DS 4400

Machine Learning and Data Mining I Spring 2021

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Outline

- Linear regression
 - Feature standardization
 - Outliers
- Gradient descent optimization
 - General algorithm
 - Instantiation for linear regression

Solution for simple linear regression

- Dataset $x_i \in R$, $y_i \in R$, $h_{\theta}(x) = \theta_0 + \theta_1 x$
- $J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (\theta_0 + \theta_1 x_i y_i)^2$ MSE / Loss

$$\frac{\partial J(\theta)}{\partial \theta_0} = \frac{2}{N} \sum_{i=1N} (\theta_0 + \theta_1 x_i - y_i) = 0$$

$$\frac{\partial J(\theta)}{\partial \theta_1} = \frac{2}{N} \sum_{i=1}^{N} x_i (\theta_0 + \theta_1 x_i - y_i) = 0$$

Solution of min loss

$$-\theta_0 = \bar{y} - \theta_1 \bar{x}$$

$$-\theta_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

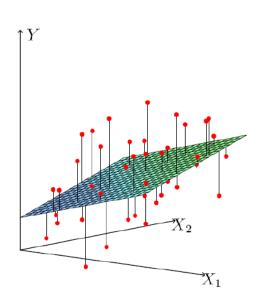
$$\bar{y} = \frac{\sum_{i=1}^{N} y_i}{N}$$

Multiple Linear Regression

- Dataset: $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- Hypothesis $h_{\theta}(x) = \theta^T x$
- MSE = $\frac{1}{N}\sum (\theta^T x_i y_i)^2$

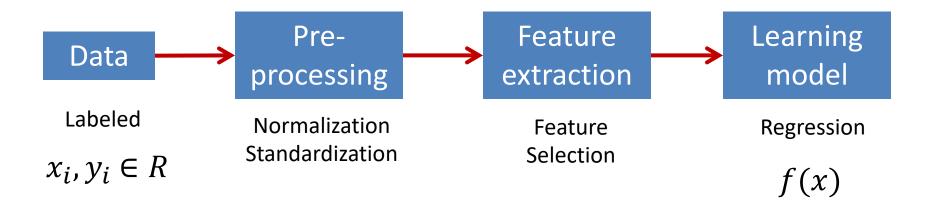
$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$

Closed-form optimum solution for linear regression

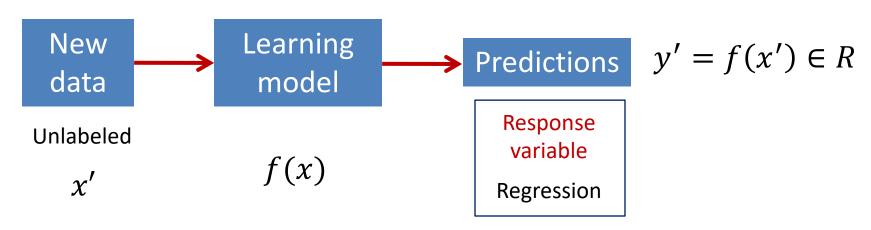


Supervised Learning: Regression

Training



Testing



Practical issues: Feature Standardization

- Rescales features to have zero mean and unit variance
 - Let μ_j be the mean of feature j: $\mu_j = \frac{1}{N} \sum_{i=1}^N x_{ij}$
 - Replace each value with:

$$x_{ij} \leftarrow \frac{x_{ij} - \mu_j}{s_j}$$
 for $j = 1...d$ (not x_0 !)

ullet s_j is the standard deviation of feature j

- Must apply the same transformation to instances for both training and prediction
- Outliers can cause problems

Other feature normalization

Min-Max rescaling

$$-x_{ij} \leftarrow \frac{x_{ij} - min_j}{max_j - min_j} \in [0,1]$$

- $-min_j$ and max_j : min and max value of feature j
- Mean normalization

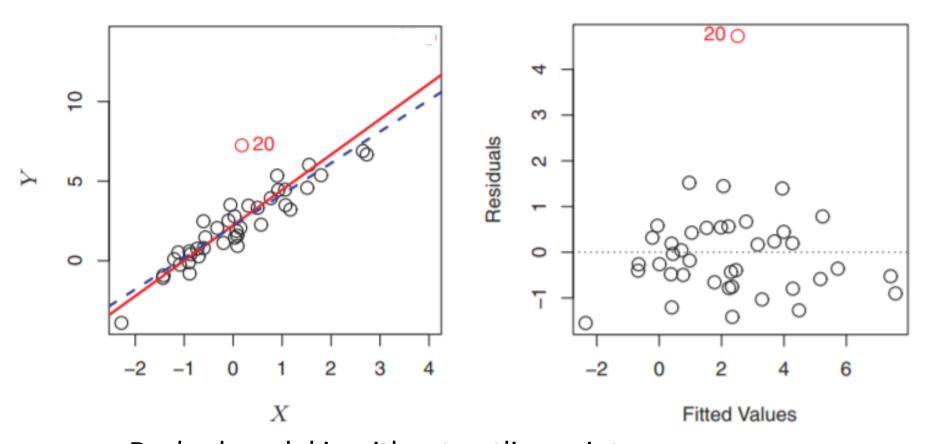
$$-x_{ij} \leftarrow \frac{x_{ij} - \mu_j}{max_j - min_j}$$

Mean 0

Feature standardization/normalization

- Goal is to have individual features on the same scale
- Is a pre-processing step in most learning algorithms
- Necessary for linear models and Gradient Descent
- Different options:
 - Feature standardization
 - Feature min-max rescaling
 - Mean normalization

Practical issues: Outliers



- Dashed model is without outlier point
- Linear regression is not resilient to outliers!
- Outliers can be eliminated based on residual value
- Other methods to eliminate outliers (anomaly detection)

Categorical variables

- Predict credit card balance
 - Age
 - Income
 - Number of cards
 - Credit limit
 - Credit rating
- Categorical variables
 - Student (Yes/No)
 - State (50 different levels)

How to generate numerical representations of these?

Indicator Variables

- One-hot encoding
- Binary (two-level) variable
 - Add new feature $x_i = 1$ if student and 0 otherwise
- Multi-level variable
 - State: 50 values
 - $-x_{MA} = 1$ if State = MA and 0, otherwise
 - $-x_{NY} = 1$ if State = NY and 0, otherwise
 - **—** ...
 - How many indicator variables are needed?
- Disadvantages: data becomes too sparse for large number of levels
 - Will discuss feature selection later in class

How to optimize loss functions?

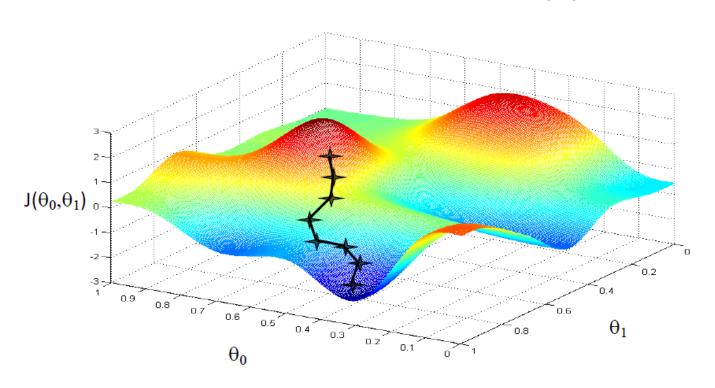
- Dataset: $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- Hypothesis $h_{\theta}(x) = \theta^T x$
- $J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (\theta^T x_i y_i)^2$ Loss / cost
 - Strictly convex function (unique minimum)
- General method to optimize a multivariate function
 - Practical (low asymptotic complexity)
 - Convergence guarantees to global minimum

Follow the Slope

Follow the direction of steepest descent!

How to optimize $J(\theta)$?

- Choose initial value for θ
- Until we reach a minimum:
 - Choose a new value for $oldsymbol{ heta}$ to reduce $J(oldsymbol{ heta})$

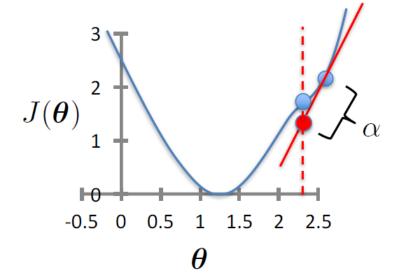


- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$



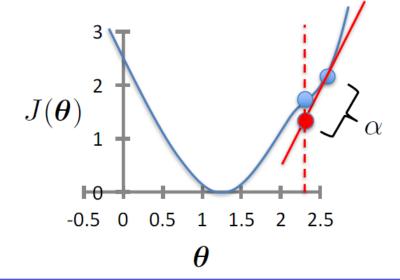
- Gradient = slope of line tangent to curve
- Function decreases faster in negative direction of gradient
- Larger learning rate => larger step

- Initialize θ
- Repeat until convergence

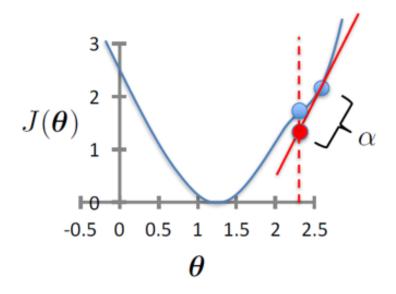
$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

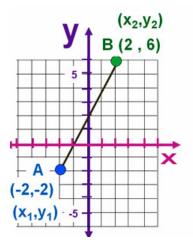
simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$



Vector update rule: $\theta \leftarrow \theta - \frac{\partial J(\theta)}{\partial \theta}$



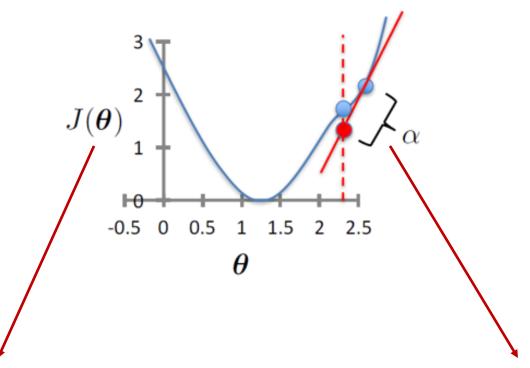


The Gradient "m" is:

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \underline{\Delta \mathbf{Y}}$$

$$m = 6 - \frac{2}{2}$$

$$m = 8/4 = 2\sqrt{}$$



- If θ is on the left of minimum, slope is negative
- Increase value of θ

- If θ is on the right of minimum, slope is positive
- Decrease value of θ

In both cases θ gets closer to minimum

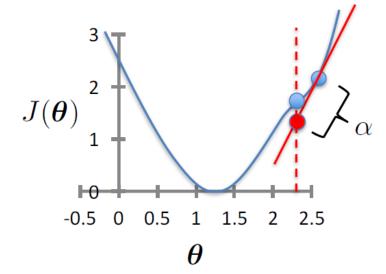
Stopping Condition

- Initialize θ
- Repeat until convergence

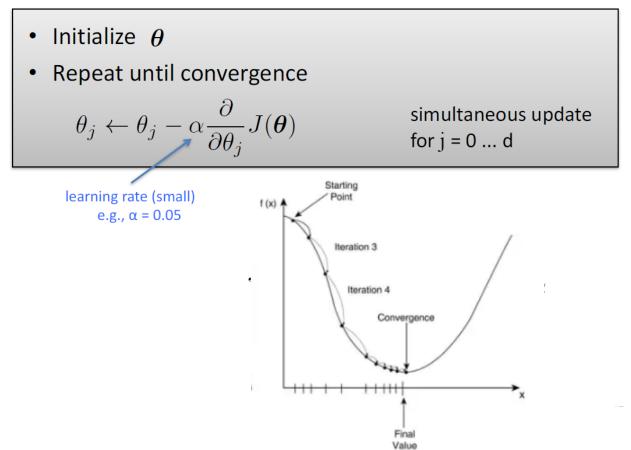
$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$



- When should the algorithm stop?
- When the update in θ is below some threshold
- Or maximum number of iterations is reached



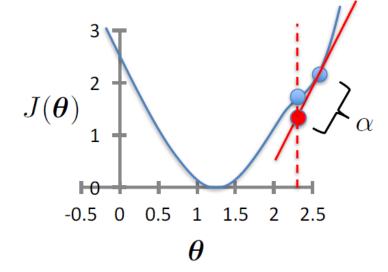
As you approach the minimum, the slope gets smaller, and GD will take smaller steps

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

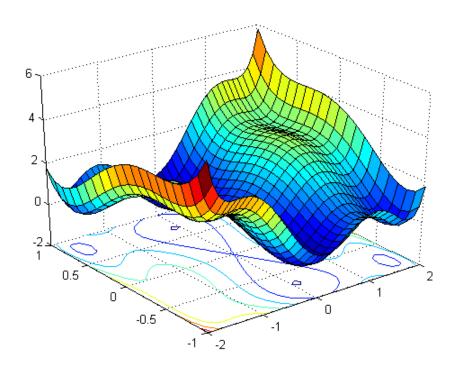
simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$



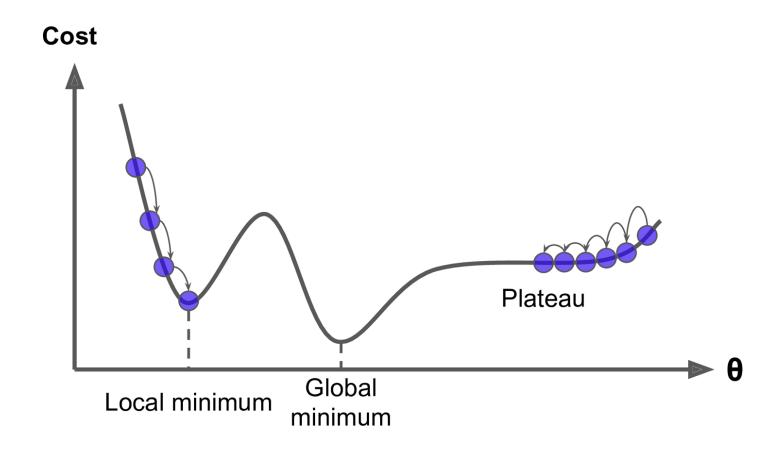
- What happens when θ reaches a local minimum?
- The slope is 0, and gradient descent converges!
- Strictly convex functions only have global minimum

Complex loss function



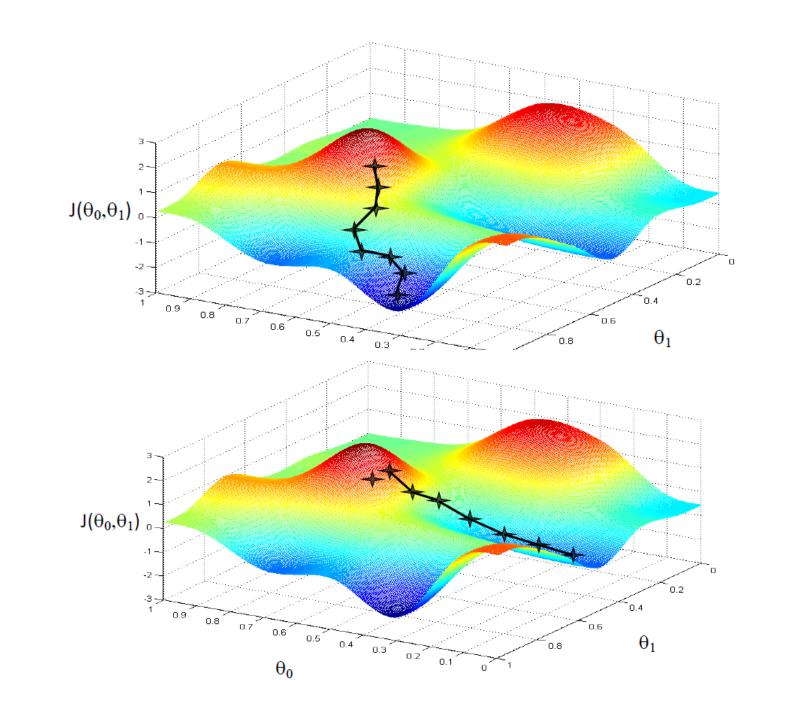
Complex loss functions are more difficult to optimize

GD Convergence Issues

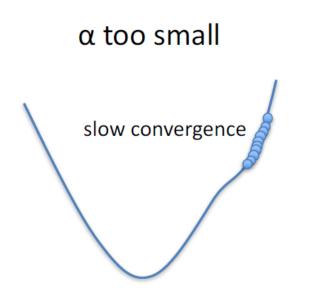


- Local minimum: Gradient descent stops
- Plateau: Almost flat region where slope is small

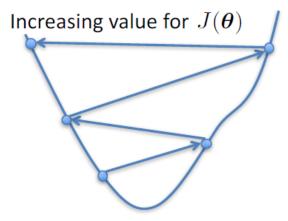
Solution: start from multiple random locations



Choosing Learning Rate



α too large

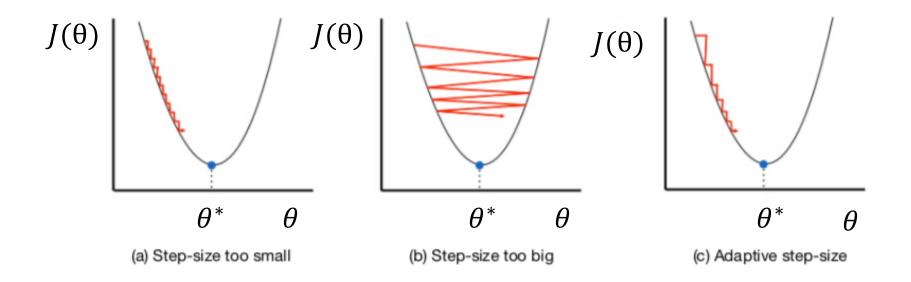


- May overshoot the minimum
- May fail to converge
- May even diverge

To see if gradient descent is working, print out $J(\theta)$ each iteration

- The value should decrease at each iteration
- If it doesn't, adjust α

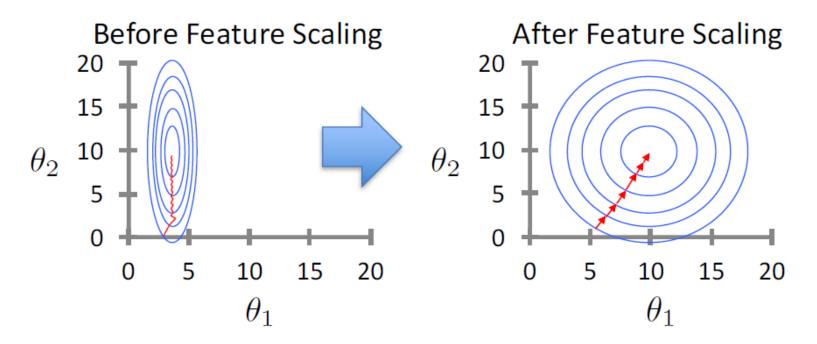
Adaptive step size



- Start with large step size and reduce over time, adaptively
- Line search method
- Measure how objective decreases

Feature Scaling

Idea: Ensure that feature have similar scales



Makes gradient descent converge much faster

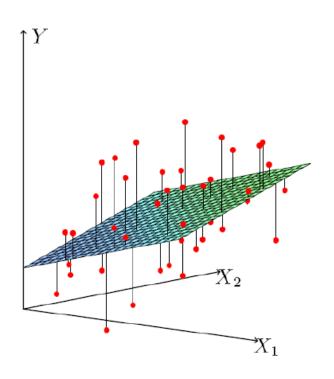
Multiple Linear Regression

- Dataset: $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- Hypothesis $h_{\theta}(x) = \theta^T x$

• MSE =
$$\frac{1}{N}\sum (\theta^T x_i - y_i)^2$$
 Loss / cost

$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$

MSE is a strictly convex function and has unique minimum



GD for Multiple Linear Regression

- Initialize heta

• Repeat until convergence
$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\pmb{\theta})$$

simultaneous update for j = 0 ... d

•
$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (\sum_{k} \theta_{k} x_{ik} - y_{i})^{2}$$
•
$$\frac{\partial J(\theta)}{\partial \theta_{j}} = \frac{2}{N} \sum_{i=1}^{N} (\sum_{k} \theta_{k} x_{ik} - y_{i}) \frac{\partial (\sum_{k} \theta_{k} x_{ik} - y_{i})}{\partial \theta_{j}}$$

$$= \frac{2}{N} \sum_{i=1}^{N} (h_{\theta}(x_{i}) - y_{i}) x_{ij}$$

GD for Linear Regression

• Initialize θ

- $||\theta_{new} \theta_{old}|| < \epsilon \text{ or}$
- Repeat until convergence iterations == MAX_ITER

$$\theta_j \leftarrow \theta_j - \alpha \frac{2}{N} \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i) x_{ij}$$

simultaneous update for j = 0 ... d

- To achieve simultaneous update
 - At the start of each GD iteration, compute $h_{ heta}(x_i)$
 - Use this stored value in the update step loop
- Assume convergence when $\|oldsymbol{ heta}_{new} oldsymbol{ heta}_{old}\|_2 < \epsilon$

$$\| m{v} \|_2 = \sqrt{\sum_i v_i^2} = \sqrt{v_1^2 + v_2^2 + \ldots + v_{|v|}^2}$$

Gradient Descent in Practice

- Asymptotic complexity
 - N is size of training data, d is feature dimension, and T is number of iterations
- Most popular optimization algorithm in use today
- At the basis of training
 - Linear Regression
 - Logistic regression
 - SVM
 - Neural networks and Deep learning
 - Stochastic Gradient Descent variants