DS 4400

Machine Learning and Data Mining I Spring 2021

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Outline

- Boosting
 - AdaBoost
 - Properties of boosting
 - Bagging vs Boosting
- Review of linear models
 - Separating hyperplanes
- Support Vector Machines
 - Linearly separable data
 - Maximum margin classifier
 - Non-linearly separable data
 - Support vector classifier

Ensemble Learning

Consider a set of classifiers h_1 , ..., h_L

Idea: construct a classifier $H(\mathbf{x})$ that combines the individual decisions of $h_1, ..., h_L$

- e.g., could have the member classifiers vote, or
- e.g., could use different members for different regions of the instance space

Successful ensembles require diversity

- Classifiers should make different mistakes
- Can have different types of base learners

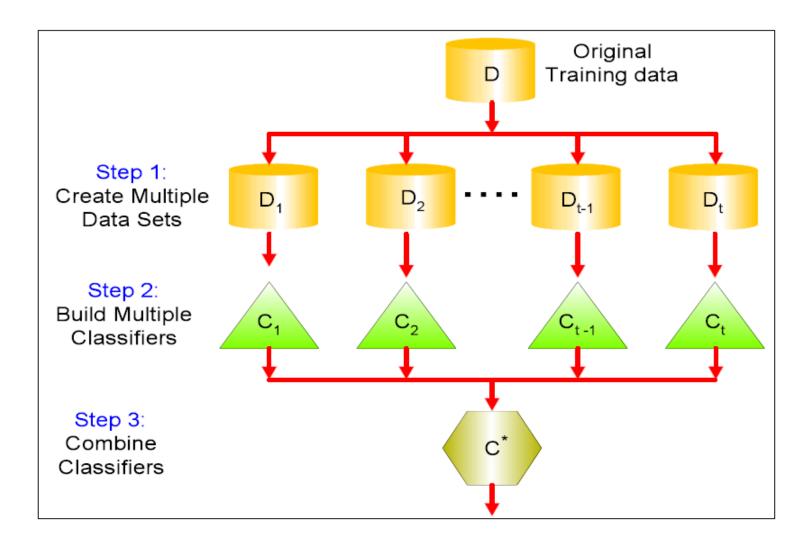
How to Achieve Diversity

- Avoid overfitting
 - Vary the training data
- Features are noisy
 - Vary the set of features

Two main ensemble learning methods

- Bagging (e.g., Random Forests)
- Boosting (e.g., AdaBoost)

Bagging



Overview of AdaBoost

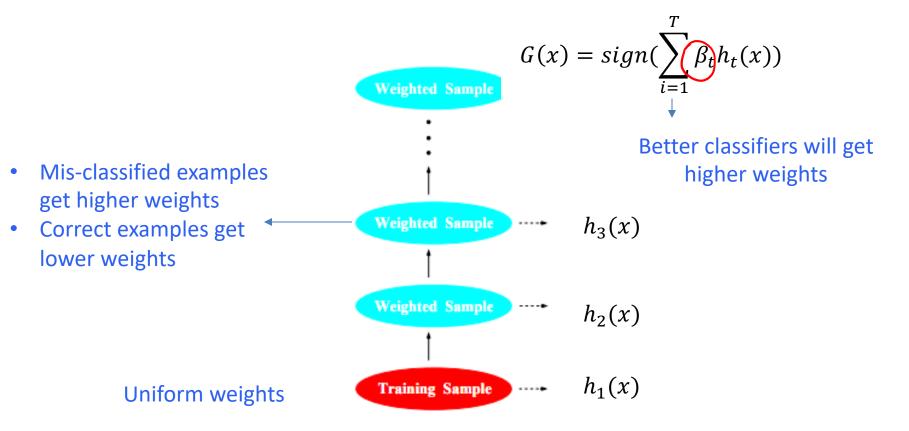


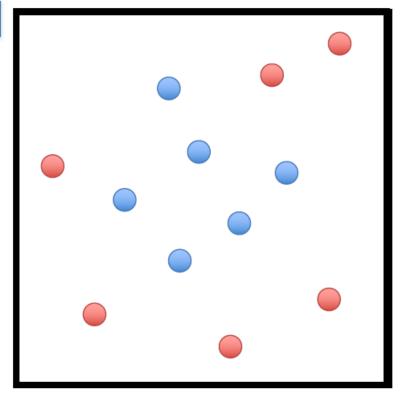
FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted versions of the dataset, and then combined to produce a final prediction.

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



Size of point represents the instance's weight

次ミナハス

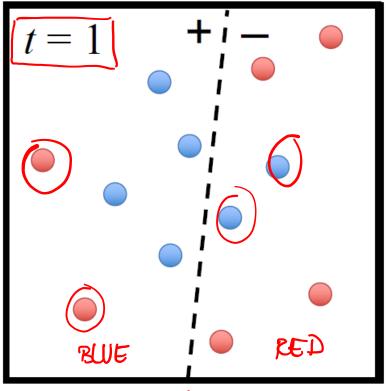
- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- Train model h_t on X, y with weights \mathbf{w}_t 3:
- Compute the weighted training error of h_t
- Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$ 5:
- Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

1) If
$$\mathcal{E}_{7} > \frac{1}{2}$$
 STOP
2) If $\mathcal{E}_{5} = \frac{1}{2} = \frac{1}$



$$\epsilon_1 = \frac{\epsilon_1}{12} = \frac{4}{3}$$

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

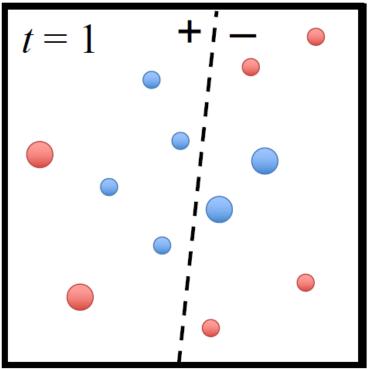
$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

- 1) If Xi Is correctly chassified

 =) yith(Xi) = 1 => Whire = Whire = Bt < Whii

 =) Yith(Xi) = 1 => Whin, i = Whire = -Bt < Whii
 - 2) If xi is incorrectly classified

 =) yi fit (xi) = -1 =) What i = wi i = wi vi = vi vi =



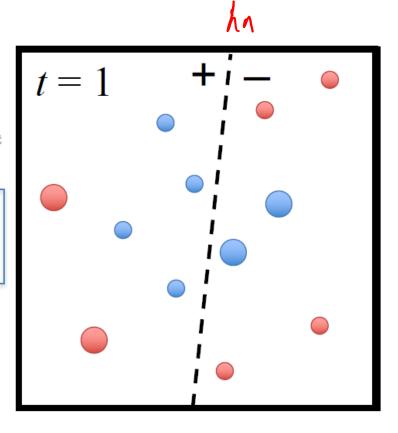
- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

$$\sum_{k=1}^{N} W_{k+1}, k = 1$$

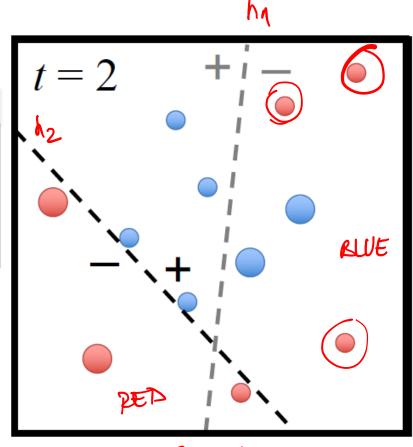


- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



$$\xi_2 = \frac{3}{12} = \frac{1}{4}$$

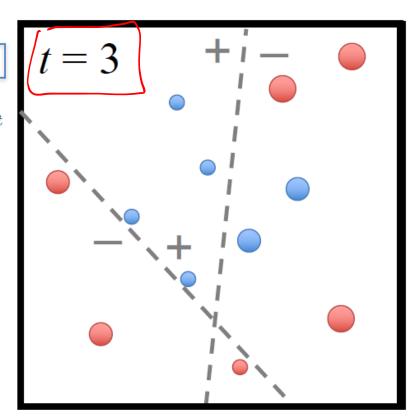
$$\beta_2 = \frac{1}{2} \ln \left(\frac{1 - \xi_2}{\xi_2} \right)$$

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

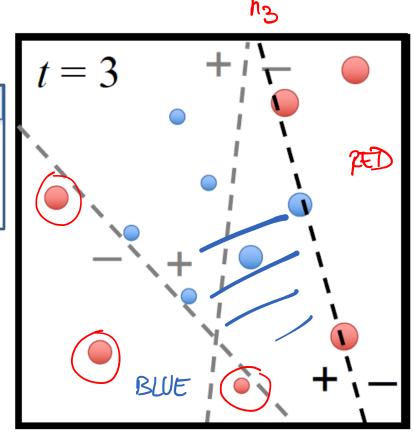


- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



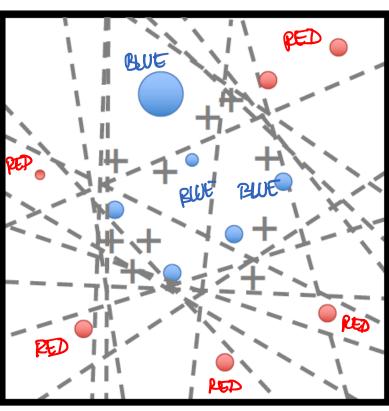
- Compute importance of hypothesis β_t
- Update weights w_t

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



- Final model is a weighted combination of members
 - Each member weighted by its importance

INPUT: training data
$$X, y = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$$
, the number of iterations T

- 1: Initialize a vector of n uniform weights $\mathbf{w}_1 = \left[\frac{1}{n}, \dots, \frac{1}{n}\right]$
- 2: for t = 1, ..., T
- 3: Train model h_t on X, y with instance weights \mathbf{w}_t
- 4: Compute the weighted training error rate of h_t :

$$\epsilon_t = \sum_{i: y_i \neq h_t(\mathbf{x}_i)} w_{t,i} \quad \text{EPDR}$$

- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$ (MPORTANCE OF ht
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right) \quad \forall i = 1,\dots, n$$

7: Normalize \mathbf{w}_{t+1} to be a distribution:

$$w_{t+1,i} = \frac{w_{t+1,i}}{\sum_{j=1}^{n} w_{t+1,j}} \quad \forall i = 1, \dots, n$$

- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

Train with Weighted Instances

1) LOEASTIC REGRESSION
$$L(x_i,y_i) = \sum_{i=1}^{N} cost(x_i,y_i) \cdot W_i \quad \text{(POSS-ENTROPI)}$$

$$WEIGHT$$

2) DECISION TREES

SAMPLE FROM TRAINING DATA

Train with Weighted Instances

- For algorithms like logistic regression, can simply incorporate weights w into the cost function
 - Essentially, weigh the cost of misclassification differently for each instance

$$J_{\text{reg}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} w_i \left[y_i \log h_{\boldsymbol{\theta}}(\mathbf{x}_i) + (1 - y_i) \log \left(1 - h_{\boldsymbol{\theta}}(\mathbf{x}_i) \right) \right] + \lambda \|\boldsymbol{\theta}_{[1:d]}\|_2^2$$

- For algorithms that don't directly support instance weights (e.g., ID3 decision trees, etc.), use weighted bootstrap sampling
 - Form training set by resampling instances with replacement according to w

Properties

- If a point is repeatedly misclassified
 - Its weight is increased every time
 - Eventually it will generate a hypothesis that correctly predicts it
- In practice AdaBoost does not typically overfit
- Does not use explicitly regularization

Resilience to overfitting

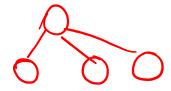


- Empirically, boosting resists overfitting
- Note that it continues to drive down the test error even AFTER the training error reaches zero

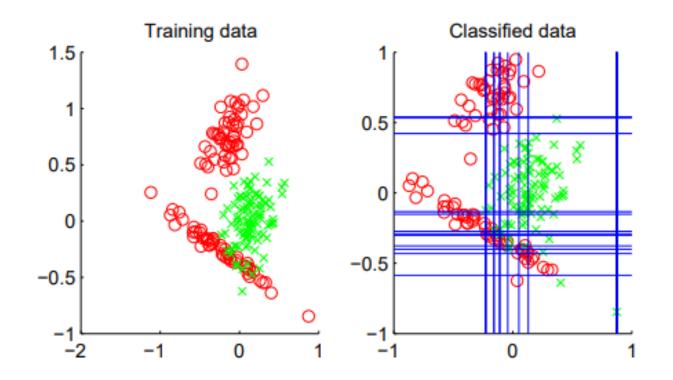
Increases confidence in prediction when adding more rounds

Base Learner Requirements

- AdaBoost works best with "weak" learners
 - Should not be complex
 - Typically high bias classifiers
 - Works even when weak learner has an error rate just slightly under 0.5 (i.e., just slightly better than random)
 - Can prove training error goes to 0 in O(log n) iterations
- Examples:
 - Decision stumps (1 level decision trees)
 Depth-limited decision trees
 Linear classifiers



AdaBoost with Decision Stumps



AdaBoost in Practice

Strengths:

- Fast and simple to program
- No parameters to tune (besides T) Learn with Cross-Validation
- No assumptions on weak learner Error less than ½

When boosting can fail:

- Given insufficient data
- Overly complex weak hypotheses
- Can be susceptible to noise
- When there are a large number of outliers

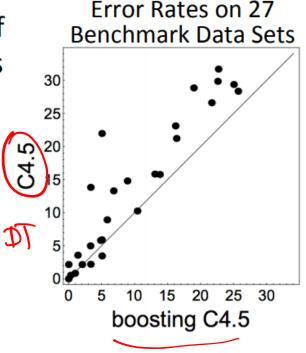
Boosted Decision Trees

 Boosted decision trees are one of the best "off-the-shelf" classifiers

i.e., no parameter tuning

 Limit member hypothesis complexity by limiting tree depth

 Gradient boosting methods are typically used with trees in practice



"AdaBoost with trees is the best off-the-shelf classifier in the world" -Breiman, 1996 (Also, see results by Caruana & Niculescu-Mizil, ICML 2006)

Bagging vs Boosting

```
BAGGING

-TRAINING: FARALLEL

THERSTY BOOTSTRAP SAMPLES | RF FEATURE

- PREDICTION: SAME WEIGHT

- VAR L
```

BOOSTING

- SEQUENTIAL
 - WEIGHTS ON TRAINING
 - WEIGHTED PRED.
 - VAR-1
 - -BIAS 4

Bagging vs Boosting

Bagging	vs.	Boosting
Resamples data points		Reweights data points (modifies their distribution)
Weight of each classifier is the same		Weight is dependent on classifier's accuracy
Only variance reduction		Both bias and variance reduced – learning rule becomes more complex with iterations
Applicable to complex models with low bias, high variance		Applicable to weak models with high bias, low variance

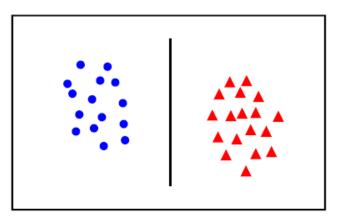
Review

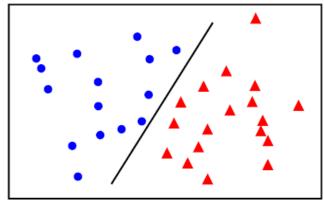
- Ensemble learning are powerful learning methods
 - Better accuracy than standard classifiers
- Bagging uses bootstrapping (with replacement), trains T models, and averages their prediction
 - Random forests vary training data and feature set at each split
- Boosting is an ensemble of T weak learners that emphasizes mis-predicted examples
 - AdaBoost has great theoretical and experimental performance
 - Can be used with linear models or simple decision trees (stumps, fixed-depth decision trees)

Outline

- Boosting
 - AdaBoost
 - Properties of boosting
 - Bagging vs Boosting
- Review of linear models
 - Separating hyperplanes
- Support Vector Machines
 - Linearly separable data
 - Maximum margin classifier
 - Non-linearly separable data
 - Support vector classifier

Linear models we've seen





Classifiers with linear decision boundary:

```
-LOGISTIC PEF
-UDA
-NB (SOME CASES)
```

Hyperplane

- Line (2-dimensions): $\theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0$
- Hyperplane (d-dimensions): $\theta_0 + \theta_1 x_1 + \cdots + \theta_d x_d = 0$

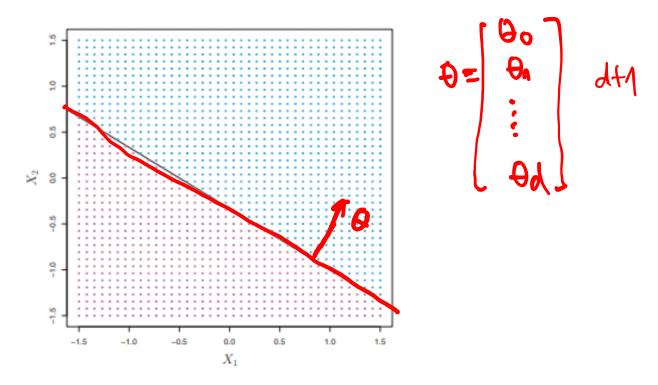
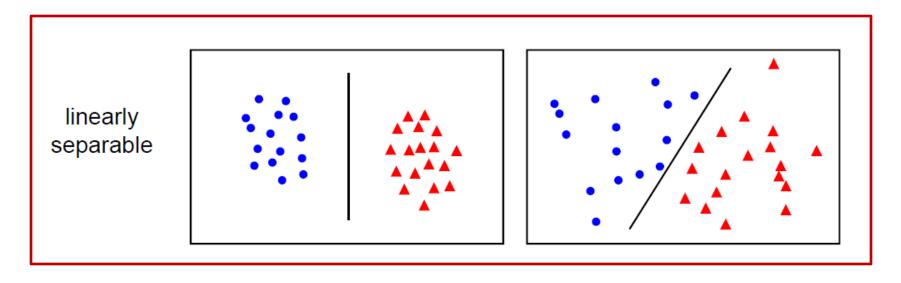
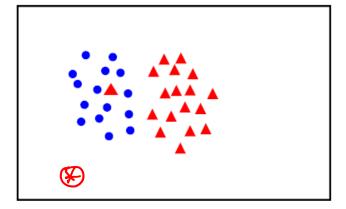


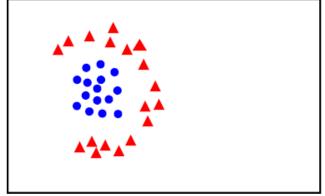
FIGURE 9.1. The hyperplane $1 + 2X_1 + 3X_2 = 0$ is shown. The blue region is the set of points for which $1 + 2X_1 + 3X_2 > 0$, and the purple region is the set of points for which $1 + 2X_1 + 3X_2 < 0$.

Linear separability



not linearly separable

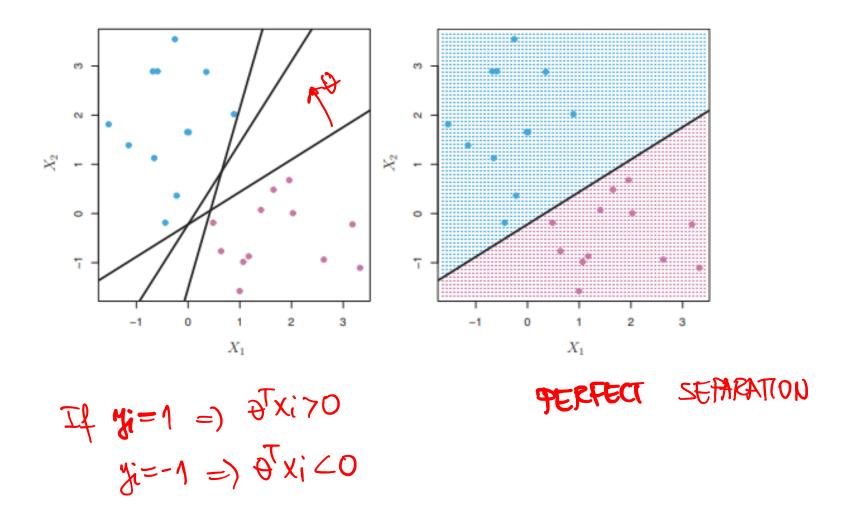




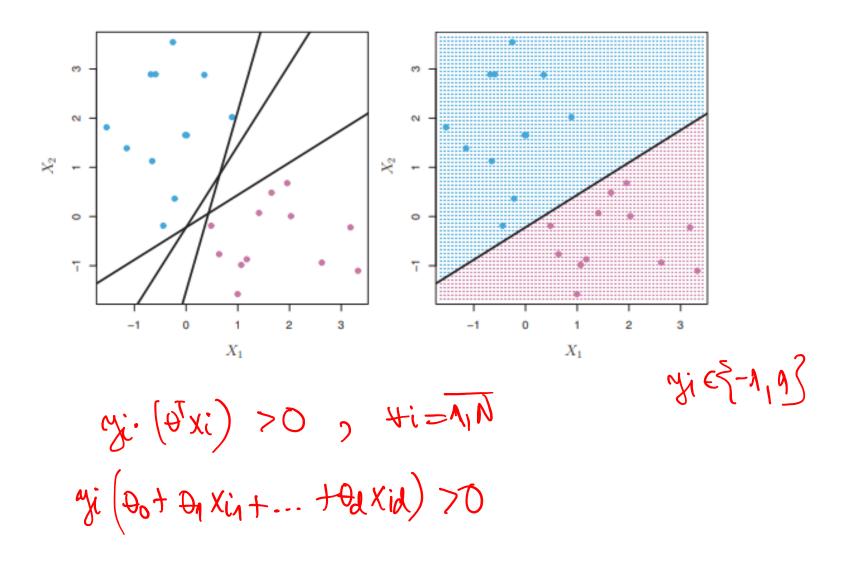
Notation

- Training data x_1, \dots, x_N with $x_i = \left(x_{i_1}, \dots, x_{id}\right)^{\mathrm{T}}$
- Labels are from 2 classes: $y_i \in \{-1,1\}$
- Goal:
 - Build a model to classify training data
 - Test it on new vector $x = (x_1, ..., x_d)^T$ to predict label y

Separating hyperplane



Separating hyperplane



From separating hyperplane to classifier

- Training data x_1, \dots, x_N with $x_i = (x_{i1}, \dots, x_{id})^T$
- Labels are from 2 classes: $y_i \in \{-1,1\}$
- Let $\theta_0, \dots, \theta_d$ (will be learned) such that:

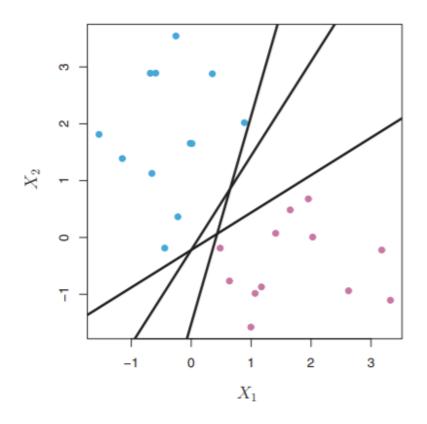
$$y_i(\theta_0 + \theta_1 x_{i1} + \cdots + \theta_d x_{id}) > 0$$

Classifier

$$f(z) = \operatorname{sign}(\theta_0 + \theta_1 z_1 + \cdots + \theta_d z_d) = \operatorname{sign}(\theta^T z)$$

- Classify new test point x
 - If f(x) > 0 predict y = 1
 - Otherwise predict y = -1

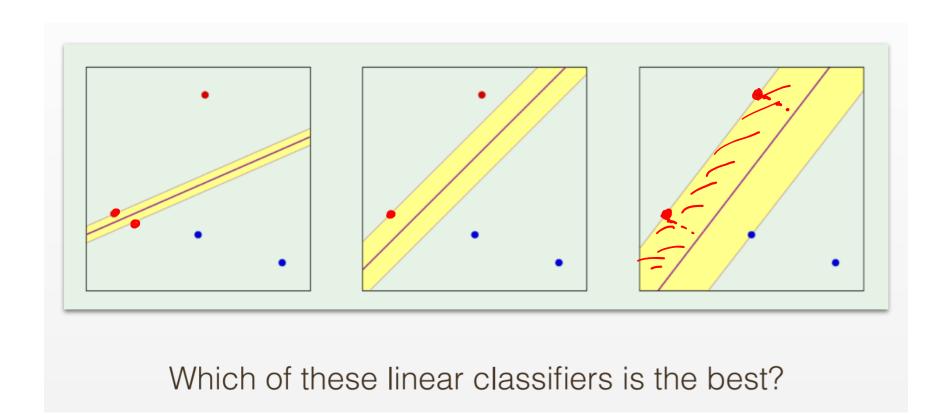
Separating hyperplane



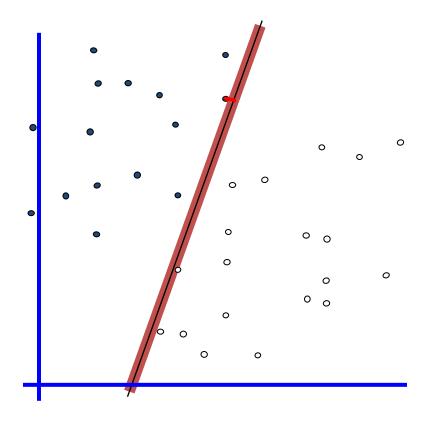
- If a separating hyperplane exists, there are infinitely many
- Which one should we choose?

Intuition

MAX SEPARATION

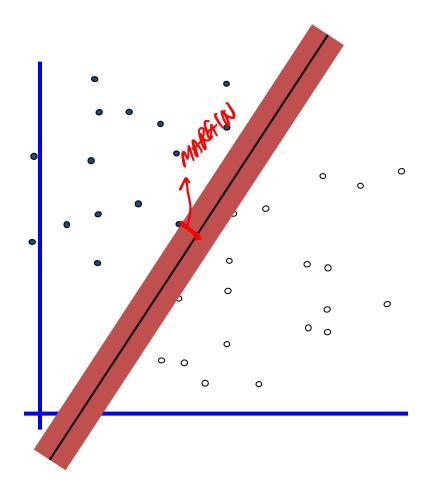


Classifier Margin



Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint.

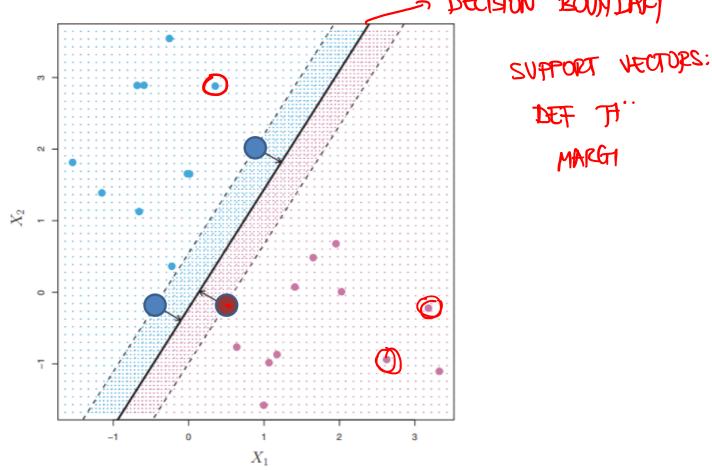
Maximum Margin



Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a data point.

Choose the maximum margin linear classifier: the linear classifier with the maximum margin.

Support Vectors (informally)



- Support vectors = points "closest" to hyperplane
- If support vectors change, classifier changes
- If other points change, no effect on classifier

Finding the maximum margin classifier

- Training data x_1, \dots, x_N with $x_i = (x_{i1}, \dots, x_{id})^T$
- Labels are from 2 classes: $y_i \in \{-1,1\}$

MARGIN

Normalization constraint (to have unique solution)

Each point is on the right side of hyper-plane at distance $\geq M$

Properties of solution

• The solution to the optimization provides a convenient way to rewrite the decision function using new variables α_i

- Originally:
$$f(z) = sign(\theta_0 + \theta_1 z_1 + \cdots + \theta_d z_d)$$

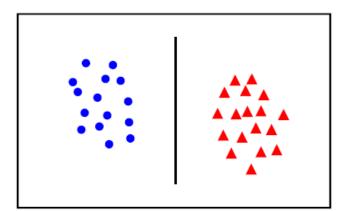
= $sign(\theta^T z)$

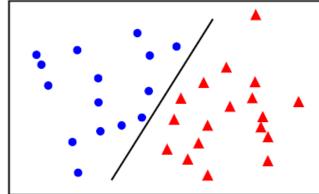
- \rightarrow Equivalent to: $f(\mathbf{z}) = \theta_0 + \sum_i \alpha_i < \mathbf{z}, x_i > 0$
 - For test point z, the inner product $\langle z, x_i \rangle = z^T x_i$ with each training instance x_i in turn.

• And $\alpha_i \neq 0$ only for support vectors! For all other training points $\alpha_i = 0$.

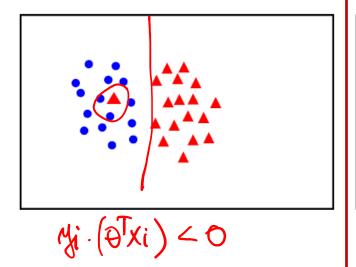
Linear separability

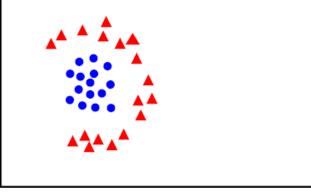
linearly separable



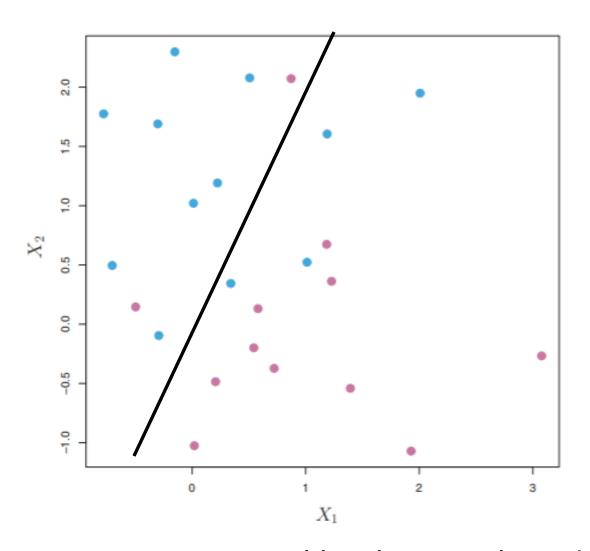


not linearly separable (but almost)





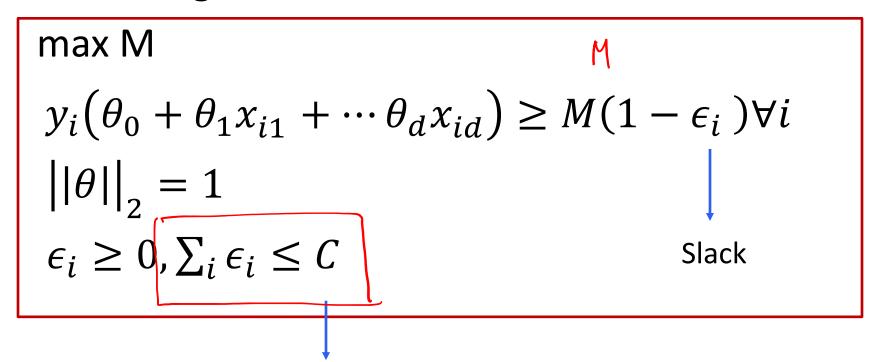
Non-separable case



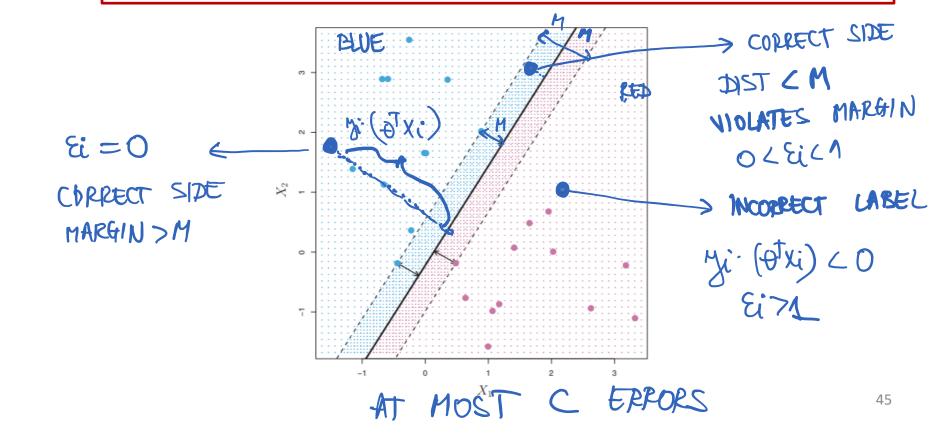
Optimization problem has no solution!

Support vector classifier

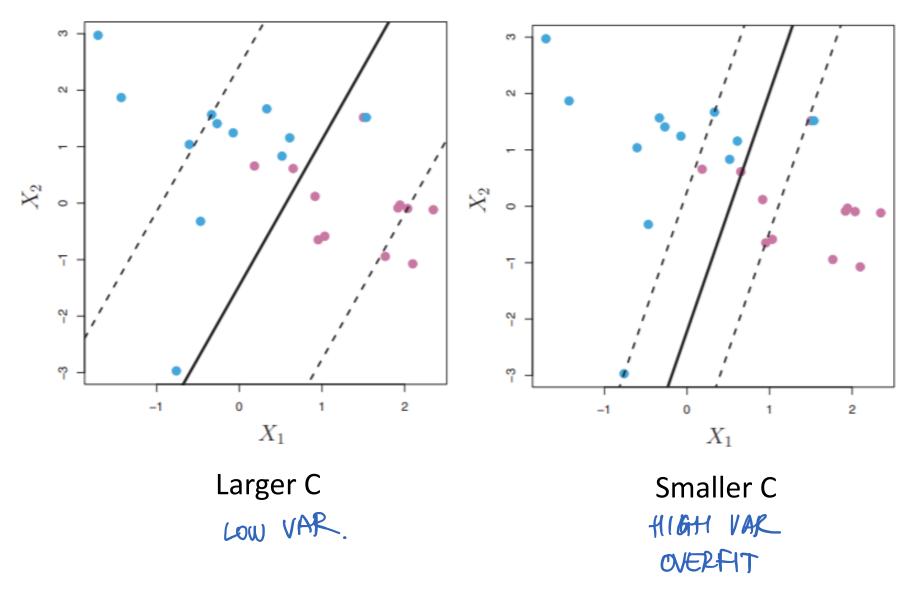
- Allow for small number of mistakes on training data
- Soft margin classifier



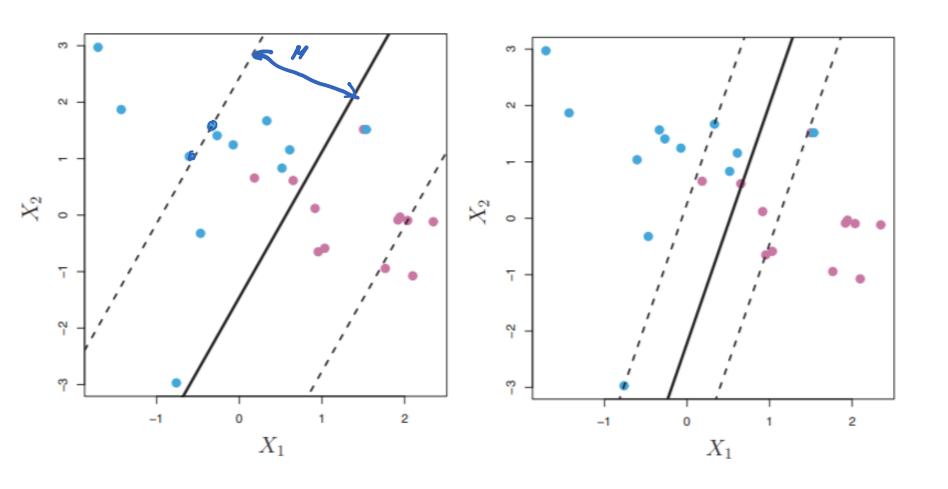
 $\max \mathbf{M} \qquad \qquad \mathbf{y}_{i} \cdot (\mathbf{\theta}^{\mathsf{T}} \mathbf{x}_{i})$ $y_{i} \left(\theta_{0} + \theta_{1} x_{i1} + \cdots \theta_{d} x_{id}\right) \geq M(1 - \epsilon_{i}) \ \forall i$ $\left|\left|\theta\right|\right|_{2} = 1$ $\epsilon_{i} \geq 0 \sum_{i} \epsilon_{i} \leq C \longrightarrow \text{Error Budget}$



Error Budget and Margin



Support vectors



Support vectors: all points within the margin of the classifier

Support vector classifier

Just like in separable case, gives solution of the form:

$$f(z) = \theta_0 + \sum_i \alpha_i < z, x_i >$$

Where $\alpha_i \neq 0$ for support vectors (and $\alpha_i = 0$ for all other training points)

- This model is called
 - Support Vector ClassifierLinear SVMSoft-margin classifier

Properties

- Maximum margin classifier
 - Classifier of maximum margin
 - For linearly separable data
- Support vector classifier Linear SVM
 - Allows some slack and sets a total error budget (hyper-parameter)
- For both, final classifier on a point is a linear combination of inner product of point with support vectors
 - Efficient to evaluate

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
- Thanks!