DS 4400

Machine Learning and Data Mining I Spring 2021

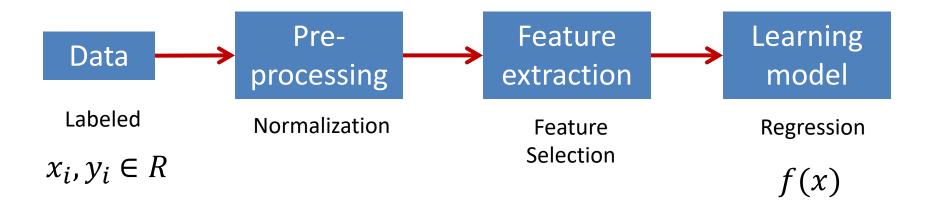
Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Today's Outline

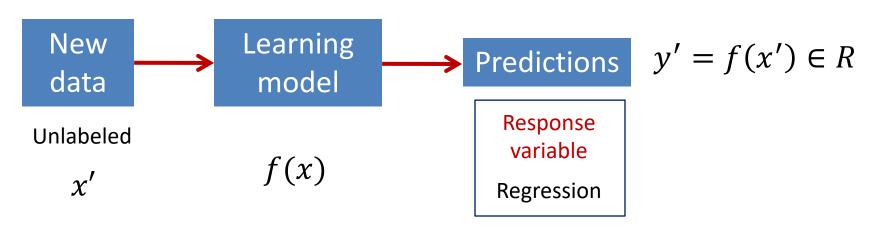
- Announcements
 - First tutorial (recording and notebook) available on Canvas
 - Panda tutorial by Omkar on Wed at 4pm
- Multiple Linear Regression
 - Vector and matrix gradients
 - Closed-form solution derivation
- Lab in Python
 - Simple LR
 - Multiple LR
- Practical issues when training LR models

Supervised Learning: Regression

Training

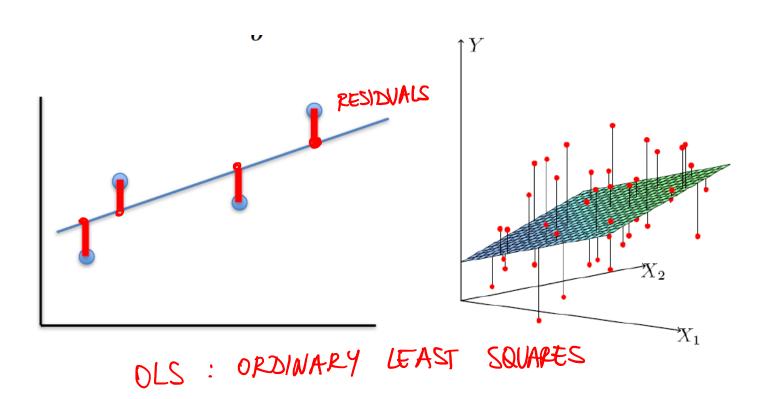


Testing

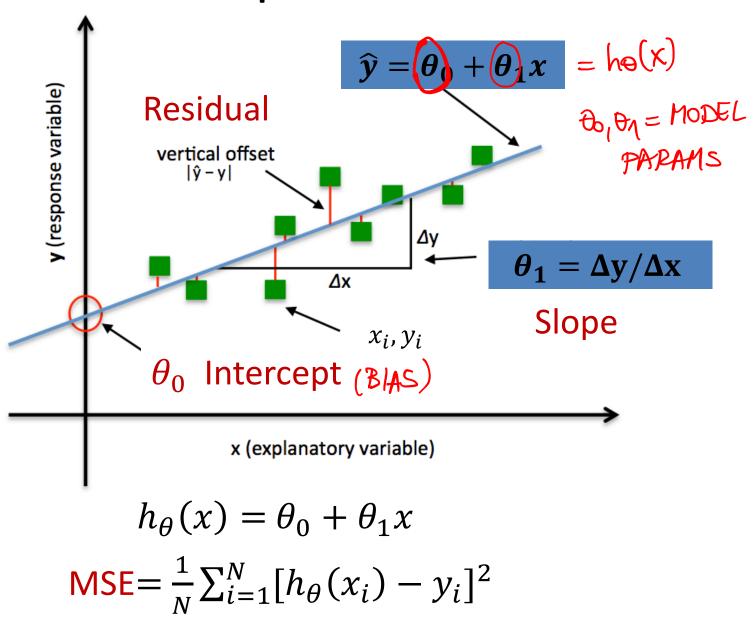


Least-Squares Linear Regression

MSE:
$$g(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left[h_{\theta}(x_i) - g_i \right]^2$$
RESIDUAL



Interpretation



Solution for simple linear regression

• Dataset $x_i \in R$, $y_i \in R$, $h_{\theta}(x) = \theta_0 + \theta_1 x$

Min•
$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (\theta_0 + \theta_1 x_i - y_i)^2$$
 MSE / Loss

$$\left(\frac{\partial J(\theta)}{\partial \theta_0} = \frac{2}{N} \sum_{i=1N} (\theta_0 + \theta_1 x_i - y_i) = 0 \right)$$

$$\frac{\partial J(\theta)}{\partial \theta_1} = \frac{2}{N} \sum_{i=1}^{N} x_i (\theta_0 + \theta_1 x_i - y_i) = 0$$

Solution of min loss

$$-\theta_{0} = \overline{y} - \theta_{1} \overline{x}$$

$$-\theta_{1} = \frac{\sum_{i=1}^{N} x_{i}}{\sum_{i=1}^{N} x_{i}} = \frac{\sum_{i=1}^{N} x_{i}}{\sum_{i=1}^{N} y_{i}}$$

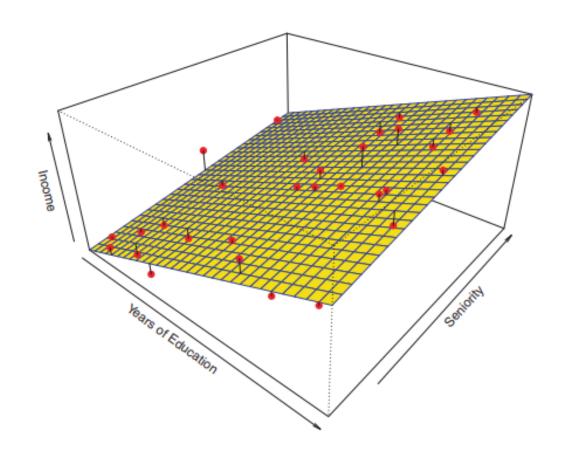
$$\overline{y} = \frac{\sum_{i=1}^{N} y_{i}}{N}$$

$$\overline{y} = \frac{\sum_{i=1}^{N} y_{i}}{N}$$

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

$$\bar{y} = \frac{\sum_{i=1}^{N} y_i}{N}$$

Multiple Linear Regression



Linear Regression with at least 2 predictors

272

• Dataset: $x_i \in R^d$, $y_i \in R$

Vector Norms

Vector norms: A norm of a vector ||x|| is informally a

measure of the "length" of the vector.

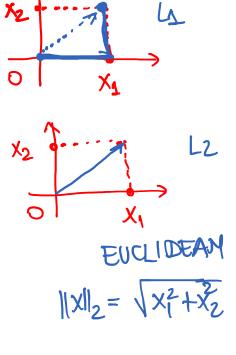
$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Common norms: L₁, L₂ (Euclidean)

$$||x||_1 = \sum_{i=1}^n |x_i| \qquad ||x||_2 = \sqrt{\sum_{i=1}^n x_i^2} \qquad \text{EUCLIDEAN}$$

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2} \qquad ||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$



 $-L_{\infty}$

$$||x||_{\infty} = \max_{i} |x_i|$$

Vector products

We will use lower case letters for vectors The elements are referred by x_i.

Vector dot (inner) product:

$$x^T y \in \mathbb{R} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i. \in \mathbb{R}$$
She: 1xn

COLUMN

Vector outer producţ:

$$xy^T \in \mathbb{R}^{m \times n} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} = \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_n \\ x_2y_1 & x_2y_2 & \cdots & x_2y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_my_1 & x_my_2 & \cdots & x_my_n \end{bmatrix}$$

$$\text{SIZE: MXN}$$

Hypothesis Multiple LR

SIMPLE UP:
$$h_{\theta}(x) = \theta_{0} + \theta_{0} x$$

MULTIPLE UP: $h_{\theta}(x) = \theta_{0} + \theta_{0} x_{0} + \theta_{2} x_{2} + \dots + \theta_{d} x_{d} = 0$
 $x = \begin{bmatrix} x_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_$

Training data

H training examples

$$Xi = (Xin, Xi2, ..., Xid)$$
 d potures

 $Xi = (Xin, Xi2, ..., Xid)$ d potures

 $Xi = (Xin, Xi2, ..., Xid)$
 $Xin = (Xin, Xi2, ..., Xid)$
 $Xin = (Xin, Xin, ..., Xid)$
 $Xin = (Xin, Xin, ..., Xid)$
 $Xin = (Xin, ..., Xid)$
 $Xin = (Xin, Xin, ..., Xid)$
 $Xin = (Xin, ..., Xid)$
 $Xin = (Xin, ..., Xid)$
 $Xin = (Xin, Xin, ..., Xid)$
 $Xin = (Xin,$

Use Vectorization

Loss function MSE

For the linear regression cost function:

The linear regression cost function:

$$I(\theta) = \frac{1}{N} \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2$$

$$= \frac{1}{N} \sum_{i=1}^{N} [y_i - y_i]^2$$

$$= \frac{1}{N} \sum_{i=1}^{N} [y_i - y_i]^2$$

$$= \frac{1}{N} \sum_{i=1}^{N} [y_i - y_i]^2$$

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_N \end{bmatrix}$$

$$= \frac{1}{11} || X\theta - \eta ||_2^2$$

$$\hat{y} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \vdots \\ \hat{y}_N \end{bmatrix}$$

Matrix and vector gradients

• If $y = f(x), y \in R$ scalar, $x \in R^n$ vector

$$\frac{\partial f(x)}{\partial x} = \left[\frac{\partial f(x)}{\partial x} \dots \frac{\partial f(x)}{\partial x} \right]$$
VECTOR GRADIENT
POW VECTOR.

If
$$y = f(x), y \in R^m, x \in R^n$$

$$\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y}{\partial x} & \frac{\partial y}{\partial x} \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial x} \end{bmatrix}$$

MATRIX GRADIENT

JACOBIAN MATRIX

SHOW MAX.

Properties

• If w, x are
$$(d \times 1)$$
 vectors, $\frac{\partial w^T x}{\partial x} = w^T$

• If A:
$$(n \times d) x$$
: $(d \times 1)$, $\frac{\partial Ax}{\partial x} = A$

• If A:
$$(d \times d) x$$
: $(d \times 1)$, $\frac{\partial x^T A x}{\partial x} = (A + A^T) x$
• If A symmetric: $\frac{\partial x^T A x}{\partial x} = 2Ax$

• If A symmetric:
$$\frac{\partial x^{T} Ax}{\partial x} = 2Ax$$

•
$$w^T x = w_1 x_1 + \dots + w_d x_d = w_1$$

 $\frac{\partial w^T x}{\partial x} = \left[\frac{\partial w^T x}{\partial x} + \dots + \frac{\partial w^T x}{\partial x}\right] = \left[\frac{w_1}{2} + \frac{w_2}{2} + \dots + \frac{\partial w^T x}{\partial x}\right] = w^T$

$$\|x\|^2 = x_1^2 + \dots + x_d^2 \in \mathbb{R}$$

$$\frac{3||X||^2}{3||X||^2} = \left[\frac{3||X||^2}{3|X|} \dots\right]$$

$$\frac{3||x||^2 = x_1^2 + \dots + x_d}{3||x||^2} = \frac{3||x||^2}{3|x_d} = \frac{2||x||^2}{3|x_d} = \frac{2||x|$$

Min loss function

– Notice that the solution is when $\frac{\partial}{\partial \boldsymbol{\theta}}J(\boldsymbol{\theta})=0$ -> X: SIZE [NX(A4))

$$J(\theta) = \frac{1}{N} \left| |X\theta - y| \right|^2 \in \mathbb{R}$$

$$\frac{37\theta}{3\theta} = \frac{1}{N} \cdot 2 \cdot (X\theta \cdot y)^{T} \cdot \frac{3(X\theta - y)}{3\theta} \quad \text{CHAIN PULE}$$

$$= \frac{2}{N} (X\theta - y)^{T} \cdot X = 0$$

$$(X\theta - y)^{T} \cdot X = 0 \quad \text{TRANSPOSE} \quad (A^{T})^{T} = A$$

$$X^{T} (X\theta - y) = 0 \Rightarrow (X^{T}X) \cdot \theta = X^{T}y$$

$$X^{T} (X\theta - y) = 0 \Rightarrow (X^{T}X) \cdot \theta = X^{T}y$$

$$(10SE) \quad \text{FOLM OPTIMAL } \theta = (X^{T}X)^{T} \cdot X^{T}y$$

$$SOUTTON \quad TO \quad MIN \quad MSE \quad (AH) \times (AH) \times$$

INPUT: X MATRIX TRAINING DATA
Y VECTOR RESPONSES

OUTFUT:
$$\theta = (x^Tx)^Tx^Ty$$
 MIN MSE
ASSUMED x^Tx INVERTIBLE

For
$$d=1$$
, $b=\begin{bmatrix}\theta_0\\\theta\Lambda\end{bmatrix}$
 $\chi: \text{ size } N\times 2$

How Well Does the Model Fit?

Residual Sum of Squares

$$-RSS = \sum [R_i]^2 = \sum [y_i - (\theta_0 + \theta_1 x_i)]^2$$

Total Sum of Squares

$$-TSS = \sum [y_i - \bar{y}]^2 \quad Var(y)$$

- Total variance of the response
- Proportion of variability in Y that can be explained using X

$$-R^2 = 1 - \frac{RSS}{TSS} \in [0,1]$$

• Correlation between feature and response
$$\rho = Corr(X,Y) = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{N} (y_i - \bar{y})^2}}$$

- For simple regression R^2 is equal to ρ^2
- For multiple LR, R^2 can be used

Vectorization

- Two options for operations on training data
 - Matrix operations
 - For loops to update individual entries
- Most software packages are highly optimized for matrix operations
 - Python numpy
 - Preferred method!

Matrix operations are much faster than loops!

Closed-form solution

• Can obtain θ by simply plugging X and y into

$$\boldsymbol{\theta} = (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X})^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

$$X = \begin{bmatrix} 1 & x_{11} & \dots & x_{1d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{i1} & \dots & x_{id} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N1} & \dots & x_{Nd} \end{bmatrix} \qquad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_N \end{bmatrix}$$

- If X^TX is not invertible (i.e., singular), may need to:

 A MATRIX, G. PSEIDO
 AND

 AGA = A

 AGA = A
 - Use pseudo-inverse instead of the inverseIn python, numpy.linalg.pinv(a)

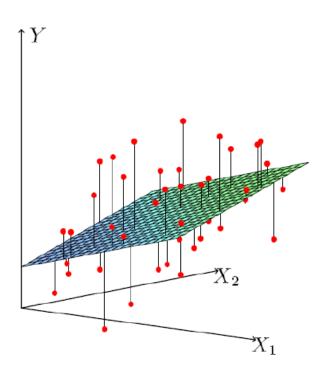
Remove extra features to ensure that $d \le n$

Multiple Linear Regression

- Dataset: $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- Hypothesis $h_{\theta}(x) = \theta^T x$

• MSE =
$$\frac{1}{N}\sum (\theta^T x_i - y_i)^2$$
 Loss / cost

$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$



Lab Simple Linear Regression

```
#!/usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from sklearn.model selection import train test split
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean squared error
from sklearn.linear model import Ridge, RidgeCV, Lasso, LassoCV
from sklearn.datasets import load boston
boston dataset = load boston()
```

Boston house prediction dataset

Lab

```
boston = pd.DataFrame(boston_dataset.data, columns=boston_dataset.feature_names)
boston['MEDV'] = boston_dataset.target
boston.head(5)
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2

```
print(len(boston))
boston.shape
```

506

(506, 14)

correlation_matrix = boston.corr().round(2)
annot = True to print the values inside the square
sns.heatmap(data=correlation_matrix, annot=True)

: <AxesSubplot:>

CRIM	1	-0.2	0.41	-0.06	0.42	-0.22	0.35	-0.38	0.63	0.58	0.29	-0.39	0.46	-0.39		- 1.0
ZN	-0.2	1	-0.53	-0.04	-0.52	0.31	-0.57	0.66	-0.31	-0.31	-0.39	0.18	-0.41	0.36		- 0.8
INDUS	0.41	-0.53	1	0.06	0.76	-0.39	0.64	-0.71	0.6	0.72	0.38	-0.36	0.6	-0.48		
CHAS	-0.06	-0.04	0.06	1	0.09	0.09	0.09	-0.1	-0.01	-0.04	-0.12	0.05	-0.05	0.18		- 0.6
NOX	0.42	-0.52	0.76	0.09	1	-0.3	0.73	-0.77	0.61	0.67	0.19	-0.38	0.59	-0.43		- 0.4
RM	-0.22	0.31	-0.39	0.09	-0.3	1	-0.24	0.21	-0.21	-0.29	-0.36	0.13	-0.61	0.7		
AGE	0.35	-0.57	0.64	0.09	0.73	-0.24	1	-0.75	0.46	0.51	0.26	-0.27	0.6	-0.38		- 0.2
DIS	-0.38	0.66	-0.71	-0.1	-0.77	0.21	-0.75	1	-0.49	-0.53	-0.23	0.29	-0.5	0.25		- 0.0
RAD	0.63	-0.31	0.6	-0.01	0.61	-0.21	0.46	-0.49	1	0.91	0.46	-0.44	0.49	-0.38		0.0
TAX	0.58	-0.31	0.72	-0.04	0.67	-0.29	0.51	-0.53	0.91	1	0.46	-0.44	0.54	-0.47	-	-0.2
PTRATIO	0.29	-0.39	0.38	-0.12	0.19	-0.36	0.26	-0.23	0.46	0.46	1	-0.18	0.37	-0.51		
В	-0.39	0.18	-0.36	0.05	-0.38	0.13	-0.27	0.29	-0.44	-0.44	-0.18	1	-0.37	0.33		0.4
LSTAT	0.46	-0.41	0.6	-0.05	0.59	-0.61	0.6	-0.5	0.49	0.54	0.37	-0.37	1	-0.74		-0.6
MEDV	-0.39	0.36	-0.48	0.18	-0.43	0.7	-0.38	0.25	-0.38	-0.47	-0.51	0.33	-0.74	1		
	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	о в	LSTAT	MEDV		

Lab

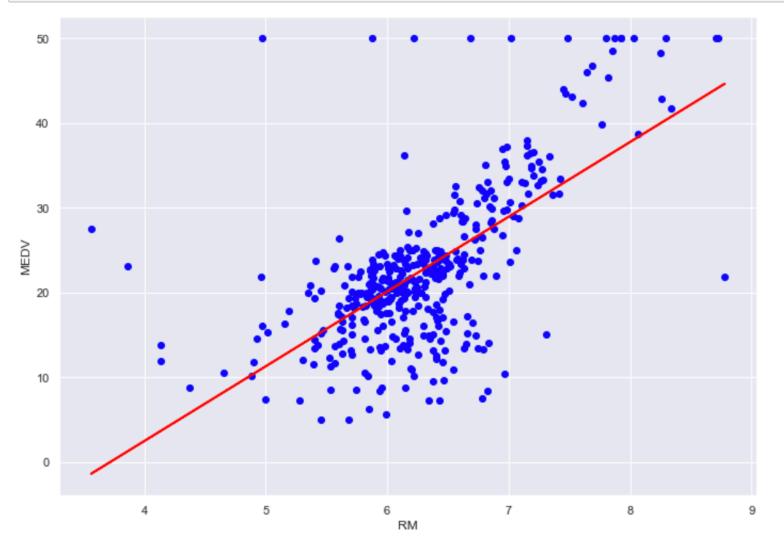
```
# Simple LR
X = pd.DataFrame(np.c_[boston['RM']], columns = ['RM'])
Y = boston['MEDV']
X train, X test, Y train, Y test = train test split(X, Y, test size = 0.2, random state=5)
print(X train.shape)
print(X test.shape)
print(Y_train.shape)
print(Y test.shape)
(404, 1)
(102, 1)
(404,)
(102,)
slr = LinearRegression()
slr.fit(X train, Y train)
```

Lab

```
print(slr.intercept )
print(slr.coef )
-32.839129906011266
[8.82345634]
Y train predict = slr.predict(X train)
mse = mean squared error(Y train, Y train predict)
print("The model performance for training set")
print('MSE is {}'.format(mse))
The model performance for training set
MSE is 48.612648648611334
df = pd.DataFrame({'Actual': Y train, 'Predicted': Y train predict})
df.head()
```

	Actual	Predicted
33	13.1	17.463395
283	50.0	37.069115
418	8.8	19.722200
502	20.6	21.160423
402	12.1	23.666285

```
plt.scatter(X_train, Y_train, color='blue')
plt.plot(X_train, Y_train_predict, color='red', linewidth=2)
plt.xlabel('RM')
plt.ylabel('MEDV')
plt.show()
```



Multiple LR Lab

```
# Multiple LR
  #X multi = pd.DataFrame(np.c [boston['LSTAT'], boston['RM']], columns = ['LSTAT','RM'])
  X multi = boston.loc[:, boston.columns != 'MEDV']
  Y = boston['MEDV']
  X_m_train, X_m_test, Y_m_train, Y_m_test = train_test_split(X_multi, Y, test_size = 0.2, random_state=5)
  print(X m train.shape)
  print(X m test.shape)
  print(Y m train.shape)
  print(Y m test.shape)
  (404, 13)
  (102, 13)
  (404,)
  (102,)
: mlr = LinearRegression()
  mlr.fit(X m train, Y m train)
: LinearRegression()
```

Multiple LR Lab

```
coeff_df = pd.DataFrame(mlr.coef_, X_m_train.columns, columns=['Coefficient'])
coeff_df
```

:

	••••
CRIM	-0.130800
ZN	0.049403
INDUS	0.001095
CHAS	2.705366
NOX	-15.957050
RM	3.413973
AGE	0.001119
DIS	-1.493081

RAD

TAX

В

PTRATIO

LSTAT

Coefficient

0.364422 -0.013172

-0.952370

0.011749

-0.594076

Simple vs Multiple LR

```
print(slr.coef )
-32.839129906011266
[8.82345634]
 Y train predict = slr.predict(X train)
mse = mean squared error(Y train, Y train predict)
 print("The model performance for training set")
 print('MSE is {}'.format(mse))
The model performance for training set
MSE is 48.612648648611334
: Y m train predict = mlr.predict(X m train)
 mse = mean squared error(Y m train, Y m train predict)
  print("The model performance for training set")
  print("----")
  print('MSE is {}'.format(mse))
 print("\n")
 The model performance for training set
 MSE is 22.477090408387635
```

print(slr.intercept)

Simple vs Multiple LR

```
df_m = pd.DataFrame({'Actual': Y_train, 'Predicted simple': Y_train_predict, 'Predicted multi': Y_m_train_predict})
df_m.head(10)
```

	Actual	Predicted simple	Predicted multi
33	13.1	17.463395	13.828770
283	50.0	37.069115	44.528528
418	8.8	19.722200	3.915991
502	20.6	21.160423	22.377959
402	12.1	23.666285	18.235923
368	50.0	11.013448	25.523748
201	24.1	21.531008	29.439747
310	16.1	11.039918	18.694533
343	23.9	26.242734	27.856463
230	24.3	19.933962	24.644734