DS 4400

Machine Learning and Data Mining I Spring 2021

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Announcements

- Homework 3 will be out later today
 - Due on Monday, March 8
- Project proposal is due on March 4
- Midterm exam is on Tuesday, March 2
 - During class on Gradescope, 11:45am:1:45pm
 - Short review on Thursday, Feb. 25

Project Proposal

- Project Title
- Project Team
- Problem Description
 - What is the prediction problem you are trying to solve?
- Dataset
 - Link to data, brief description, number of records, feature dimensionality (at least 20K records)
- Approach and methodology
 - Normalization
 - Feature selection
 - Machine learning models you will try (recommended >= 4)
 - Language and packages you plan to use
- Metrics (how you will evaluate your models)
- References
 - How did you find out about the dataset, did anyone else used the data for a similar prediction task

Outline

- Generative vs Discriminative Models
- Linear Discriminant Analysis (LDA)
 - Training and inference
 - Why LDA is a linear classifier
- Lab Logistic Regression, LDA, and kNN
- Density Estimation and Naïve Bayes

Generative vs Discriminative

Generative model

- Given X and Y, learns the joint probability P(X,Y)
- Can generate more examples from distribution
- Examples: LDA, Naïve Bayes, language models (GPT-2, GPT-3, BERT)

Discriminative model

- Given X and Y, learns a decision function for classification
- Examples: logistic regression, kNN

LDA

- Classify to one of k classes
- Logistic regression computes directly
 - -P[Y=1|X=x]
 - Assume sigmoid function
- LDA uses Bayes Theorem to estimate it

$$-P[Y = k | X = x] = \frac{P[X = x | Y = k]P[Y = k]}{P[X = x]}$$

- Let $\pi_k = P[Y = k]$ be the prior probability of class k and $f_k(x) = P[X = x | Y = k]$

LDA

Assume $f_k(x)$ is Gaussian! Unidimensional case (d=1)

$$f_k(x) = \frac{1}{\sqrt{2\pi}\sigma_k} \exp\left(-\frac{1}{2\sigma_k^2}(x-\mu_k)^2\right)$$

Continuous Random Variables

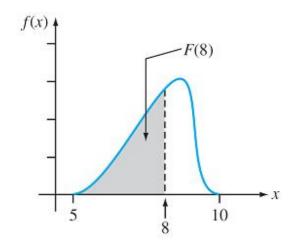
- X:U→V is continuous RV if it takes infinite number of values
- The cumulative distribution function CDF $F: R \longrightarrow \{0,1\}$ for X is defined for every value x by:

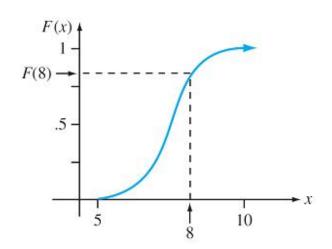
$$F(x) = \Pr(X \le x)$$

The probability distribution function PDF f(x) for X is

$$f(x) = dF(x)/dx$$

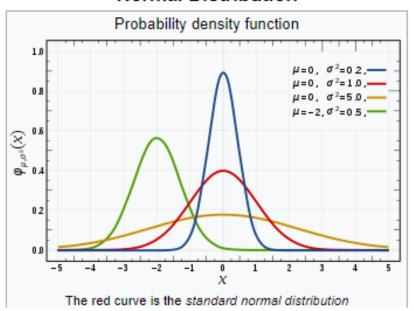
Increasing

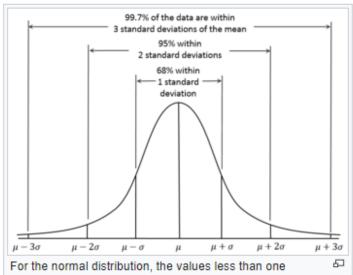




Gaussian Distribution

Normal Distribution





For the normal distribution, the values less than one standard deviation away from the mean account for 68.27% of the set; while two standard deviations from the mean account for 95.45%; and three standard deviations account for 99.73%.

Notation	$\mathcal{N}(\mu,\sigma^2)$
Parameters	$\mu \in \mathbb{R}$ = mean (location)
	$\sigma^2>0$ = variance (squared scale)
Support	$x\in\mathbb{R}$
PDF	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

LDA

$$\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}.$$

Assume $f_k(x)$ is Gaussian! Unidimensional case (d=1)

$$f_k(x) = \frac{1}{\sqrt{2\pi}\sigma_k} \exp\left(-\frac{1}{2\sigma_k^2}(x-\mu_k)^2\right)$$

$$p_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_k)^2\right)}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_l)^2\right)}.$$

Assumption: $\sigma_1 = ... \sigma_k = \sigma$

LDA Training and Testing

Given training data (x_i, y_i) , $i = 1, ..., n, y_i \in \{1, ..., K\}$

1. Estimate mean and variance

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i:y_i = k} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n - K} \sum_{k=1}^K \sum_{i:y_i = k} (x_i - \hat{\mu}_k)^2$$

2. Estimate prior

$$\hat{\pi}_k = n_k/n.$$

Given testing point x, predict k that maximizes:

$$p_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_k)^2\right)}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_l)^2\right)}.$$

LDA decision boundary

Pick class k to maximize

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

Example: $k = 2, \pi_1 = \pi_2$

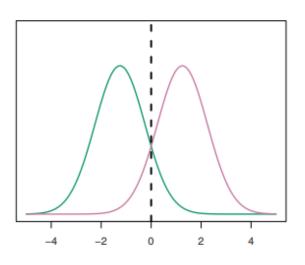
LDA decision boundary

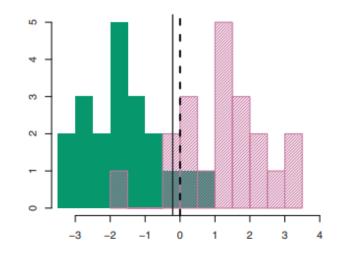
Pick class k to maximize

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

Example: $k = 2, \pi_1 = \pi_2$

Classify as class 1 if $x > \frac{\mu_1 + \mu_2}{2}$





True decision boundary

Estimated decision boundary

LDA Training and Testing

Given training data (x_i, y_i) , $i = 1, ..., n, y_i \in \{1, ..., K\}$

1. Estimate mean and variance

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i:y_i = k} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n - K} \sum_{k=1}^K \sum_{i:y_i = k} (x_i - \hat{\mu}_k)^2$$

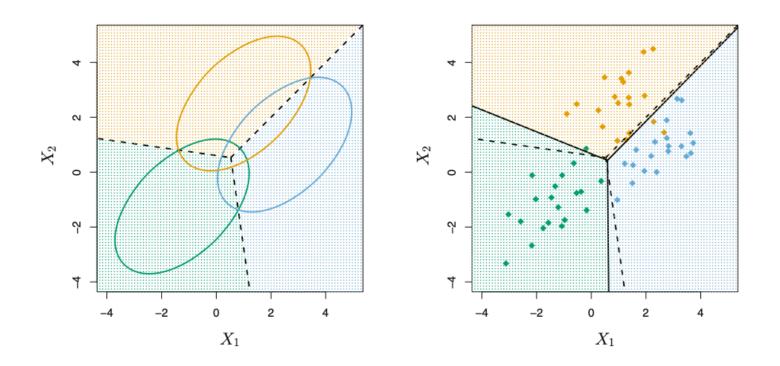
2. Estimate prior

$$\hat{\pi}_k = n_k/n.$$

Given testing point x, predict k that maximizes:

$$\hat{\delta}_k(x) = x \cdot \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k)$$

Multi-Dimensional LDA

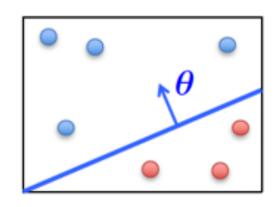


- LDA can be extended to multi-dimensional data
- Assumption that $f_k(x)$ is a multi-variate Gaussian

Linear models

Logistic regression

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$



LDA

$$Max_k \ \delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

LDA vs Logistic Regression

- Logistic regression computes directly $\Pr[Y=1|X=x]$ by assuming sigmoid function
 - Uses Maximum Likelihood Estimation
 - Discriminative Model
- LDA uses Bayes Theorem to estimate it
 - Estimates mean, co-variance, and prior from training data
 - Generative model
 - Assumes Gaussian distribution for $f_k(x) = \Pr[X = x | Y = k]$
- Which one is better?
 - LDA can be sensitive to outliers
 - LDA works well for Gaussian distribution
 - Logistic regression is more complex to solve, but provides a better model usually

Linear Classifier Lab

```
data = pd.read_csv('heart.csv')
data = data.dropna()
x_columns = data.columns != 'target'
data = utils.shuffle(data)
data.head()
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
215	43	0	0	132	341	1	0	136	1	3.0	1	0	3	0
145	70	1	1	156	245	0	0	143	0	0.0	2	0	2	1
190	51	0	0	130	305	0	1	142	1	1.2	1	0	3	0
90	48	1	2	124	255	1	1	175	0	0.0	2	2	2	1
166	67	1	0	120	229	0	0	129	1	2.6	1	2	3	0

https://www.kaggle.com/ronitf/heart-disease-uci

Metrics for LR

```
def print_metrics(y_pred, y_true):
    y_pred = np.array(list(map(int, (y_pred > .5))))
    print("TPR: %.2f" % (sum((y_true == 1) & (y_pred == 1)) / sum(y_true == 1)))
    print("FPR: %.2f" % (sum((y_true == 0) & (y_pred == 1)) / sum(y_true == 0)))
    print("TNR: %.2f" % (sum((y_true == 0) & (y_pred == 0)) / sum(y_true == 0)))
    print("FNR: %.2f" % (sum((y_true == 1) & (y_pred == 0)) / sum(y_true == 1)))
```

```
pred_label = logistic_model.predict(x_test)
accuracy = logistic_model.score(x_test, y_test)
error = 1-accuracy
print("Accuracy=",accuracy)
print("Error=",error)

print_metrics(pred_label,y_test)
```

Accuracy= 0.8552631578947368 Error= 0.14473684210526316 TPR: 0.98 FPR: 0.30 TNR: 0.70 FNR: 0.02

Classification Report

```
from sklearn.metrics import classification report
target_names = ['class 0', 'class 1']
print(classification report(y_test, pred_label, target_names=target_names))
              precision
                           recall f1-score
                                              support
     class 0
                   0.86
                             0.79
                                       0.83
                                                   39
     class 1
                   0.80
                             0.86
                                       0.83
                                                   37
                                       0.83
                                                   76
    accuracy
   macro avg
                   0.83
                             0.83
                                       0.83
                                                   76
weighted avg
                   0.83
                             0.83
                                       0.83
                                                   76
```

ROC Curve

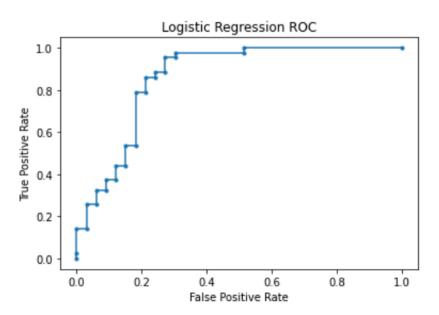
```
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from matplotlib import pyplot

pred_lr = logistic_model.predict_proba(x_test)
pred_lr = pred_lr[:, 1]
r_auc = roc_auc_score(y_test, pred_lr)
print("AUC=",r_auc)

lr_fpr, lr_tpr, _ = roc_curve(y_test, pred_lr)
pyplot.plot(lr_fpr, lr_tpr, marker='.', label='Logistic')
pyplot.xlabel('False Positive Rate')
pyplot.ylabel('True Positive Rate')
pyplot.title('Logistic Regression ROC')
```

AUC= 0.8604651162790697

Text(0.5, 1.0, 'Logistic Regression ROC')



Lab LDA

```
from sklearn.discriminant analysis import LinearDiscriminantAnalysis
lda = LinearDiscriminantAnalysis()
lda.fit(x train, y train)
print('Priors:')
print(lda.priors )
print('Means:')
print(lda.means )
print('Coefficients:')
print(lda.coef )
print('Test Accuracy:')
print(lda.score(x test, y test))
Priors:
[0.41409692 0.58590308]
Means:
[[5.70744681e+01 8.19148936e-01 4.78723404e-01 1.34882979e+02
  2.49031915e+02 1.27659574e-01 4.36170213e-01 1.40021277e+02
  5.21276596e-01 1.62446809e+00 1.18085106e+00 1.24468085e+00
  2.57446809e+001
 [5.24060150e+01 5.48872180e-01 1.36090226e+00 1.29548872e+02
  2.45052632e+02 1.27819549e-01 5.93984962e-01 1.59195489e+02
  1.35338346e-01 5.84962406e-01 1.64661654e+00 3.30827068e-01
  2.12030075e+0011
Coefficients:
[[-5.12655671e-03 -1.65128336e+00 9.42708811e-01 -1.63429905e-02
  -8.26945654e-05 3.61220910e-01 6.53320414e-01 2.61543171e-02
  -1.10225766e+00 -5.26885663e-01 9.83938578e-01 -1.00983532e+00
  -1.16829536e+00]]
Test Accuracy:
0.8026315789473685
```

LDA Metrics

```
target_names = ['class 0', 'class 1']
pred_label_lda = lda.predict(x_test)
print(classification_report(y_test, pred_label_lda, target_names=target_names))
```

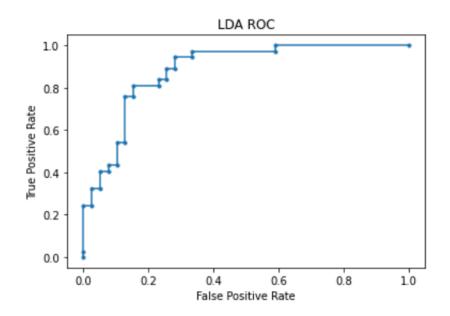
	precision	recall	f1-score	support
class 0	0.88	0.72	0.79	39
class 1	0.75	0.89	0.81	37
accuracy			0.80	76
macro avg	0.81	0.80	0.80	76
weighted avg	0.81	0.80	0.80	76

LDA ROC Curve

```
pred_lda = lda.predict_proba(x_test)[:,1]
r_auc_lda = roc_auc_score(y_test, pred_lda)
print("AUC=",r_auc_lda)

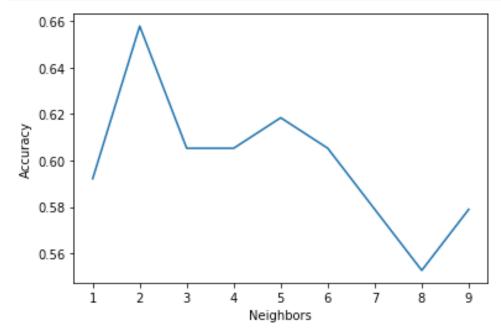
lda_fpr, lda_tpr, _ = roc_curve(y_test, pred_lda)
pyplot.plot(lda_fpr, lda_tpr, marker='.', label='Logistic')
pyplot.xlabel('False Positive Rate')
pyplot.ylabel('True Positive Rate')
pyplot.title('LDA ROC')
```

AUC= 0.8842688842688843



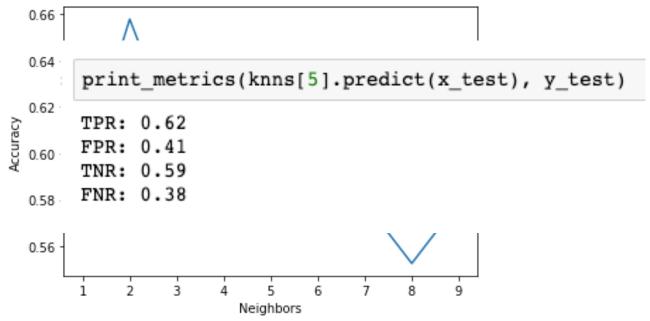
Lab kNN

```
from sklearn.neighbors import KNeighborsClassifier
accuracies = []
neighbors = list(range(1, 10))
knns = []
for n in neighbors:
    knn = KNeighborsClassifier(n_neighbors=n)
    knn.fit(x_train, y_train)
    knns.append(knn)
    accuracies.append(knn.score(x_test, y_test))
plt.figure().add_subplot(111, xlabel="Neighbors", ylabel="Accuracy")
plt.plot(neighbors, accuracies)
plt.show()
```



Lab kNN

```
from sklearn.neighbors import KNeighborsClassifier
accuracies = []
neighbors = list(range(1, 10))
knns = []
for n in neighbors:
    knn = KNeighborsClassifier(n_neighbors=n)
    knn.fit(x_train, y_train)
    knns.append(knn)
    accuracies.append(knn.score(x_test, y_test))
plt.figure().add_subplot(111, xlabel="Neighbors", ylabel="Accuracy")
plt.plot(neighbors, accuracies)
plt.show()
```



Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
- Thanks!