R$
- Hypothesis $h_{\theta}(x) = \theta^T x$ MSE $= \frac{1}{N} \sum_{i=1}^{N} (\theta^T x_i y_i)^2$

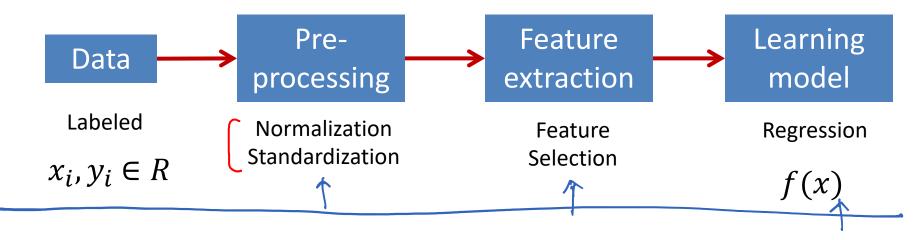
$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$

Closed-form optimum solution for linear regression

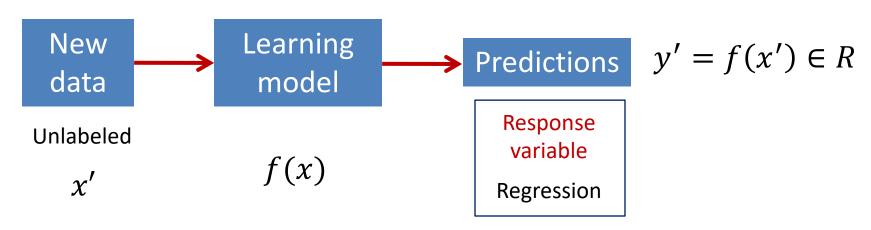


Supervised Learning: Regression

Training



Testing



Feature Standardization

That
$$X = \begin{cases} 1 & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} \\ 1 & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm} & \text{Xm}$$

$$\mu_{\hat{s}} = \sqrt{\frac{1}{N}} \sum_{k=1}^{N} X_{i} y_{i}$$

$$S_{\hat{s}} = \sqrt{\frac{1}{N-1}} \sum_{i=1}^{N} (X_{i} - \mu_{\hat{s}})^{*}$$

$$S_{\hat{s}} = \sqrt{\frac{1}{N}} \sum_{i=1}^{N} (X_{i} - \mu_{\hat{s}})^{*}$$

$$S_{\hat{s}} = \sqrt{\frac{1}{N-1}} \sum_{i=1}^{N} (X_{i} - \mu_{\hat{s}})^{*}$$

Practical issues: Feature Standardization

AT TRAINING:

- Rescales features to have zero mean and unit variance
 - Let μ_j be the mean of feature j: $\mu_j = \frac{1}{N} \sum_{i=1}^N x_{ij}$
 - Replace each value with:

$$x_{ij} \leftarrow \frac{x_{ij} - \mu_j}{s_j}$$

for
$$j = 1...d$$
 (not $x_0!$)

- \boldsymbol{s}_{j} is the standard deviation of feature \boldsymbol{j}

Other feature normalization

Min-Max rescaling

$$-x_{ij} \leftarrow \frac{x_{ij} - min_j}{max_j - min_j} \in [0]$$

- $-min_j$ and max_j : min and max value of feature j
- Mean normalization

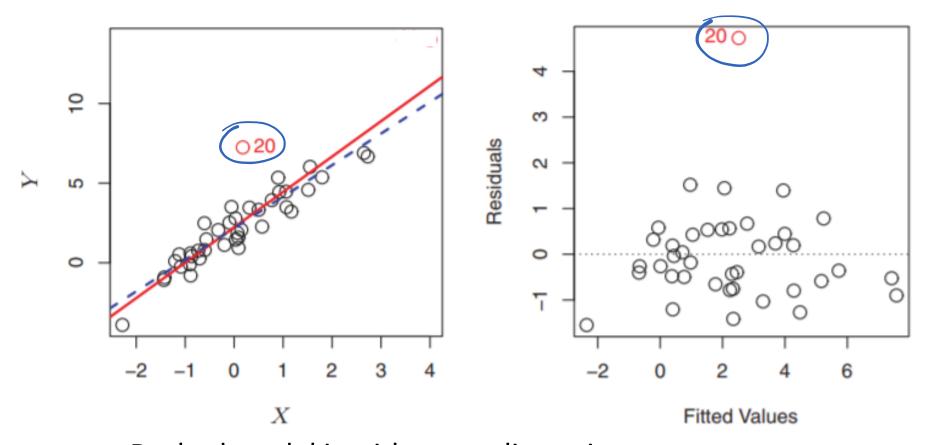
$$-x_{ij} \leftarrow \frac{x_{ij} - \mu_j}{max_j - min_j} \quad \text{MEAN } \bigcirc$$

Feature standardization/normalization

- Goal is to have individual features on the same scale
- Is a pre-processing step in most learning algorithms
- Necessary for linear models and Gradient Descent
- Different options:

 - Feature standardizationFeature min-max rescaling
 - Mean normalization

Practical issues: Outliers



- Dashed model is without outlier point
- Linear regression is not resilient to outliers!
- Outliers can be eliminated based on residual value
- Other methods to eliminate outliers (anomaly detection)

Categorical variables

- Predict credit card balance
 - Age
 - Income
 - Number of cards
 - Credit limit
 - Credit rating
- Categorical variables
 - Student (Yes/No)
 - State (50 different levels)

How to generate numerical representations of these?

Indicator Variables

- One-hot encoding
- Binary (two-level) variable
 - Add new feature $x_i = 1$ if student and 0 otherwise
- Multi-level variable
 - State: 50 values
 - $-x_{MA} = 1$ if State = MA and 0, otherwise
 - $-x_{NY} = 1$ if State = NY and 0, otherwise
 - **—** ...
 - How many indicator variables are needed?
- Disadvantages: data becomes too sparse for large number of levels
 - Will discuss feature selection later in class

How to optimize loss functions?

- Dataset: $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- Hypothesis $h_{\theta}(x) = \theta^T x$

•
$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (\theta^{T} x_i - y_i)^2$$
 Loss / cost

- Strictly convex function (unique minimum)
- General method to optimize a multivariate function
 - Practical (low asymptotic complexity)
 - Convergence guarantees to global minimum

 GRANHIT DESCENT

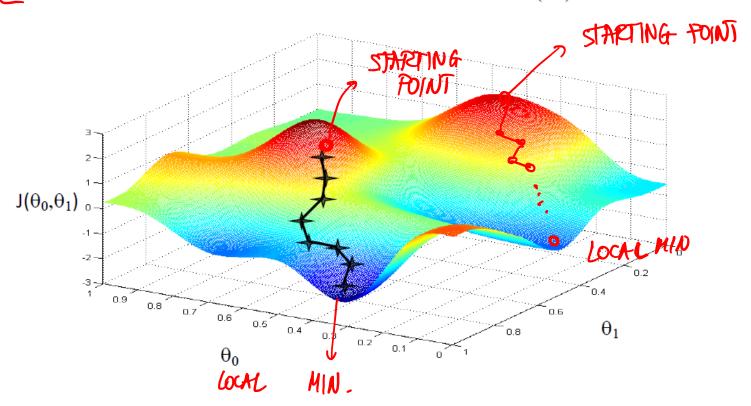
What Strategy to Use?

Follow the Slope

Follow the direction of steepest descent!

How to optimize $J(\theta)$?

- Choose initial value for heta
- Until we reach a minimum:
 - Choose a new value for $oldsymbol{ heta}$ to reduce $J(oldsymbol{ heta})$



```
GOAL: FIND \theta TO MIN J(\theta)

1. INITIALIZE \theta AT PANDON

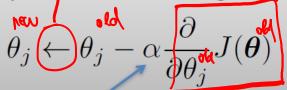
2. REPEAT UNTIL STOPPING CONDITIONS

3. \theta_{j} \leftarrow \theta_{j} - \alpha. \frac{270}{29j}; j = 0,1,...,d

1. \frac{1}{2} \leftarrow \frac{1}{2} = \frac{1}{2} =
```

A ASSIGNMENT

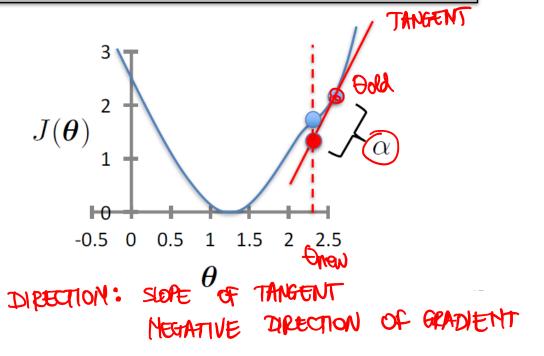
- Initialize θ
- Repeat until convergence

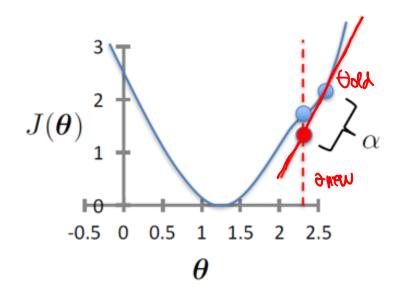


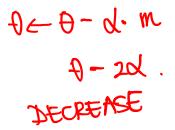
simultaneous update for j = 0 ... d

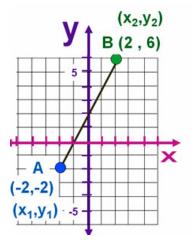
learning rate (small) e.g., $\alpha = 0.05$

d= STB S性





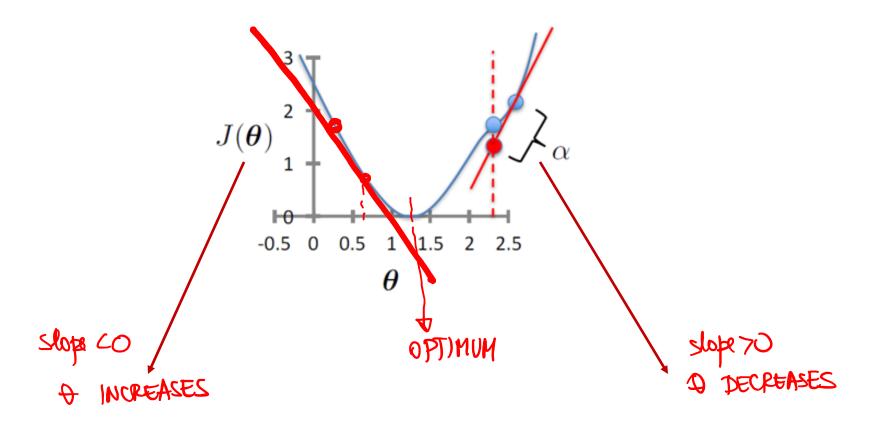




$$\mathbf{m} = \underbrace{\mathbf{y}_2 - \mathbf{y}_1}_{\mathbf{X}_2 - \mathbf{X}_1} = \underline{\Delta \mathbf{Y}}_{\Delta \mathbf{X}}$$

$$m = 6 - \frac{2}{2}$$

$$m = 8/4 = 2\sqrt{}$$



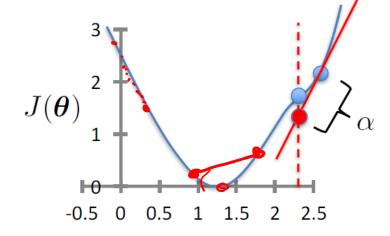
Stopping Condition

- Initialize θ
- Repeat until convergence

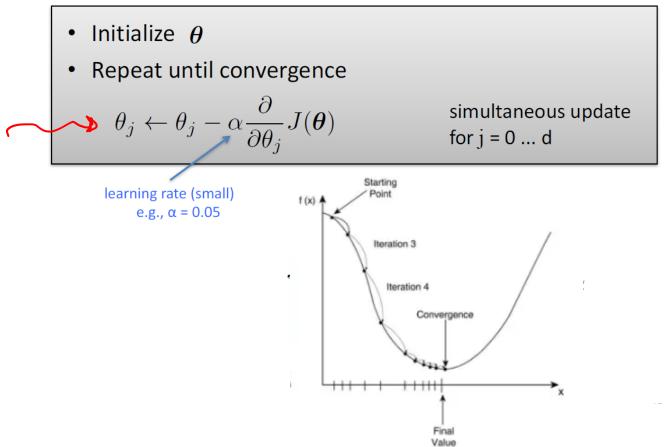
$$\rightarrow \theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$

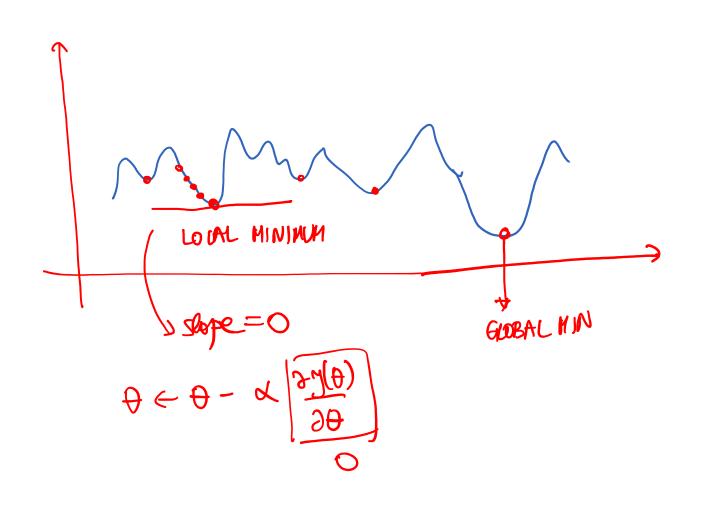


• When should the algorithm stop?



As you approach the minimum, the slope gets smaller, and GD will take smaller steps

LOCAL MIN VS. GLOBAL MIN

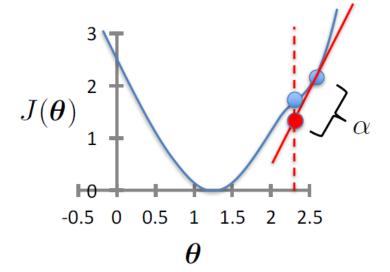


- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

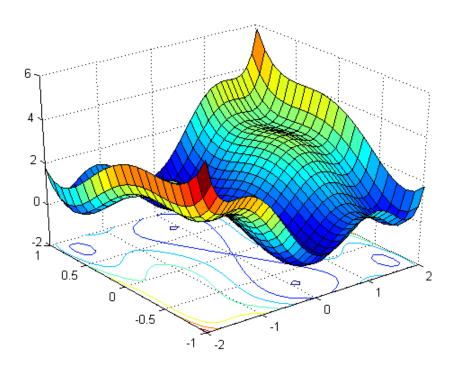
simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$



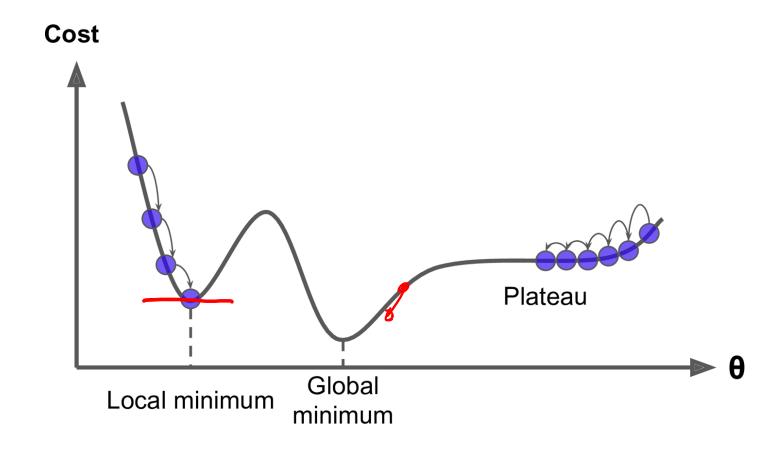
• What happens when θ reaches a local minimum?

Complex loss function

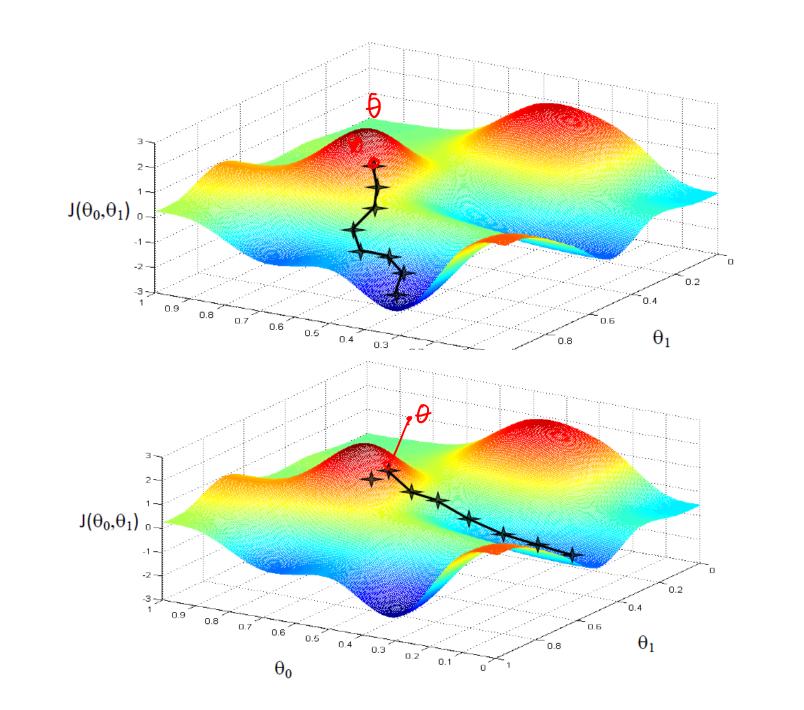


Complex loss functions are more difficult to optimize

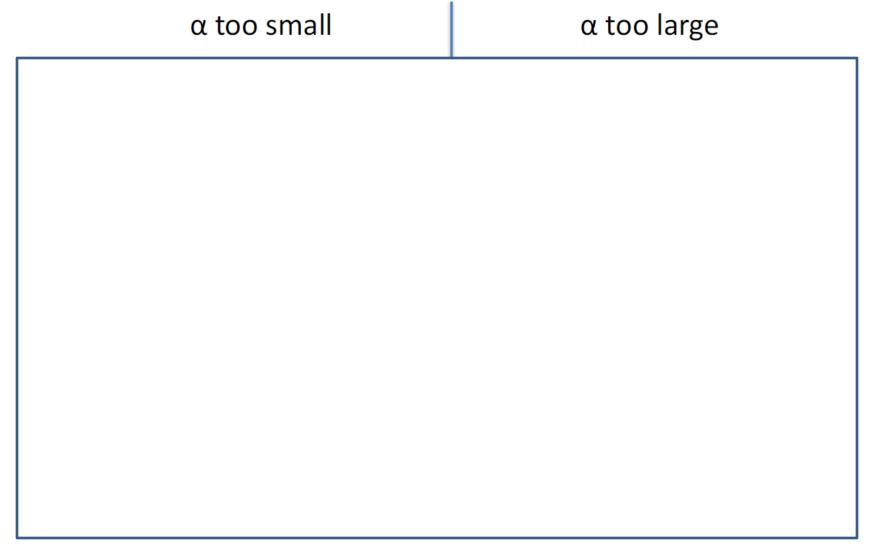
GD Convergence Issues



- Local minimum: Gradient descent stops
- Plateau: Almost flat region where slope is small

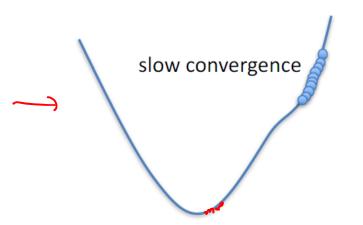


Adjusting Learning Rate

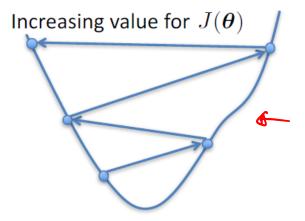


Choosing Learning Rate

α too small



α too large

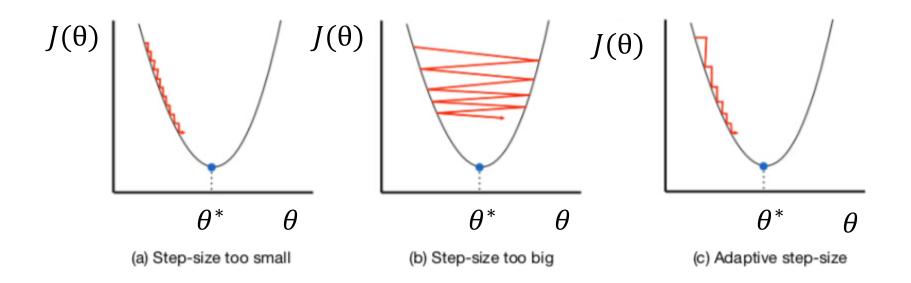


- May overshoot the minimum
- May fail to converge
- May even diverge

To see if gradient descent is working, print out $J(\theta)$ each iteration

- The value should decrease at each iteration
- If it doesn't, adjust α

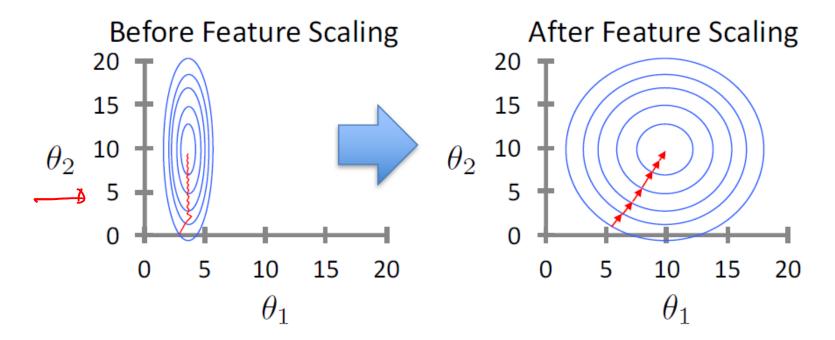
Adaptive step size



- Start with large step size and reduce over time, adaptively
- Line search method
- Measure how objective decreases

Feature Scaling

Idea: Ensure that feature have similar scales



Makes gradient descent converge much faster

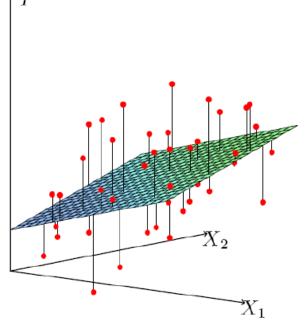
Multiple Linear Regression

- Dataset: $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- Hypothesis $h_{\theta}(x) = \theta^T x$

• MSE =
$$\frac{1}{N} \sum_{h \in (x_i)} (\theta^T x_i - y_i)^2 \text{ Loss / cost}$$

$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$

MSE is a strictly convex function and has unique minimum



GD for Multiple Linear Regression

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

$$\begin{array}{lll}
\theta \leftarrow \theta - \chi & \frac{3}{30} \xi(\theta) \\
\xi(\theta) &= \frac{1}{N} \|h_{\theta}(x) - y\|^{2} &= \frac{1}{N} \|\chi \theta - y\|^{2} \\
\frac{3}{30} \frac{1}{9} &= \frac{1}{N} 2(x\theta - y)^{T} \cdot \chi \\
\frac{3}{30} \frac{1}{9} \leftarrow \theta - \chi \frac{2}{N} (x\theta - y)^{T} \cdot \chi
\end{array}$$

$$y(\theta) = \frac{1}{N} \sum_{i=N}^{N} \left[h_{\theta}(x_i) - y_i \right] = \frac{1}{N} \sum_{i=N}^{N} \left[\sum_{k=0}^{N} \Theta_k x_{ik} - y_i \right]^2$$

$$\frac{\partial J(\Theta)}{\partial \theta_{ij}} = \frac{2}{N} \sum_{i=1}^{N} \left[\underbrace{S \Theta_{i} X_{i} X_{i} - M_{i}}_{i=1}^{N} X_{ij}^{i} \right]$$

$$= \frac{2}{N} \sum_{i=1}^{N} \left[h_{\Theta}(X_{i}) - M_{i} \right] X_{ij}^{i}$$

$$\underbrace{\Theta_{i}}_{i=1}^{N} - \chi_{i} \underbrace{S}_{i=1}^{N} \left[h_{\Theta}(X_{i}) - M_{i} \right] X_{ij}^{i}$$

GD for Linear Regression

- Initialize θ
- $|| heta_{new} heta_{old}|| < \epsilon ext{ or }$ Repeat until convergence iterations == MAX_ITER

$$\theta_j \leftarrow \theta_j - \alpha \frac{2}{N} \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i) x_{ij}$$
 simultaneous update for j = 0 ... d

• Assume convergence when $\|oldsymbol{ heta}_{new} - oldsymbol{ heta}_{old}\|_2 < \epsilon$

L₂ norm:
$$\| \boldsymbol{v} \|_2 = \sqrt{\sum_i v_i^2} = \sqrt{v_1^2 + v_2^2 + \ldots + v_{|v|}^2}$$

Gradient Descent in Practice

- Asymptotic complexity
 - N is size of training data, d is feature dimension, and T is number of iterations
- Most popular optimization algorithm in use today
- At the basis of training
 - Linear Regression
 - Logistic regression
 - SVM
 - Neural networks and Deep learning
 - Stochastic Gradient Descent variants