DS 4400

Machine Learning and Data Mining I Spring 2021

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Today's Outline

- Course policies
- Learning tasks
 - Supervised Learning: classification, regression
 - Unsupervised Learning
- ML terminology
- Learning challenges
 - Bias-Variance tradeoff
- Probability reviews

Course Information

 Website: www.ccs.neu.edu/home/alina/classes/Spring2021

Canvas: https://canvas.northeastern.edu

Gradescope: gradescope.com

Communication: <u>piazza.com</u>

- E-mail:
 - a.oprea@northeastern.edu
 - gojala.o@northeastern.edu
 - malviya.p@northeastern.edu
 - parkar.s@northeastern.edu

Class Outline

- Introduction 1 week
 - Probability and linear algebra review
- Linear regression and regularization 2 weeks
- Classification 5 weeks
 - Linear classifiers: logistic regression, LDA,
 - Non-linear: kNN, decision trees, SVM, Naïve Bayes
 - Ensembles: random forest, boosting
 - Model selection, regularization, cross validation
- Neural networks and deep learning 2 weeks
 - Back-propagation, gradient descent
 - NN architectures (feed-forward, convolutional, recurrent)
- Ethics of AI 1 lecture
- Adversarial ML 1 lecture
 - Security of ML at testing and training time

Policies

Instructors

- Alina Oprea
- TAs: Omkar Reddy Gojala, Prabal Malviya, Saurabh Nitin Parkar

Schedule

- Tue 11:45am 1:25pm, Thu 2:50-4:30pm EST
- Shillman Hall 320 and Zoom lectures
- Office hours (Zoom):
 - Alina: Tuesday 4:30-5:30pm; Thursday 4:30 5:30 pm
 - Omkar: Monday and Wednesday 3:00-4:00pm;
 - Prabal: Monday and Thursday 12:00-1:00pm
 - Saurabh: Friday 10am-12pm
 - Links on Canvas under "Syllabus"

Online resources

- Slides / recordings will be posted after each lecture for 48 hours
- Use Piazza for questions
- Canvas as course management system

Policies, cont.

Your responsibilities

- Please be on time, attend classes, and take notes
- Participate in interactive discussion in class
- Submit assignments/ programming projects on time

Late days for assignments

- 5 total late days, after that loose 20% for every late day
- Assignments are due at 11:59pm on the specified date
- We will use Gradescope for submitting assignments
- No need to email for late days

Grading

- Assignments 25%
 - 4-5 assignments and programming exercises based on studied material in class
- Final project 30%
 - Select your own project based on public dataset
 - Submit short project proposal and milestone
 - Presentation at end of class (10 min) and written report
 - Team of 2 students
- Midterm Exam –20%
 - Tentative date: Tuesday, March 2
- Final Exam 20%
 - Tentative date: Tuesday, April 6
- Class participation 5%
 - Participate in class discussion/Zoom and on Piazza
 - Pop up quizzes

Assignments

 Several theoretical questions and many programming exercises

Language

- Use Python (preferred) or R
- Jupyter notebooks recommended

Submission

- Submit PDF report
- Includes all the results, as well as link to code and instructions to run it

Final project

- Goal: work on a larger data science project
 - Build your portfolio and increase your experience

Requirements

- Large dataset: at least 20,000 records (public source)
- Not recommended to collect your own data
- Pick application of interest
- We will also a list of projects
- Experiment with at least 4 ML models
- Perform in-depth analysis (which features contribute mostly to prediction, which model performs best)
- Teams of 2 students, will have a TA assigned

Timeline

- Proposal: mid class; milestone 3 weeks after (Instructors will provide early feedback)
- Final presentation (10 mins) and report (~6 pages)

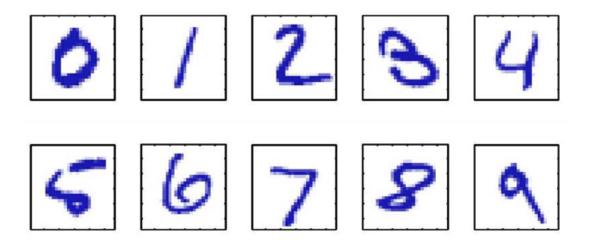
Learning Tasks

- Supervised learning
 - Classification
 - Regression
 - Examples
- Unsupervised learning
 - Clustering

Slides adapted from

- A. Zisserman, University of Oxford, UK
- S. Ullman, T. Poggio, D. Harari, D. Zysman, D Seibert, MIT
- D. Sontag, MIT
- Figures from "An Introduction to Statistical Learning", James et al.

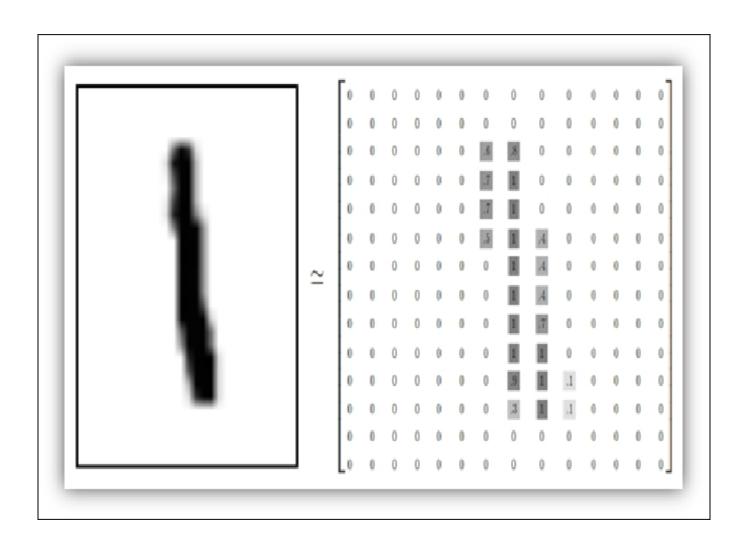
Example 1 Handwritten digit recognition



Images are 28 x 28 pixels

MNIST dataset: Predict the digit
Multi-class classifier

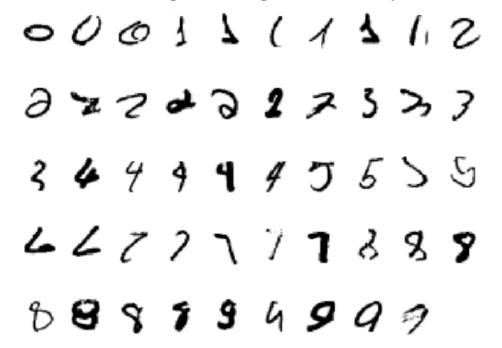
Data Representation



Model the problem

As a supervised classification problem

Start with training data, e.g. 6000 examples of each digit



- Can achieve testing error of 0.4%
- One of first commercial and widely used ML systems (for zip codes & checks)

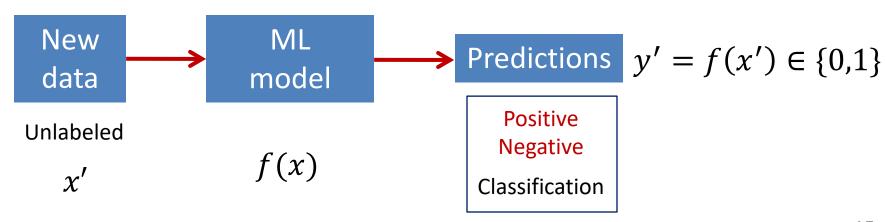
Other examples

- Spam classification
 - Is my email spam or not?
 - Binary classification
- Weather prediction
 - Will it rain tomorrow or not?
- Healthcare classification
 - Is the patient sick or not?
- Image classification
 - What object does the image depict?

Supervised Learning: Classification

Training

Testing



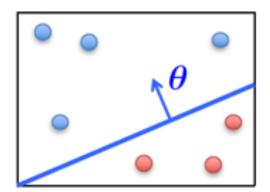
Classification

Training data

- $-x_i = [x_{i,1}, ... x_{i,d}]$: vector of image pixels (features)
- Size d = 28x28 = 784
- $-y_i$: image label
- Models (hypothesis)
 - Example: Linear model (parametric mod

•
$$f(x) = wx + b$$

- Classify 1 if f(x) > T; 0 otherwise



Classification algorithm

- Training: Learn model parameters w, b to minimize objective
- Output: "optimal" model

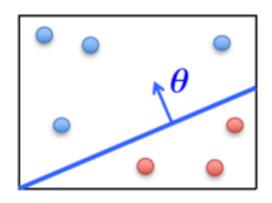
Testing

- Apply learned model to new data and generate prediction f(x)

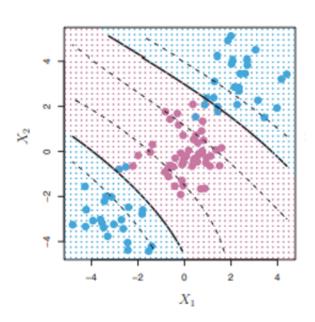
Objectives

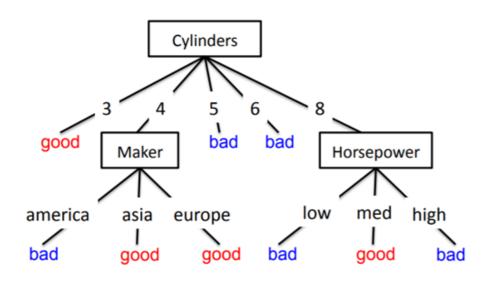
What are we trying to optimize?

Example Classifiers



Linear classifiers: logistic regression, SVM, LDA





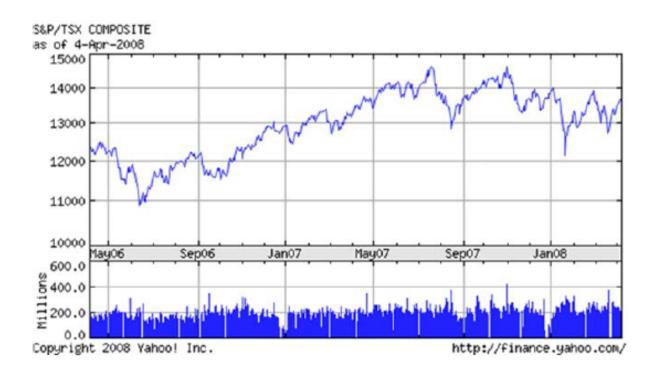
Decision trees

Why Multiple Models?

There is no free lunch in statistics / ML!

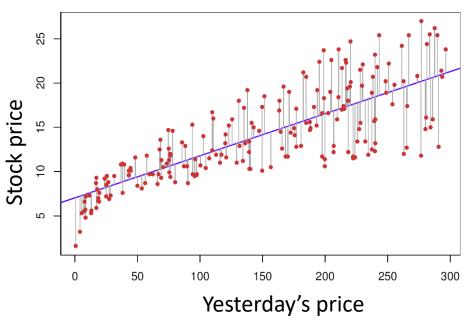
- There is no single model that dominates all
- Performance depends on many things, such as:
 - Data distribution
 - Data dimensionality
 - Quality of data and labeling

Example 2 Stock market prediction



- Task is to predict stock price at future date
- This is a regression task, as the output is continuous

Regression



Linear regression

1 dimension

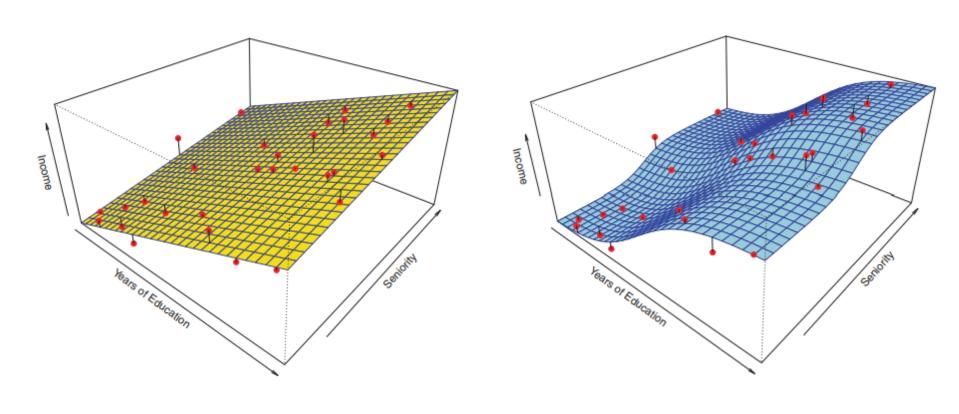
Suppose we are given a training set of N observations

$$(x_1, ..., x_N)$$
 and $(y_1, ..., y_N)$

Regression problem is to estimate y(x) from this data

$$x_i = (x_{i1}, ..., x_{id})$$
 - d predictors (features) y_i - response variable, numerical

Income Prediction



Linear Regression

Non-Linear Regression Polynomial/Spline Regression

Objectives

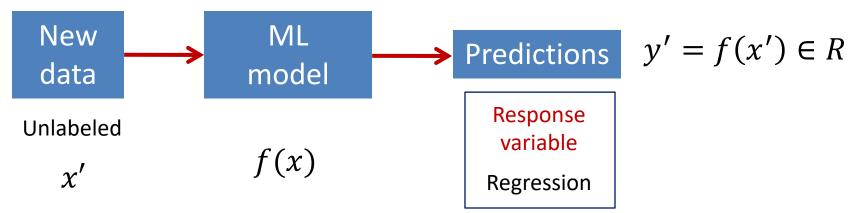
What are we trying to optimize?

Supervised Learning: Regression

Training



Testing

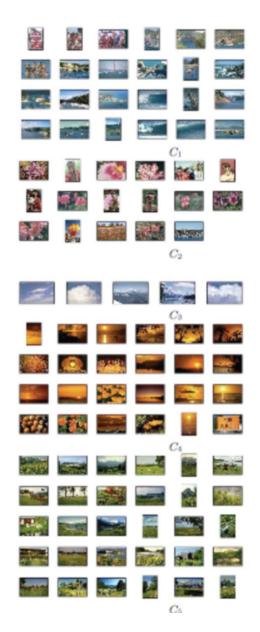


Example 3: image search

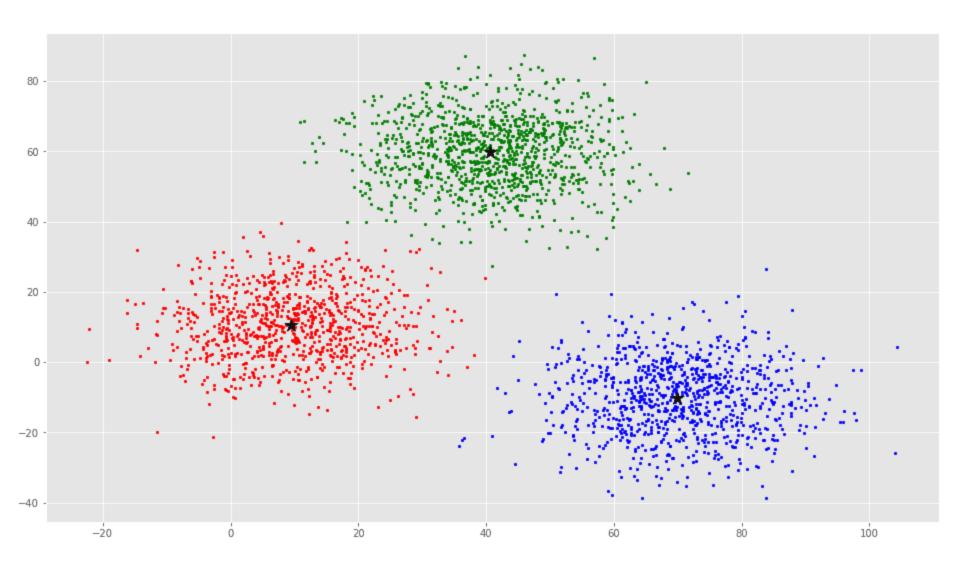
Clustering images



Find similar images to a target one

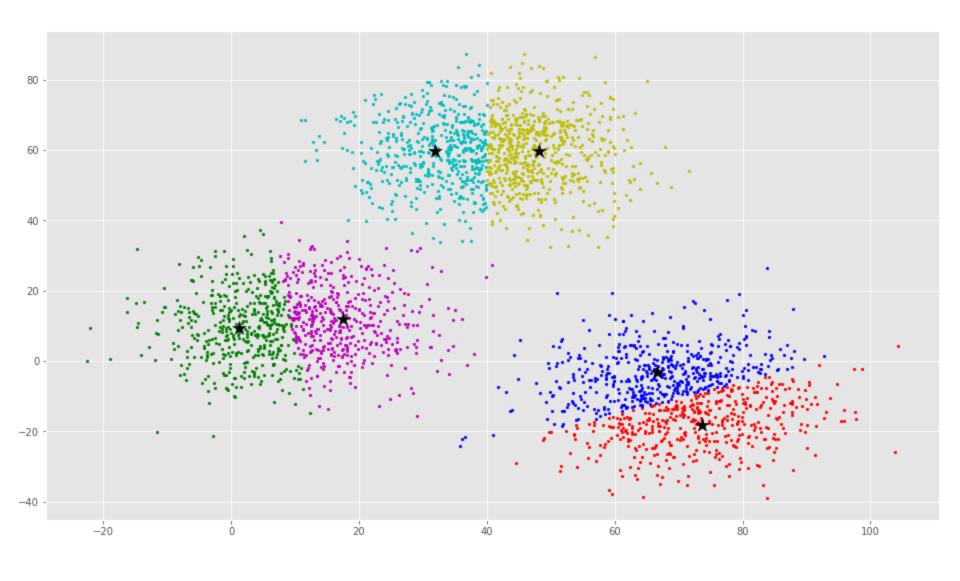


K-means Clustering



K=3

K-means Clustering



K=6

Unsupervised Learning

Clustering

- Group similar data points into clusters
- Example: k-means, hierarchical clustering, densitybased clustering

Dimensionality reduction

- Project the data to lower dimensional space
- Example: PCA (Principal Component Analysis), UMAP

Feature learning

- Find feature representations
- Example: Autoencoders

Supervised Learning Tasks

- Classification
 - Learn to predict class (discrete)
 - Minimize classification error
- Regression
 - Learn to predict response variable (numerical)
 - Minimize MSE (Mean Square Error)
- Both classification and regression
 - Training and testing phase
 - "Optimal" model is learned in training and applied in testing

Learning Challenges

Chapters 2.2.1 and 2.2.2 from ISL book

Goal

- Classify well new testing data
- Model generalizes well to new testing data
- Minimize error (MSE or classification error) in testing

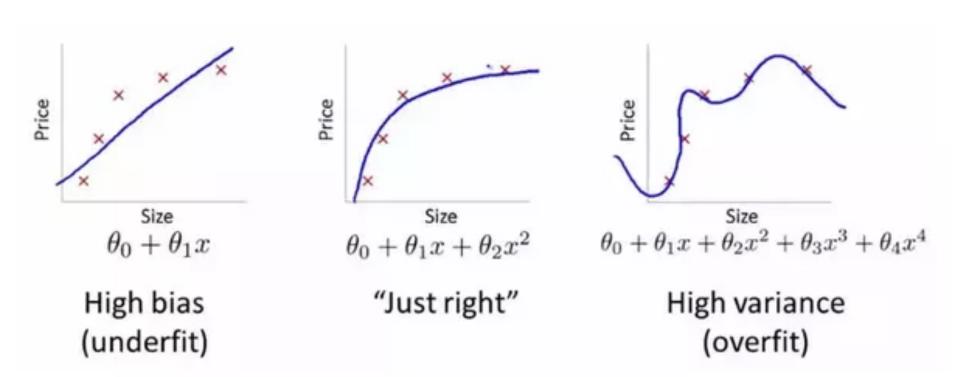
Variance

 Amount by which model would change if we estimated it using a different training data set

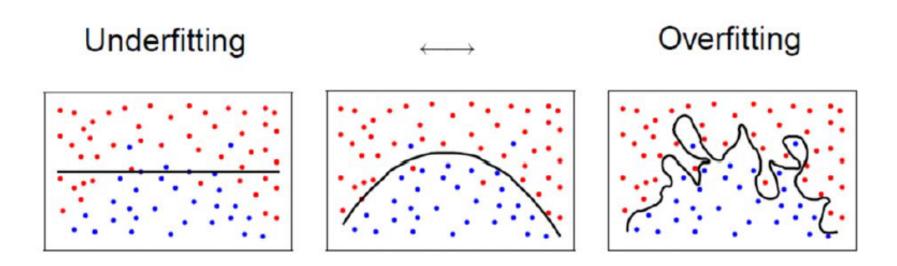
Bias

- Error introduced by approximating a real-life problem by a much simpler model
- E.g., for linear models (linear regression) bias is high

Example: Regression

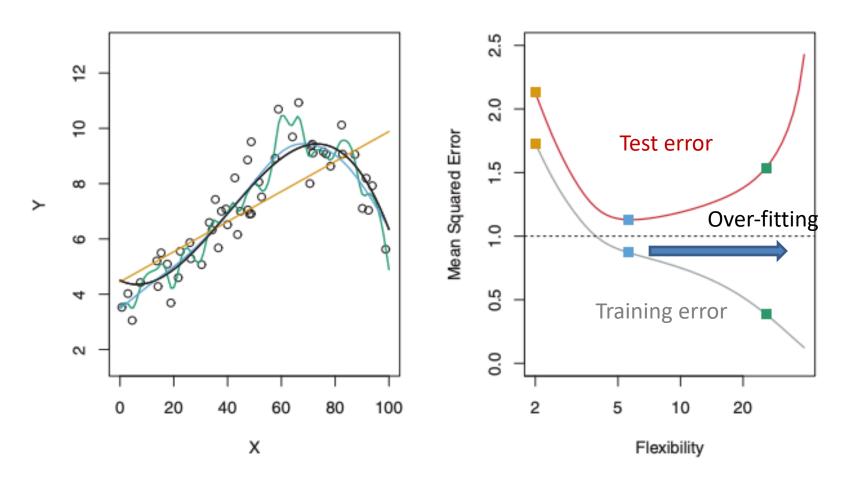


Generalization Problem in Classification



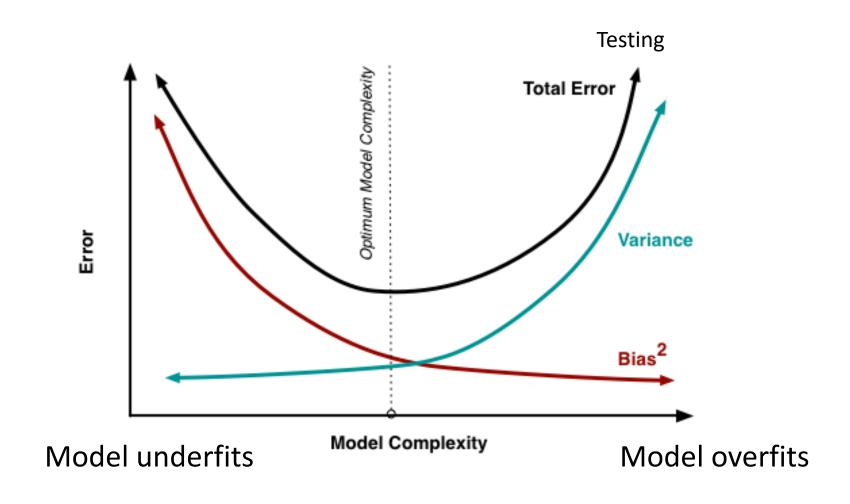
Again, need to control the complexity of the (discriminant) function

Training and testing error



ISL, Chapter 2.2.2

Bias-Variance Tradeoff



Test error is sum of bias, variance and noise

Occam's Razor

- William of Occam: Monk living in the 14th century
- Principle of parsimony:

"One should not increase, beyond what is necessary, the number of entities required to explain anything"

 When many solutions are available for a given problem, we should select the simplest one

Select the simplest machine learning model that gets reasonable accuracy for the task at hand

Recap

- ML is a subset of AI designing learning algorithms
- Learning tasks are supervised (e.g., classification and regression) or unsupervised (e.g., clustering)
 - Supervised learning uses labeled training data
- Learning the "best" model is challenging
 - Design algorithm to minimize the error in testing
 - Minimize training error is not the best strategy
 - Bias-Variance tradeoff
 - Need to generalize on new, unseen test data
 - Occam's razor (prefer simplest model with good performance)