DS 4400

Machine Learning and Data Mining I Spring 2021

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Announcements

- Project proposal is due today
 - One page
 - Team of 2
 - Problem statement
 - Dataset description
 - ML Models and metrics for evaluation
 - Related work
- Homework 3 is due on Monday, March 8

Outline

- Decision Trees
 - Entropy, information gain
 - Learning decision trees
 - Stopping conditions
- Ensemble models
 - Majority vote over multiple models

Sample Dataset

- Columns denote features X_i
- Rows denote labeled instances $\langle x_i, y_i \rangle$
- Class label denotes whether a tennis game was played

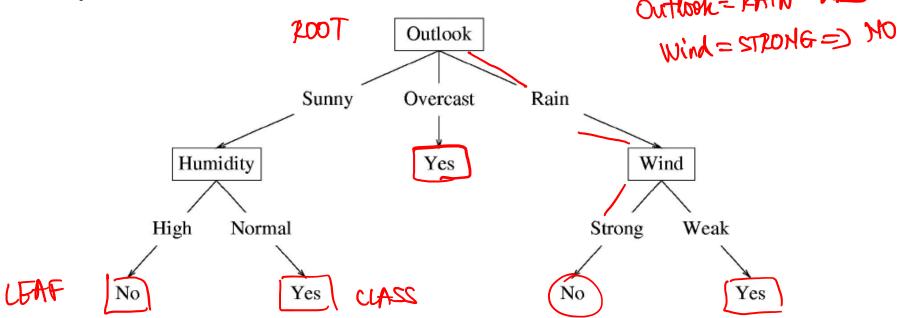
Predictors		Response		
Outlook	Temperature	Humidity	Wind	Class
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

 $< x_i, y_i >$

Categorical data

Decision Tree

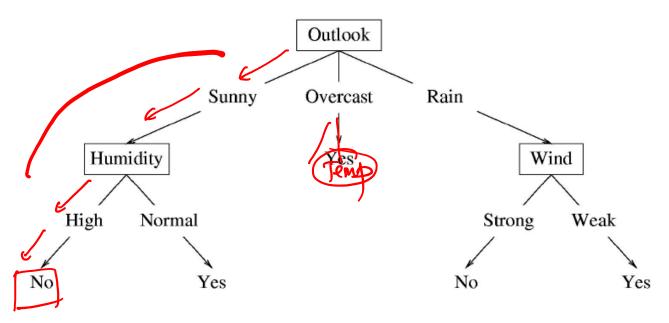
A possible decision tree for the data:



- Each internal node: test one attribute X_i
- Each branch from a node: selects one value for X_i
- Each leaf node: predict Y (or $p(Y \mid x \in \text{leaf})$)

Decision Tree model

A possible decision tree for the data:

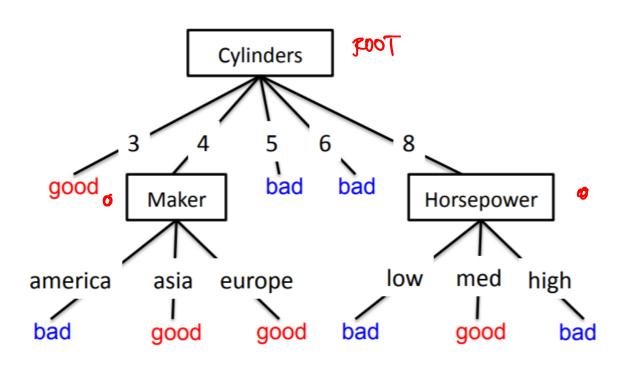


What prediction would we make for

TESTING outlook sunny, temperature hot, humidity high, wind weak ?

Interpretability

- Each internal node tests an attribute x_i
- One branch for each possible attribute value x_i=v
- Each leaf assigns a class y
- To classify input x: traverse the tree from root to leaf, output the labeled y



Human interpretable!

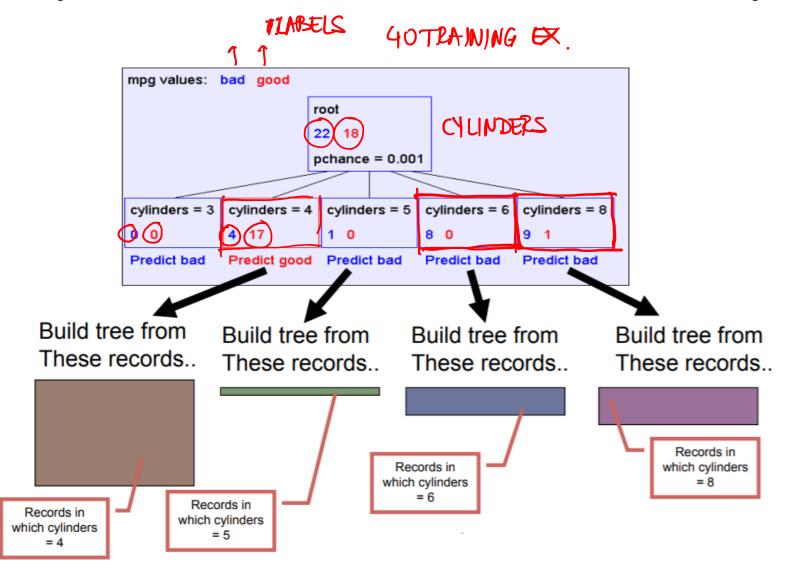
Learning Decision Trees

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:

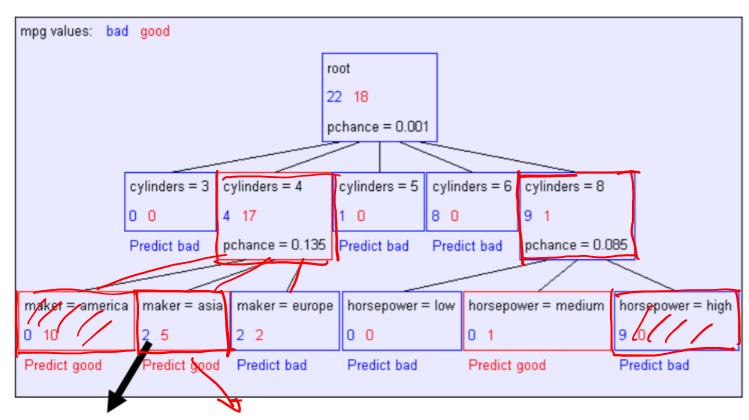
 - Start from empty decision treeSplit on next best attribute (feature)

STOPPING CONDITION

Key Idea: Use Recursion Greedily



Second Level

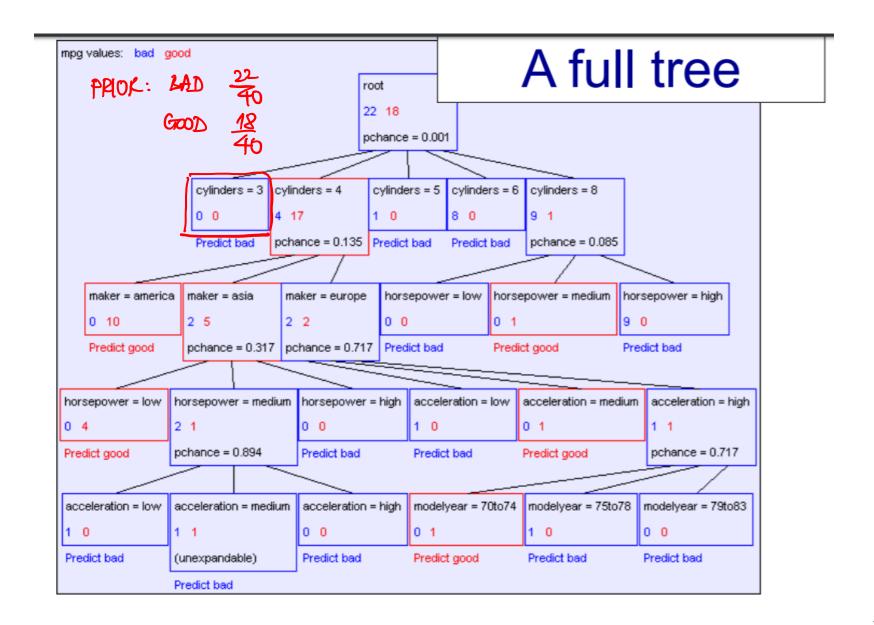


PUPE NODES

Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia

(Similar recursion in the other cases)

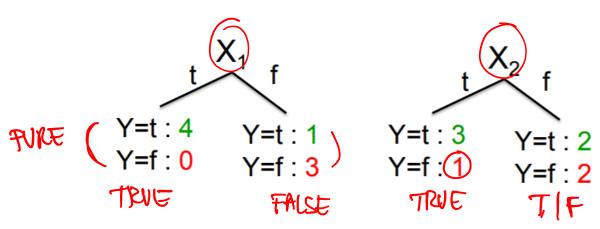
Full Tree



Splitting

TRAINING ZATA

Would we prefer to split on X_1 or X_2 ?



Idea: use counts at leaves to define probability distributions, so we can measure uncertainty!

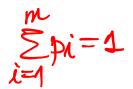
^ 1	^ 2	_	l
Т	Т	Η	7
Т	F	Τ	
Т	Т	Т	4
Т	F	Τ.	
F	Т	Т	
F	F	F	
F	Т	F	
F	F	F	ノ

Use entropy-based measure (Information Gain)

Entropy

ZV

Suppose X can have one of m values... $V_1, V_2, ..., V_m$



$$P(X=V_1) = p_1$$
 $P(X=V_2) = p_2$ $P(X=V_m) = p_m$

What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X's distribution? It's

$$H(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_m \log_2 p_m$$

$$= -\sum_{j=1}^m p_j \log_2 p_j$$
Symbols: A: 20% p_=0.05 -> 10
$$c: 5\%$$

$$c: 5\%$$

$$f_3 = 0.05 -> 14$$

$$f_3 = 0.4 + 0.4 \cdot 2$$

$$f_4 = 0.9 \cdot 1 + 0.4 \cdot 2$$

$$f_5 = 0.05 -> 14$$

$$f_6 = 0.9 \cdot 1 + 0.4 \cdot 2$$

$$f_7 = 0.9 \cdot 1 + 0.4 \cdot 2$$

$$f_7 = 0.9 \cdot 1 + 0.4 \cdot 2$$

$$f_7 = 0.9 \cdot 1 + 0.4 \cdot 2$$

$$f_7 = 0.9 \cdot 1 + 0.4 \cdot 2$$

- H(X) = The entropy of X
- "High Entropy" means X is from a uniform (boring) distribution
- "Low Entropy" means X is from varied (peaks and valleys) distribution

Entropy Examples

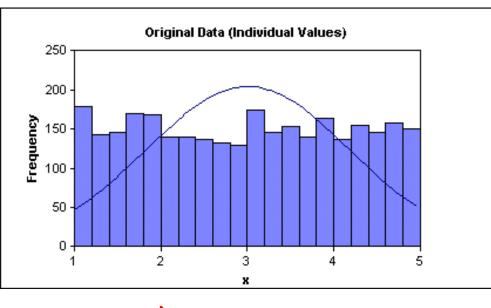
(1) UNIFORM : MAX

IN (1) =
$$-\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = -\log_2\frac{1}{2} = \log_2\frac{1}{2} = 1$$
 $\times N \left(\frac{1}{2}, \frac{1}{2}\right) \rightarrow \text{prob}$
 $= \log_2 n$
 $= \log_2 n$

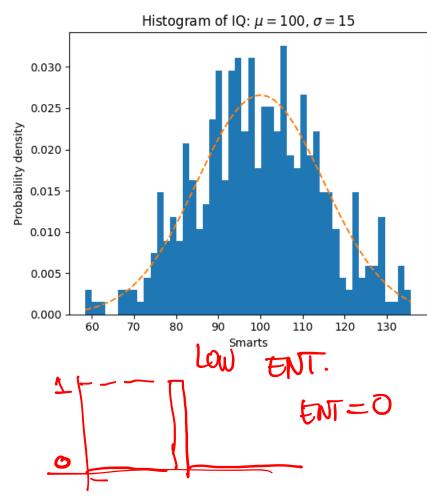
High/Low Entropy

Which distribution has high entropy?

~ UN) FORM



AIGH ENT.



Suppose I'm trying to predict output Y and I have input X

X = College Major

Y = Likes "Gladiator"

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Let's assume this reflects the true probabilities

E.G. From this data we estimate

•
$$P(LikeG = Yes) = 1/2$$
 PRIOR

•
$$P(Major = Math) = 12$$

Note:

$$\begin{cases} \bullet \ H(X) = 1.5 \\ \bullet H(Y) = 1.5 \end{cases}$$

•
$$P(LikeG = Yes \mid Major = History) = 0$$

Note:
$$\begin{cases}
\cdot H(X) = 1.5 \\
\cdot H(Y) = 1
\end{cases}$$

$$\begin{cases}
\cdot H(X) = 1.5 \\
\cdot H(Y) = 1
\end{cases}$$

$$\begin{cases}
\cdot H(X) = -\frac{1}{2} \log_2 \frac{1}{4} - \frac{1}{4} \log_2 \frac{1}{4} \\
-\frac{1}{4} \log_2 \frac{1}{4} = 9.5
\end{cases}$$

X = College Major

Y = Likes "Gladiator"

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Specific Conditional Entropy:

H(Y|X=v) = The entropy of Yamong only those records in which X has value V

Example:

•
$$H(Y|X=Math) = 1$$

$$H(Y)=\Delta$$

$$H(Y|X=Math) = \Delta$$

$$H(Y|X=History) = 0$$

$$H(Y|X=CS) = 0$$

X = College Major

Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Conditional Entropy:

H(Y|X) = The average specific conditional entropy of Y

- = if you choose a record at random what will be the conditional entropy of Y, conditioned on that row's value of X
- = Expected number of bits to transmit Y if both sides will know the value of X

$$= \sum_{j} Prob(X=v_{j}) H(Y \mid X=v_{j})$$

X = College Major

Y = Likes "Gladiator"

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Conditional Entropy:

H(Y|X) = The average conditional entropy of Y

$$= \sum_{j} Prob(X=v_{j}) H(Y \mid X=v_{j})$$

Example:

V_j	$Prob(X=v_j)$	$H(Y \mid X = v_j)$
Math	1/2	7
History	1)4	0
CS	1/4	9

$$H(Y|X) = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 0 = \frac{1}{2}$$

Information Gain

X = College Major

Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Information Gain:

IG(Y|X) = I must transmit Y. How many bits on average would it save me if both ends of the line knew X?

$$IG(Y|X) = H(Y) - H(Y|X)$$

Example:

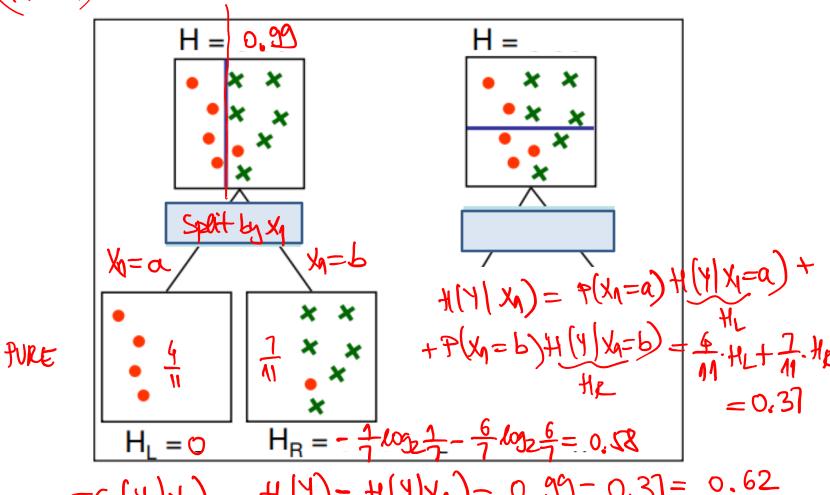
- $H(Y) = \Delta$
- H(Y|X) = 1/2
- Thus IG(Y|X) = \frac{1}{2}

 X12...2 X10 | Y. COMPUTE TE(Y|Xi)

 PICK Xi TO MAX JG(Y|Xi)

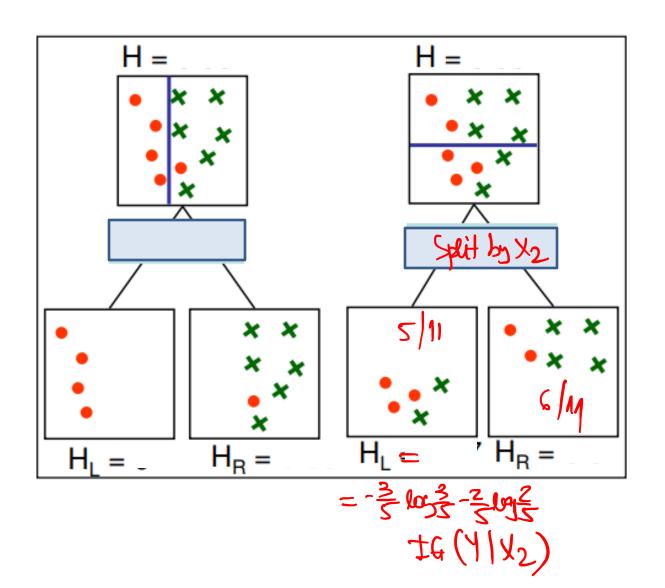
Example Information Gain

$$1 \times (2 \times 6) = -\frac{5}{10} \log_2 \frac{5}{10} - \frac{6}{10} \log_2 \frac{6}{10}$$

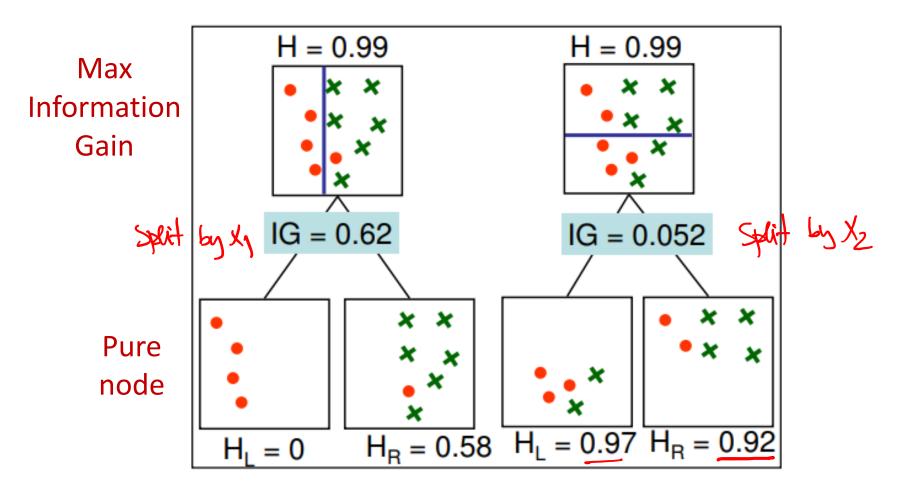


 $TG(Y|X_1) = H(Y) - H(Y|X_1) = 0.99 - 0.31 = 0.62$

Example Information Gain



Example Information Gain



Learning Decision Trees

```
POOT: ALL FEATURES
```

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

$$\arg\max_{i} IG(X_i) = \arg\max_{i} H(Y) - H(Y \mid X_i)$$
 in that iteration: is useful to the features

Recurse

ID3 algorithm uses Information Gain Information Gain reduces uncertainty on Y

Impurity Metrics

Split a node according to max reduction of impurity

1. Entropy TG

2. Gini Index

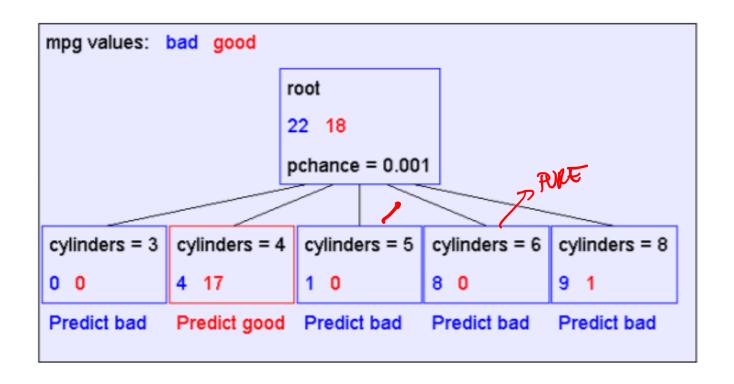
– For binary case with prob p_0 , p_1 :

$$I(p_0, p_1) = 2p_0p_1 = 2p_0(1 - p_0)$$

– For multi-class with prob p_1, \dots, p_K : $I(p_1, \dots p_K) = 1 - \sum_{k=1}^K p_k^2$

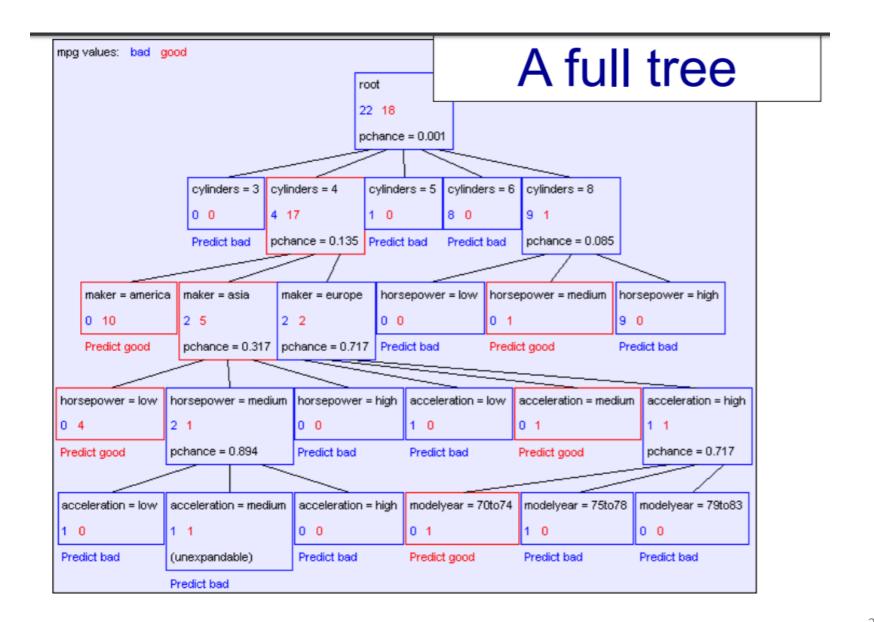
- Properties
 - Impurity metrics have value 0 for pure nodes
 - Impurity metrics are maximized for uniform distribution (nodes with most uncertainty)

When to stop?

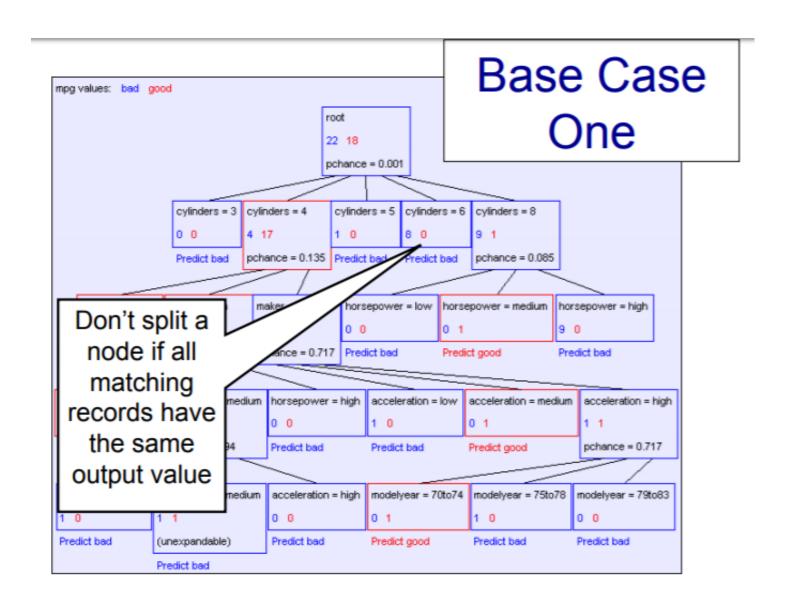


First split looks good! But, when do we stop?

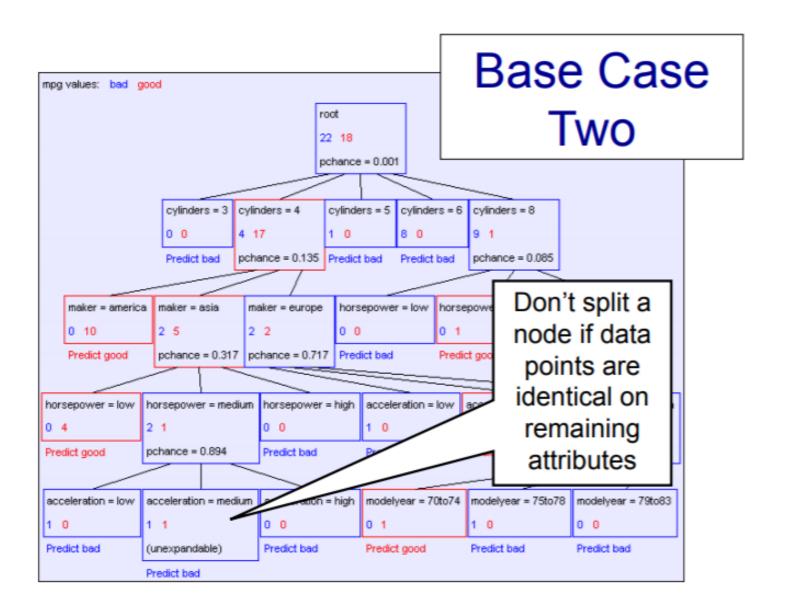
Full Tree



Case 1



Case 2



Decision Trees

TRAINING LABELS BuildTree(DataSet, Output)

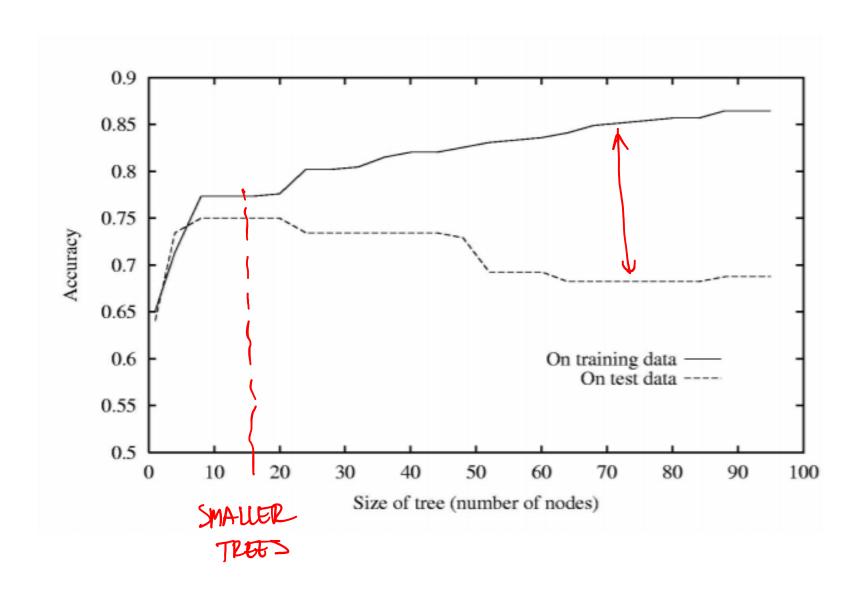
- If all output values are the same in DataSet, return a leaf node that says "predict this unique output"
 - If all input values are the same, return a leaf node that says "predict the majority output" CASE 2
- Else find attribute X with highest Info Gain on Subset of FEATURES
- Suppose X has n_X distinct values (i.e. X has arity n_X).
 - Create a non-leaf node with n_x children.
 - The *i*'th child should be built by calling

 PEURSE BuildTree(DS_i , Output)

 SUBSET OF TRAINING

 Where DS_i contains the records in DataSet where X = ith value of X.

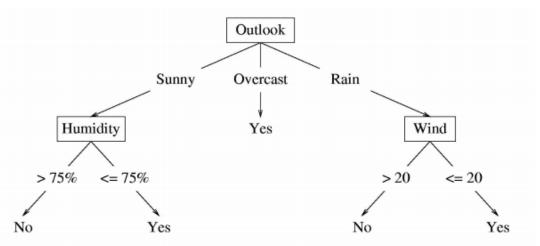
Overfitting



Solutions against Overfitting

- Standard decision trees have no learning bias
 - Training set error is always zero!
 - (If there is no label noise)
 - Lots of variance
 - Must introduce some bias towards simpler trees
- Many strategies for picking simpler trees
 - Fixed depth
 - Minimum number of samples per leaf
- Pruning
 - Remove branches of the tree that increase error using cross-validation

Real-valued Features



- Change to binary splits by choosing a threshold
- One method:
 - Sort instances by value, identify adjacencies with different classes

Choose among splits by InfoGain()

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
- Thanks!