DS 4400

Machine Learning and Data Mining I Spring 2021

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Announcements

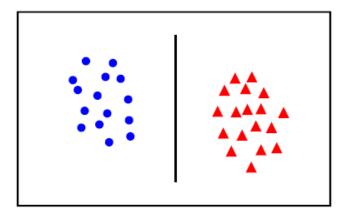
- Midterm exams have been graded
- HW 4 is due next Friday, March 26
- Project milestone due on March 31
 - Template in Gradescope
- Final exam on Tuesday, April 6
 - Review on Thursday, April 1

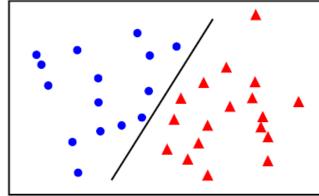
Outline

- Support Vector Machines
 - Non-linearly separable data
 - Support vector classifier
- Deep Learning
 - Motivation
 - Goals
- Deep Learning as representation learning
- Perceptron and its limitations

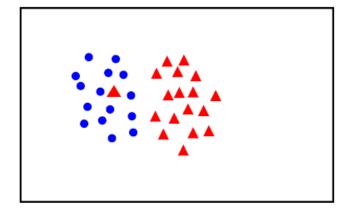
Linear separability

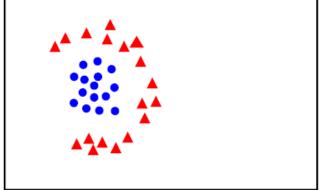
linearly separable



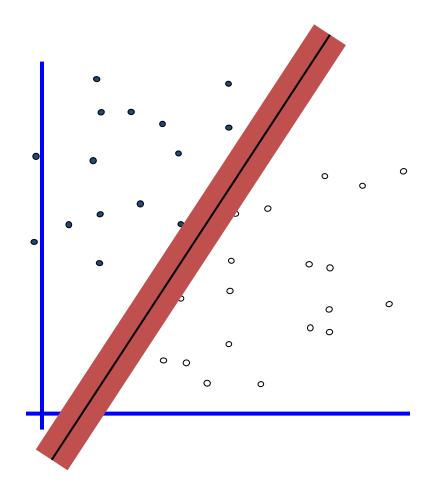


not linearly separable





Maximum Margin



Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a data point.

Choose the maximum margin linear classifier: the linear classifier with the maximum margin.

Maximum margin classifier

- Training data x_1, \dots, x_N with $x_i = (x_{i1}, \dots, x_{id})^T$
- Labels are from 2 classes: $y_i \in \{-1,1\}$

maximize M
$$y_i (\theta_0 + \theta_1 x_{i1} + \cdots \theta_d x_{id}) \ge M \ \forall i$$

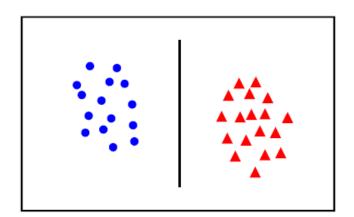
$$||\theta||_2 = 1$$

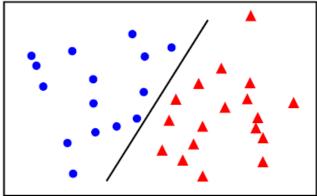
Normalization constraint (to have unique solution)

Each point is on the right side of hyper-plane at distance $\geq M$

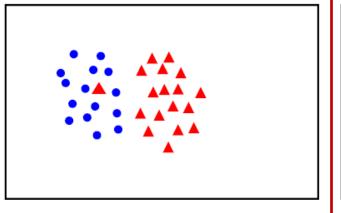
Linear separability

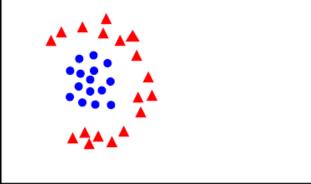
linearly separable





not linearly separable (but almost)





Support vector classifier

- Allow for small number of mistakes on training data
- Soft margin classifier

$$\max \mathsf{M}$$

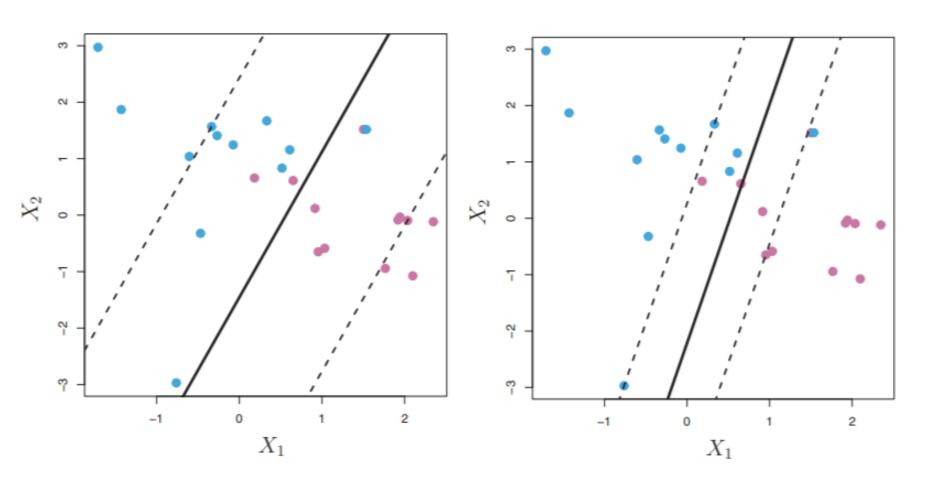
$$y_i \Big(\theta_0 + \theta_1 x_{i1} + \cdots \theta_d x_{id}\Big) \geq M(1 - \epsilon_i) \forall i$$

$$\big| \big|\theta \big| \big|_2 = 1$$

$$\xi_i \geq 0, \sum_i \epsilon_i \leq C$$
 Slack

Error Budget (Hyper-parameter)

Support vectors



Support vectors: all points within the margin of the classifier

Support vector classifier

Just like in separable case, gives solution of the form:

$$f(z) = \theta_0 + \sum_i \alpha_i < z, x_i >$$

Where $\alpha_i \neq 0$ for support vectors (and $\alpha_i = 0$ for all other training points)

- This model is called
 - Support Vector Classifier (SVC)
 - Linear SVM
 - Soft-margin classifier

Logistic Regression

$$J(\theta) = -\sum_{i=1}^{N} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i))]$$

Cost of a single instance:

$$cost (h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$

Can re-write objective function as

$$J(oldsymbol{ heta}) = \sum_{i=1}^n \operatorname{cost} \left(h_{oldsymbol{ heta}}(x_i), y_i
ight)$$

Cross-entropy loss

Regularized Logistic Regression

$$J(\theta) = -\sum_{i=1}^{N} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i))]$$

We can regularize logistic regression exactly as before:

$$J_{\text{regularized}}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda \sum_{j=1}^{d} \theta_j^2$$
$$= J(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}_{[1:d]}\|_2^2$$

L2 regularization

Hinge Loss

- Linear SVM: $h_{\theta}(x_i) = \theta^T x_i$
- Optimization solution equivalent to:

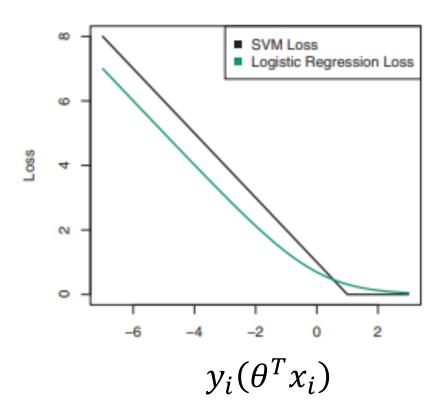
•
$$J(\theta) = \sum_{i=0}^{N} \max(0.1 - y_i h_{\theta}(x_i)) + \lambda \sum_{j=1}^{d} \theta_j^2$$

•
$$J(\theta) = C \sum_{i=0}^{N} \max(0.1 - y_i h_{\theta}(x_i)) + \sum_{j=1}^{d} \theta_j^2$$

C = regularization cost

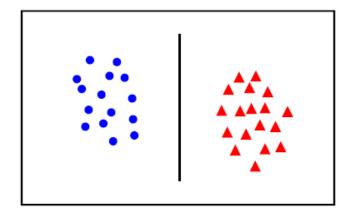
Connection to Logistic Regression

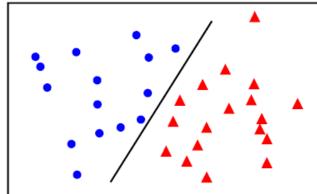
- Logistic regression
 - Cross-entropy loss
- SVM
 - Hinge loss



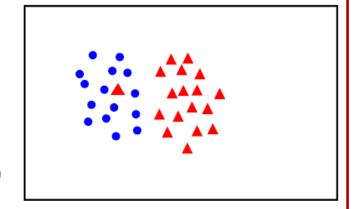
Linear separability

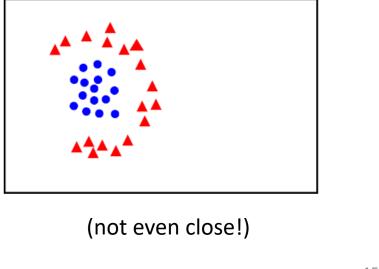
linearly separable





not linearly separable (but almost)





Non-linear decision

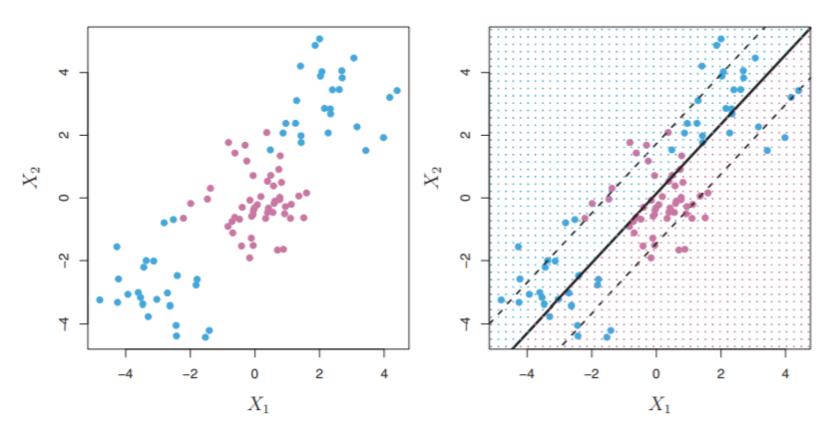
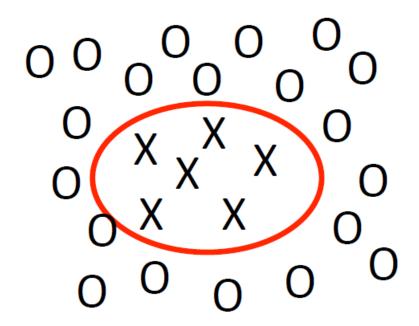


FIGURE 9.8. Left: The observations fall into two classes, with a non-linear boundary between them. Right: The support vector classifier seeks a linear boundary, and consequently performs very poorly.

More examples



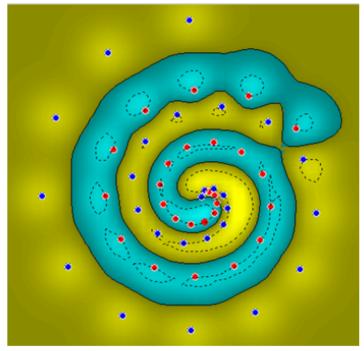


Image from http://www.atrandomresearch.com/iclass/

Kernels

Support vector classifier

$$\begin{aligned} - & \ \ h(z) = \theta_0 + \sum_{i \in S} \alpha_i < z, x_i > \\ & = \theta_0 + \sum_{i \in S} \alpha_i \sum_{j=1} z_j x_{ij} \end{aligned} \qquad \text{Any kernel function!}$$

$$- & \ \ \ \text{S is set of support vectors} \end{aligned}$$

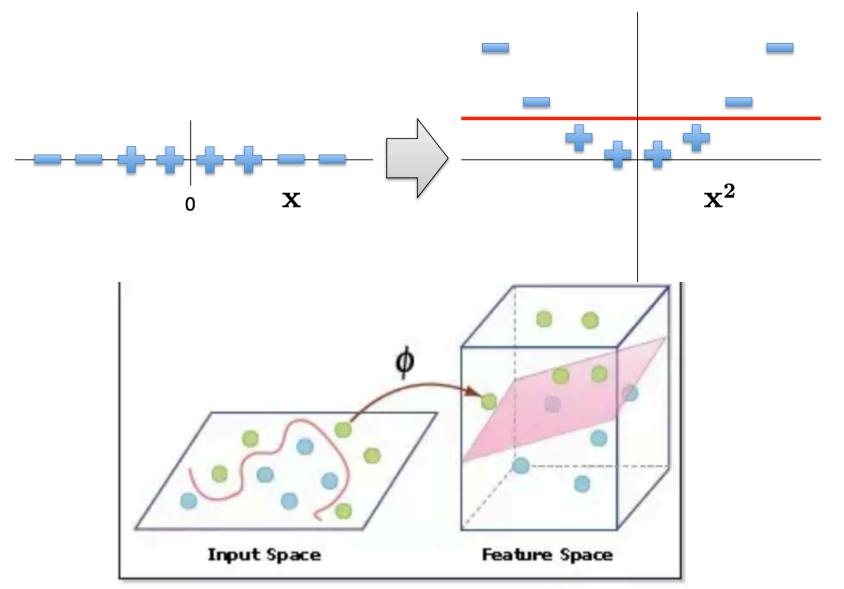
- Replace with $h(z) = \theta_0 + \sum_{i \in S} \alpha_i K(z, x_i)$
- What is a kernel?
 - Function that characterizes similarity between 2 observations
 - $-K(x,y) = \langle x, y \rangle = \sum_{j} x_i y_j$ linear kernel!
 - The closer the points, the larger the kernel
- Intuition
 - The closest support vectors to the point play larger role in classification

The Kernel Trick

"Given an algorithm which is formulated in terms of a positive definite kernel K_1 , one can construct an alternative algorithm by replacing K_1 with another positive definite kernel K_2 "

- > SVMs can use the kernel trick
- Enlarge feature space
- Shape of the kernel changes the decision boundary

Why Use Kernels



SVM Classifier

- Select a kernel function
 - The Gram matrix $G_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$
 - Symmetric matrix
 - Positive semi-definite matrix: $\mathbf{z}^\mathsf{T} \mathbf{G} \mathbf{z} \geq \mathbf{0}$ for every non-zero vector $\mathbf{z} \in \mathbb{R}^n$
- Final SVM classifier is linear combination of kernel between testing point and support vectors

$$-h(z) = \theta_0 + \sum_{i \in S} \alpha_i K(z, x_i)$$

Kernels

Linear kernels

$$-K(x,y) = \langle x,y \rangle = \sum_i x_i y_i$$

Polynomial kernel of degree p

$$-K(x,y) = (1 + \sum_{i=0}^{d} x_i y_i)^p$$

Radial Basis Function (RBF) kernel (or Gaussian)

$$-K(x,y) = \exp(-\sum_{i=0}^{d} (x_i - y_i)^2 / 2\sigma^2)$$

Examples of SVM classifiers

- Notation
 - -S = index of support vectors
 - $-\{x_i\}, i \in S = \text{set of support vectors}$
- SVM with polynomial kernel

$$-h(z) = \theta_0 + \sum_{i \in S} \alpha_i (1 + \sum_{j=0}^d z_j x_{ij})^p$$

- Hyper-parameter p (degree of polynomial)
- SVM with Gaussian / radial kernel

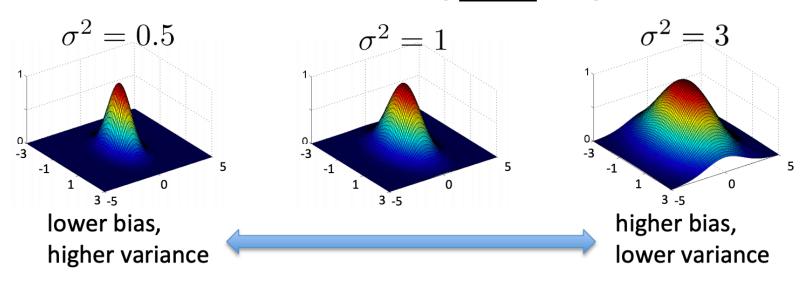
$$-h(z) = \theta_0 + \sum_{i \in S} \alpha_i e^{-\sum_{j=0}^{d} (z_j - x_{ij})^2 / 2\sigma^2}$$

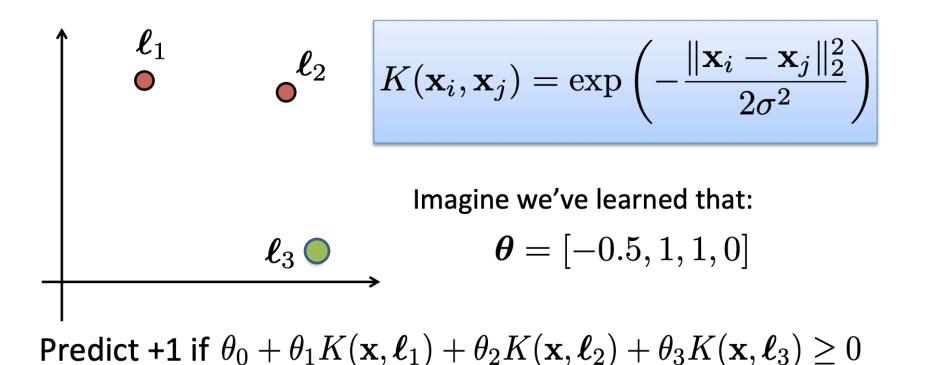
– Hyper-parameter σ

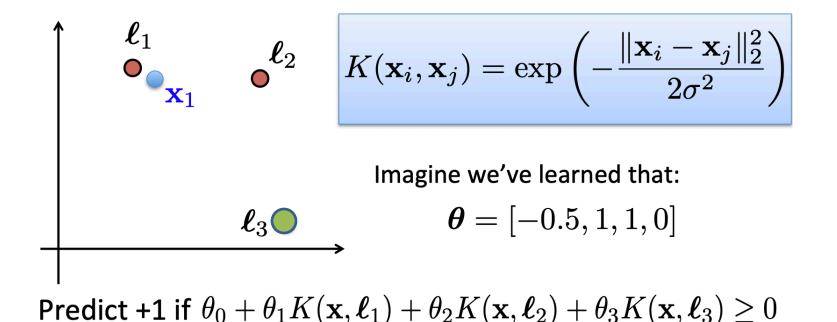
Gaussian / Radial Kernel

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|_2^2}{2\sigma^2}\right)$$

- Has value 1 when $\mathbf{x}_i = \mathbf{x}_j$
- Value falls off to 0 with increasing distance
- Note: Need to do feature scaling <u>before</u> using Gaussian Kernel



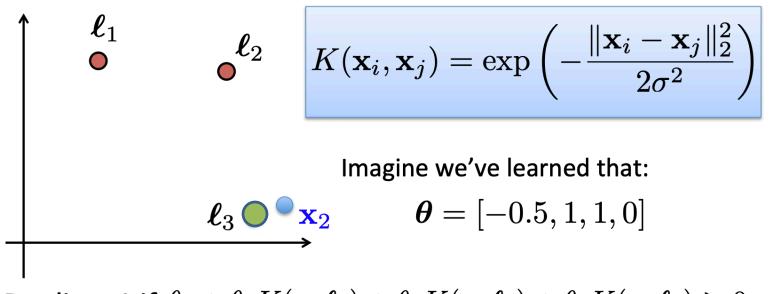




• For
$$\mathbf{x_1}$$
, we have $K(\mathbf{x_1},\ell_1) \approx 1$, other similarities $pprox \mathbf{0}$

$$\begin{aligned} \theta_0 + \theta_1(1) + \theta_2(0) + \theta_3(0) \\ &= -0.5 + 1(1) + 1(0) + 0(0) \\ &= 0.5 \geq 0 \text{ , so predict +1} \end{aligned}$$

Based on example by Andrew Ng

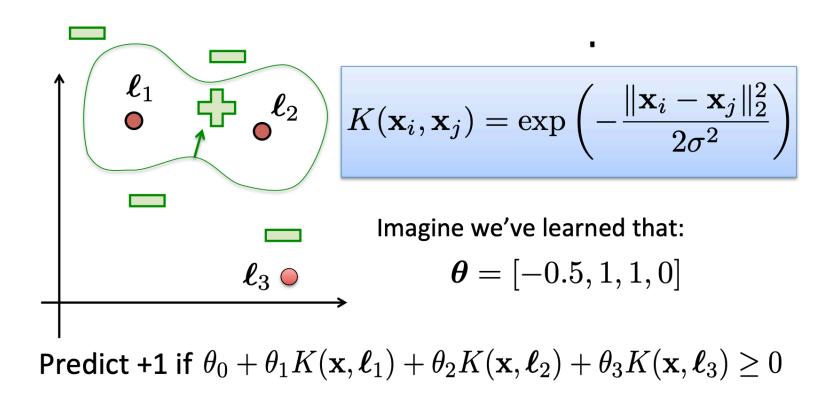


Predict +1 if
$$\theta_0 + \theta_1 K(\mathbf{x}, \boldsymbol{\ell}_1) + \theta_2 K(\mathbf{x}, \boldsymbol{\ell}_2) + \theta_3 K(\mathbf{x}, \boldsymbol{\ell}_3) \ge 0$$

• For $\mathbf{x_2}$, we have $K(\mathbf{x_2}, \ell_3) \approx 1$, other similarities ≈ 0

$$heta_0 + heta_1(0) + heta_2(0) + heta_3(1) \\ = -0.5 + 1(0) + 1(0) + 0(1) \\ = -0.5 < 0 \text{ , so predict -1}$$

Based on example by Andrew Ng



Rough sketch of decision surface

Kernel Example

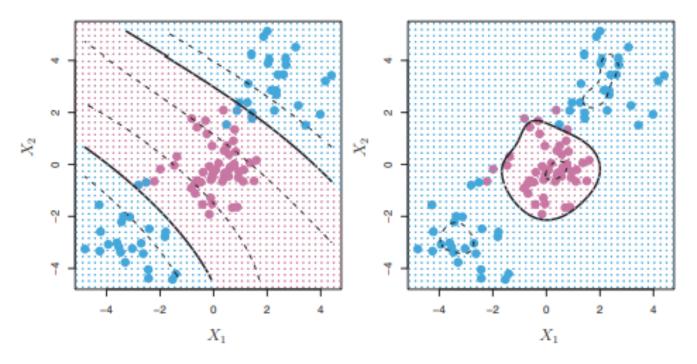


FIGURE 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to the non-linear data from Figure 9.8, resulting in a far more appropriate decision rule. Right: An SVM with a radial kernel is applied. In this example, either kernel is capable of capturing the decision boundary.

Advantages of Kernels

- Generate non-linear features
- More flexibility in decision boundary
- Generate a family of SVM classifiers
- Testing is computationally efficient
 - Cost depends only on support vectors and kernel operation

- Disadvantages
 - Kernels need to be tuned (additional hyperparameters)

When to use different kernels?

- If data is (close to) linearly separable, use linear SVM
- Radial or polynomial kernels preferred for non-linear data
- Training radial or polynomial kernels takes longer than linear SVM
- Other kernels
 - Sigmoid
 - Hyperbolic Tangent

Kernels in ML

- Kernel ridge regression
 - Non-linear regression method
- Kernel Density Estimate (KDE)
 - Unsupervised method for learning density estimation using kernel functions
- Kernel PCA
 - Unsupervised learning for dimensionality reduction
- Kernel clustering
 - Create clusters of similar points
 - Similarity between points computed with kernel function

Review SVM

- SVMs find optimal linear separator
- The kernel trick makes SVMs learn non-linear decision surfaces

- Strength of SVMs:
 - Good theoretical and empirical performance
 - Supports many types of kernels
- Disadvantages of SVMs:
 - "Slow" to train/predict for huge data sets (but relatively fast!)
 - Need to choose the kernel (and tune its parameters)

Comparing SVM with other classifiers

- SVM is resilient to outliers
 - Similar to Logistic Regression
 - LDA or kNN are not
- SVM can be trained with Gradient Descent
 - Hinge loss cost function
- Supports regularization
 - Can add penalty term (ridge or Lasso) to cost function
- Linear SVM is most similar to Logistic Regression

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
 - Yann LeCun
- Thanks!