DS 4400

Machine Learning and Data Mining I Spring 2021

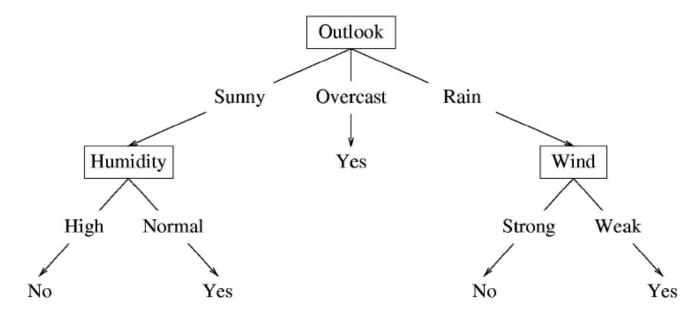
Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Outline

- Decision Trees
 - Regression trees
- Ensemble models
 - Majority vote over multiple models
- Bagging
 - Bootstrap samples
 - Random forest
- Boosting
 - AdaBoost

Decision Tree

A possible decision tree for the data:



- Each internal node: test one attribute X_i
- Each branch from a node: selects one value for X_i
- Each leaf node: predict Y (or $p(Y \mid x \in \text{leaf})$)

Learning Decision Trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

$$\arg\max_{i} IG(X_{i}) = \arg\max_{i} H(Y) - H(Y \mid X_{i})$$

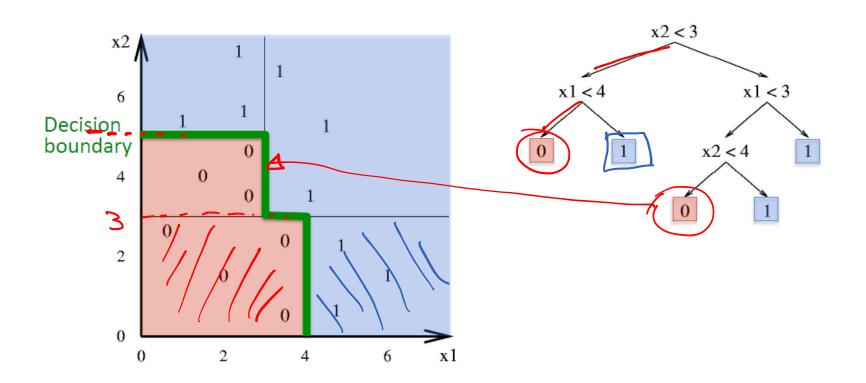
• Recurse

STOPPING CONDITIONS

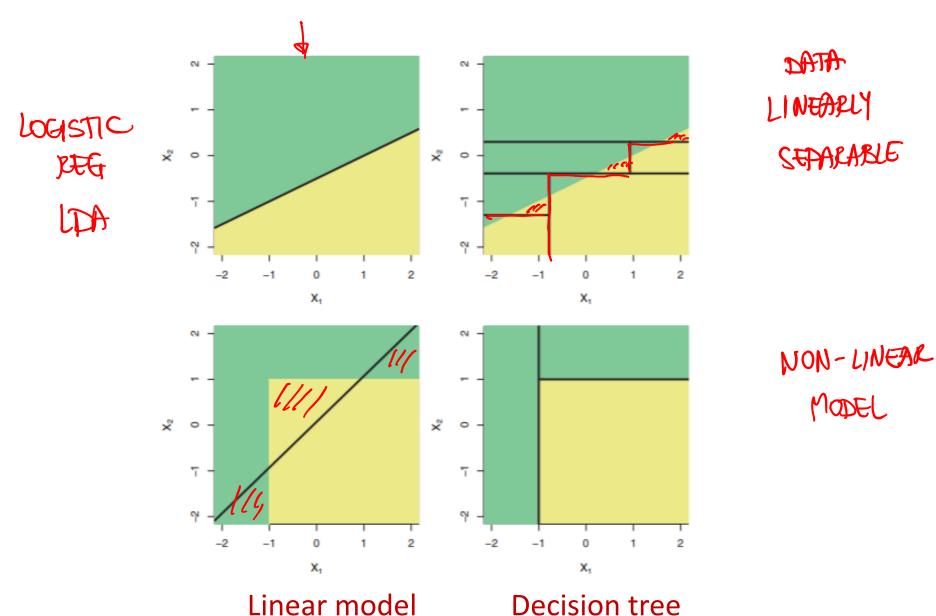
ID3 algorithm uses Information Gain Information Gain reduces uncertainty on Y

Decision Boundary

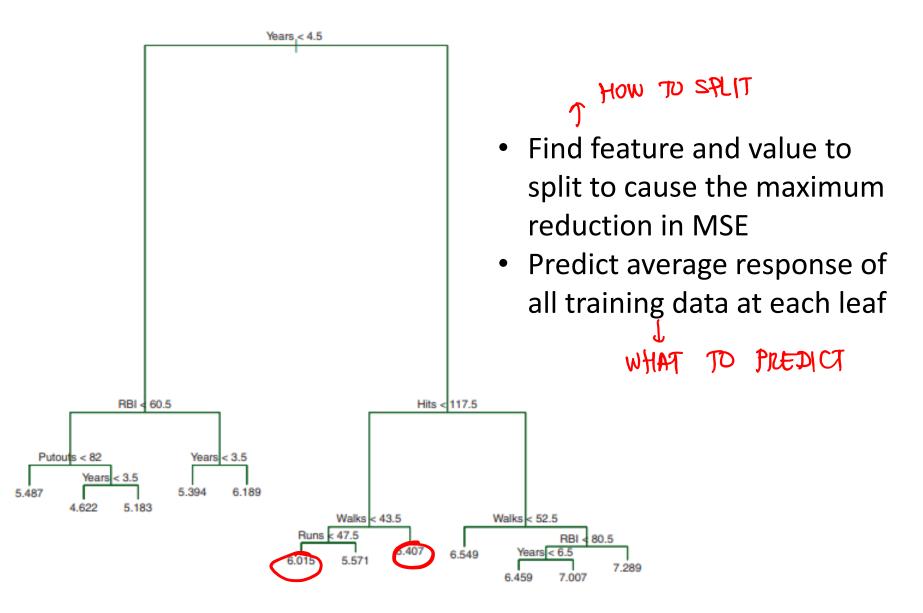
- Decision trees divide the feature space into axisparallel (hyper-)rectangles
- Each rectangular region is labeled with one label



Decision Trees vs Linear Models



Regression Trees



Summary Decision Trees

Representation: decision trees

Bias: prefer small decision trees

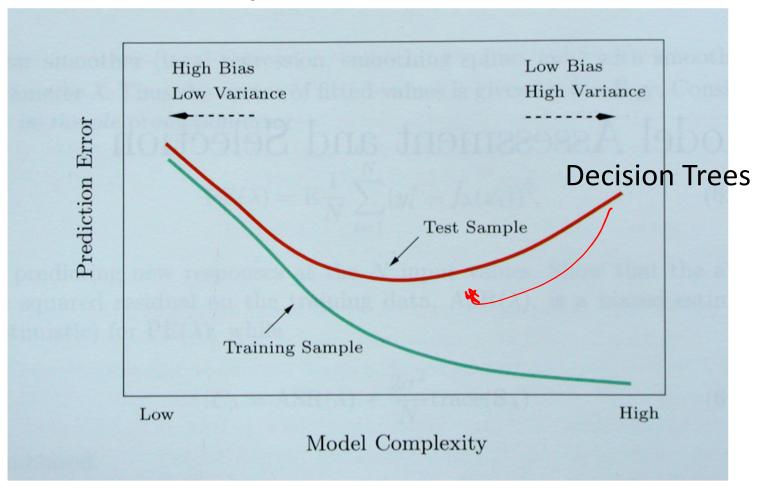
Search algorithm: greedy

Heuristic function: information gain or information

content or others

Overfitting / pruning

Bias/Variance Tradeoff



Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

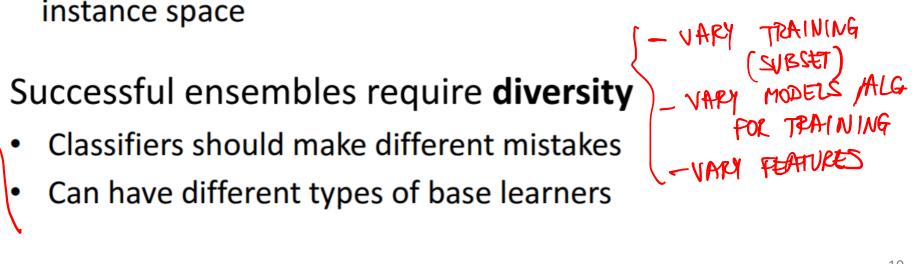
How to reduce variance of single decision tree?

Ensemble Learning

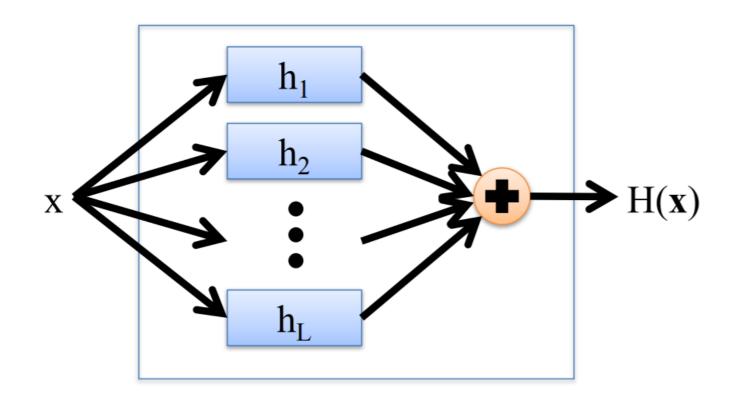
Consider a set of classifiers $h_1, ..., h_L$

Idea: construct a classifier $H(\mathbf{x})$ that combines the individual decisions of $h_1, ..., h_L$

- e.g., could have the member classifiers vote, or
- e.g., could use different members for different regions of the instance space

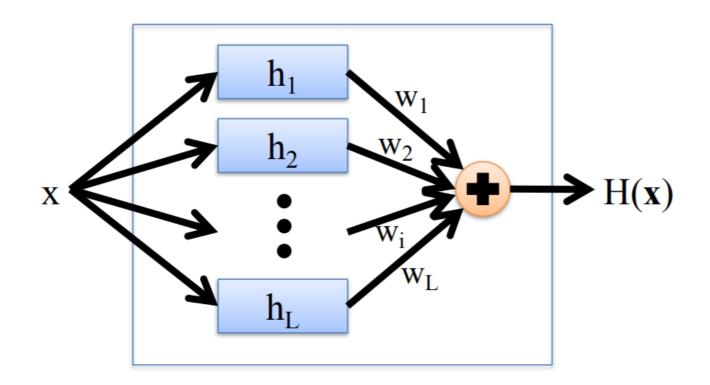


Combining Classifiers: Averaging



Final hypothesis is a simple vote of the members

Combining Classifiers: Weighted Averaging



 Coefficients of individual members are trained using a validation set

Practical Applications

Goal: predict how a user will rate a movie

- Based on the user's ratings for other movies
- and other peoples' ratings
- with no other information about the movies

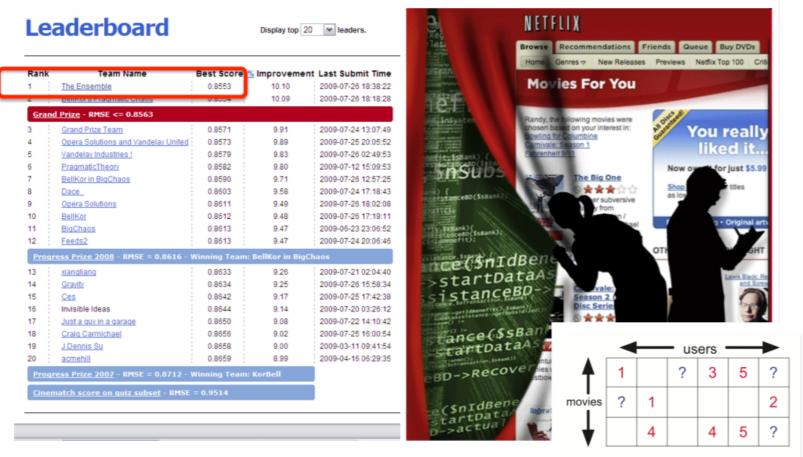
This application is called "collaborative filtering"

Netflix Prize: \$1M to the first team to do 10% better then Netflix' system (2007-2009)

Winner: BellKor's Pragmatic Chaos – an ensemble of more than 800 rating systems

Netflix Prize

Machine learning competition with a \$1 million prize



Reduce error

Suppose there are 25 base classifiers

- Each classifier has error rate, $\mathcal{E} = 0.35$
- Assume independence among classifiers
- Probability that the ensemble classifier makes a wrong prediction:

rong prediction:

$$7.113$$
 classifiers make an eproperation is also exactly included. After whome, is also exactly included in the content of the content of

Reduce Variance

$$X_{1},..., X_{N} \quad \text{INDEPENDENT RV}$$

$$\overline{X} = \frac{X_{1}+...+X_{N}}{N} \quad \text{Vor}[X_{1}] = \overline{U}$$

$$\overline{X} = \frac{X_{1}+...+X_{N}}{N} \quad \text{Vor}[X_{1}] = \overline{U}$$

$$\overline{X} = \frac{X_{1}+...+X_{N}}{N} = \mu \quad \text{Vor}[X_{1}+...+X_{N}] = \frac{1}{N^{2}} \sum_{i=1}^{N} \text{Vor}[X_{i}]$$

$$\overline{X} = \frac{\overline{U}^{2}}{N}$$

$$\overline{X} = \frac{\overline{U}^{2}}{N} = \frac{\overline{U}^{2}}{N}$$

How to Achieve Diversity

- Avoid overfitting
 - Vary the training data
- Features are noisy
 - Vary the set of features

Two main ensemble learning methods

- Bagging (e.g., Random Forests)
- Boosting (e.g., AdaBoost)

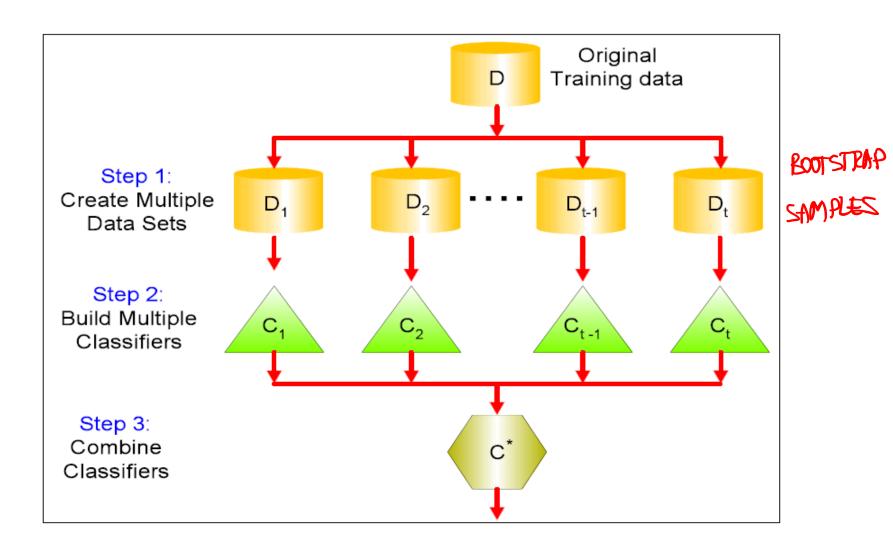
Bagging

- Leo Breiman (1994)
- Take repeated bootstrap samples from training set D
- Bootstrap sampling: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D.

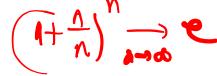
Bagging:

- Create k bootstrap samples $D_1 \dots D_k$.
 Train distinct classifier on each D_i .
 Classify new instance by majority vote / average.

General Idea



Example of Bagging $(1+\frac{\Lambda}{n})^n$



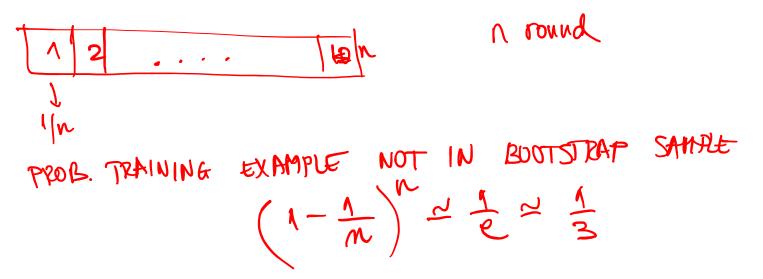
Sampling with replacement

D-4- ID

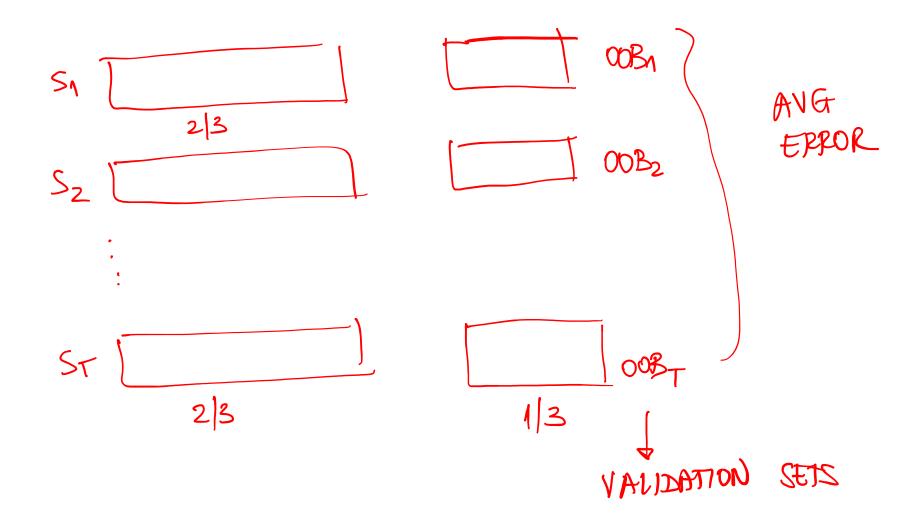
	$\left(1 - \frac{1}{4}\right)$	h / -	1 e
Training Data			

Data ID											_
Original Data	1	2	3	4	5	6	7	8	9	10	6
Bagging (Round 1)	7	8	10	8	2	5	10	0	5	9	[
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2	[
Bagging (Round 3)	1	8	(5)	10	(5)	(5)	9	6	3	7	ĺ
	Original Data Bagging (Round 1) Bagging (Round 2)	Original Data 1 Bagging (Round 1) 7 Bagging (Round 2) 1	Original Data12Bagging (Round 1)78Bagging (Round 2)14	Original Data 1 2 3 Bagging (Round 1) 7 8 10 Bagging (Round 2) 1 4 9	Original Data 1 2 3 4 Bagging (Round 1) 7 8 10 8 Bagging (Round 2) 1 4 9 1	Original Data 1 2 3 4 5 Bagging (Round 1) 7 8 10 8 2 Bagging (Round 2) 1 4 9 1 2	Original Data 1 2 3 4 5 6 Bagging (Round 1) 7 8 10 8 2 5 Bagging (Round 2) 1 4 9 1 2 3	Original Data 1 2 3 4 5 6 7 Bagging (Round 1) 7 8 10 8 2 5 10 Bagging (Round 2) 1 4 9 1 2 3 2	Original Data 1 2 3 4 5 6 7 8 Bagging (Round 1) 7 8 10 8 2 5 10 10 Bagging (Round 2) 1 4 9 1 2 3 2 7	Original Data 1 2 3 4 5 6 7 8 9 Bagging (Round 1) 7 8 10 8 2 5 10 10 5 Bagging (Round 2) 1 4 9 1 2 3 2 7 3	Original Data 1 2 3 4 5 6 7 8 9 10 Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9 Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2

- Sample each training point with probability 1/n
- Out-Of-Bag (OOB) observation: point not in sample



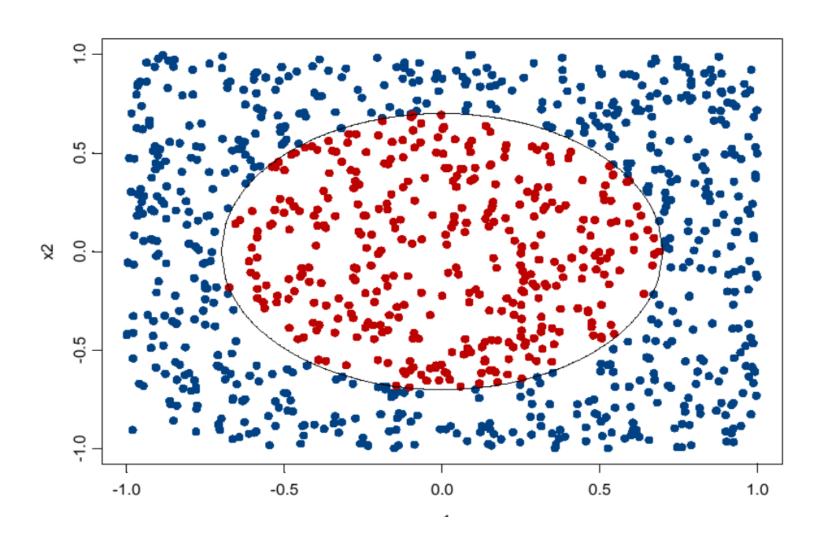
Bootstrap Samples



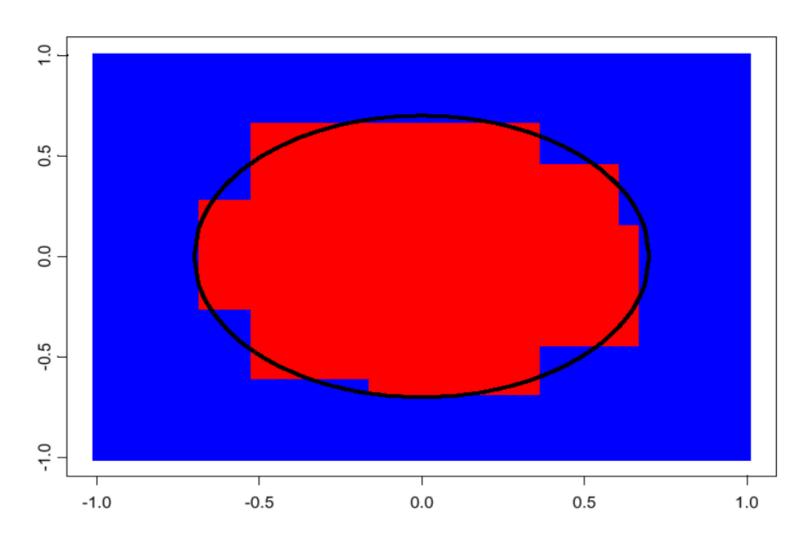
Bagging

- Can be applied to multiple classification models
- Very successful for decision trees
 - Decision trees have high variance
 - Don't prune the individual trees, but grow trees to full extent
 - Precision accuracy of decision trees improved substantially
- OOB average error used instead of Cross Validation

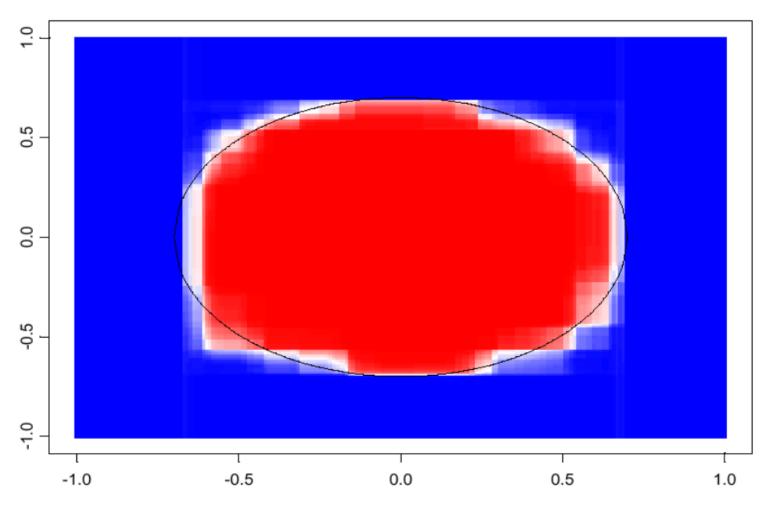
Example Distribution



Decision Tree Decision Boundary



100 Bagged Trees



shades of blue/red indicate strength of vote for particular classification

Random Forests

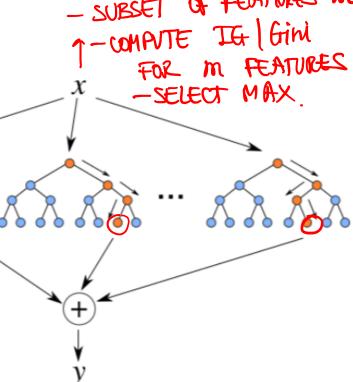
- Ensemble method specifically designed for decision tree classifiers
- Introduce two sources of randomness: "Bagging" and "Random input vectors"
- Bagging method: each tree is grown using a bootstrap sample of training data
 - Random vector method: At each node, best split is chosen from a random sample of m attributes instead of all attributes

Random Forests

TRAIN

- Construct decision trees on bootstrap replicas
 - Restrict the node decisions to a small subset of features picked randomly for each node
- Do not prune the trees
 - Estimate tree performance on out-of-bootstrap data
- Average the output of all trees (or choose mode decision)

Trees are de-correlated by choice of random subset of features



Random Forest Algorithm

TRAIN

- - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the variables.
 ii. Pick the best variable/split-point among the m.
 iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

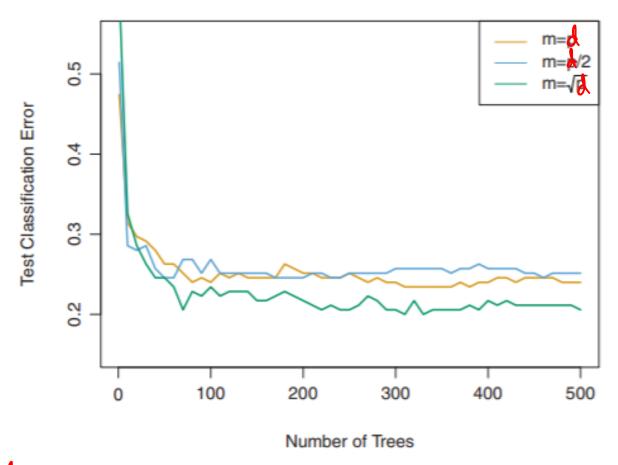
To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Regression: $\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{rf}^B(x) = majority\ vote\ \{\hat{C}_b(x)\}_1^B$.

Effect of Number of Predictors



- p = total number of predictors; m = predictors chosen in each split
- Random Forests uses $m = \sqrt{k}$

Variable Importance

- Ensemble of trees looses somewhat interpretability of decision trees
- Which variables contribute mostly to prediction?
- Random Forests computes a Variable Importance metric per feature
 - For each tree in the ensemble, consider the split by the particular feature
 - How much information gain / Gini index decreases after the split
 - Average over all trees

Variable Importance Plots

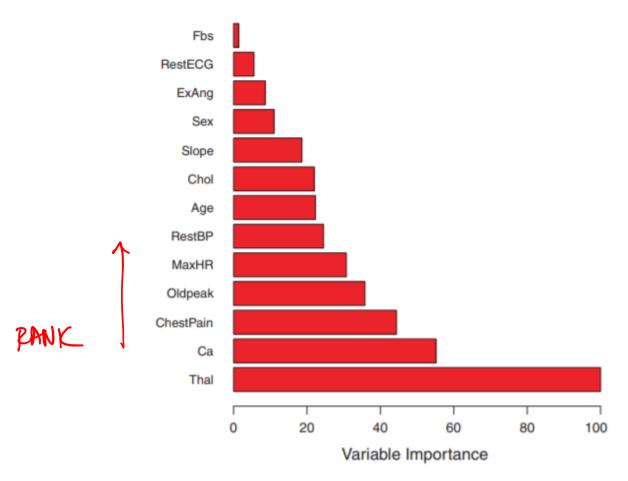


FIGURE 8.9. A variable importance plot for the Heart data. Variable importance is computed using the mean decrease in Gini index, and expressed relative to the maximum.

Variable Importance

- Ensembles of trees loose in interpretability
 - Variable importance helps with determining important features
- Can be used as a filter method for feature selection
 - Train Random Forest model
 - Compute variable importance
 - Select top k features by highest important
 - Train other models with the k features

How to Achieve Diversity

- Avoid overfitting
 - Vary the training data
- Features are noisy
 - Vary the set of features

Two main ensemble learning methods

- Bagging (e.g., Random Forests)
- Boosting (e.g., AdaBoost)

AdaBoost

- A meta-learning algorithm with great theoretical and empirical performance
- Turns a base learner (i.e., a "weak hypothesis") into a high performance classifier
- Creates an ensemble of weak hypotheses by repeatedly emphasizing mispredicted instances

Adaptive Boosting Freund and Schapire 1997

Overview of AdaBoost

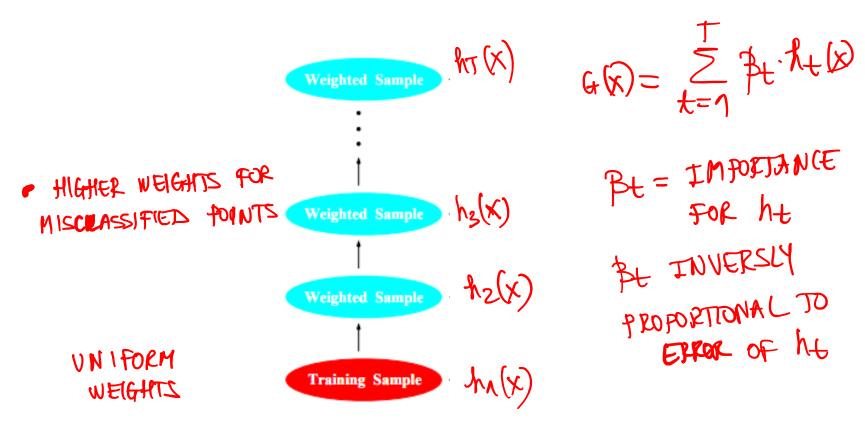


FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted versions of the dataset, and then combined to produce a final prediction.

Boosting [Shapire '89]

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote
- On each iteration t:
 - weight each training example by how incorrectly it was classified
 - Learn a weak hypothesis h_t
 - A strength for this hypothesis ϵ β_t
- Final classifier:

$$H(x) = sign(\sum \beta_t h_t(x))$$

Convergence bounds with minimal assumptions on weak learner

If each weak learner h_t is slightly better than random guessing (ε_t < 0.5), then training error of AdaBoost decays exponentially fast in number of rounds T.

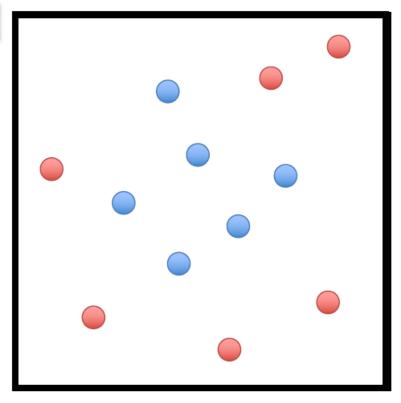
AdaBoost

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



Size of point represents the instance's weight

AdaBoost

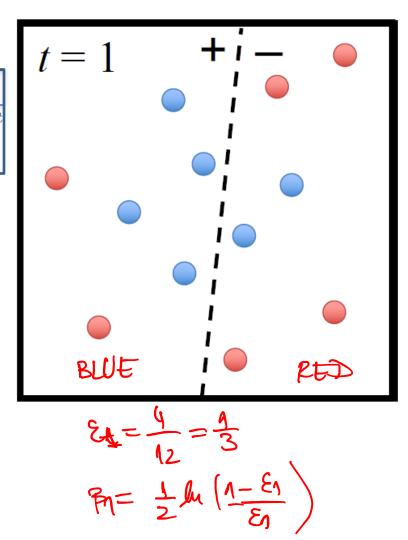
T=# MODELS

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$



Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
- Thanks!